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Abstract 
Extensive studies have been devoted in recent years to the microplane and 
multicrack models for nonlinear behavior and cracking of concrete. A 
new theoretical framework that links the traditional damage and plasticity 
concepts with the microplane theory is presented. The multicrack model 
is described in terms of multisurface elastoplasticity, with emphasis on the 
comer problem. 

1 Introduction 

The idea of developing material laws for the 2-D or 3-D continuum starting 
from the behavior of a plane of generic orientation is old and has proven 
very powerful. The classical elastoplastic failure envelopes such as Tresca 
and Mohr-Coulomb can be derived from the idea of a limit a-E condition 
for a generic plane (Mohr, 1900). The slip theory of plasticity (Taylor, 
1938; Batdmf and Budiansky, 1949) and the viscoplastic-type multilaminate 
model for fractured rocks and soils (Zienkiewicz and Pan de, 1977; Pande 
and Shanna, 1983) were also based on similar ideas. 

The application of this general idea to concrete was proposed by Bafant 
and Oh (1983), in the form of the microplane model. After successive 

841 



Gambarova, 1984; and Oh, 1985) the 
, .... A..._,...,. ... ,. .. reached its classical formulation in Bazant and Prat (1988a,b) where 
it was verified successfully by comparison most of the experimental 

for concrete specimens. Later, model was to 
(Carol et 1992b) which much better Jt ..... ..,LJLL...,,.L • ..,,, ... Jl 

similar capabilities, revised by introduction 
boundaries as as generalization to 

An1mAnt"c were based on assumption of certain stress-
.11.AL<"-'.ll. ..._.,L.IJl,UL .. n .... ,~ and a micro-macro constraint of the kinematic 

expression of the macroscopic stresses tensor as an 
cnnAr'°' of the normal and shear stresses on each 

...... ..._.. ..... ..,..,..., ... u with the hypothesis strain equivalence were 
), with the a fourth-order ..... ".._ .......... ;;;,..., 
of some microplane damage variables. 

nature (i.e. totally independent from ,u, .......... ..., ............. 

to combine damage with linear aging viscoelas­
failure under sustained loads as given by the 

curves (Carol 1991; Carol et 1992a). 
the kinematic constraint, the strains microplanes must the 

the same macroscopic strain tensor. This means that at 
,..""'"'"t-~ 11·"t-~'""" level no deformations are allowed to exist in a ~~A,_A_ 

...,..._.."·"""'''""""·'' ...... """intuitively to a developing (macro )crack. 
""I-''"·"""'""" ................ ""'"'"" of cracking in a smooth continuous 

as instance non-local implementation (Bazant and Ozbolt, 
where, using fine meshes, cracks can be obtained as the result of con­

............................. strain accumulation across two or three (or more) finite elements . 
.... .., .. ,>.A. ..... ,.._. however, cannot be easily represented in the sense of classical 

"rn'""".l'r"""rl crack band models (fixed or rotating crack), where the information 
........ ,. . ...,..., ...... ..._, ..... and or sliding of crack is available at each 

., .... u ... ..., ......... .., .. regularization procedure of adjusting soft-
1""rn'""" .. size, as done in the crack band model requires 

related to the fracture energy, which cannot be 
constrained formulation. 

those considerations mind, the multicrack model was proposed 
a static constraint along the line of the original 

Batdorf Budiansky (in which the stresses on each plane 
,....,..., ..... '"' ..... " of macroscopic stress tensor) and accumulation of inelas-

each cracked plane, as proposed previous formulations for 
...., ........ .,, .. .,..., .... ~(de Borst and 1985; Willam et al., 1987). Same as those 

.LAJl. ... , .......... ..._.. .... LY. individual cracks start and develop with precise orientations, 
strains have a discrete character, i.e. a single crack produces mea-

deformations at macroscopic level (this is in contrast to the slip 
theory of plasticity or statically constrained microplane models, in which 

microplane strains to be integrated over a certain finite range of 
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orientations to obtain some measurable macroscopic strain). In the practical 
implementation, the possibility of cracking is restricted to a number of fixed 
predefined orientations (12 planes, every 15°, in 2D). The model conforms 
to multisurface plasticity, and exhibits two fracture energy parameters for 
mode I (tension) and mode Ila (shear and high compression). The results 
obtained during the first stage of development (Carol and Prat, 1991; Carol 
et al., 1993) included constitutive calculations under pure tension and con­
fined compression, as well as a finite element results of a three-point bend 
test, all of them examples where principal directions remained fixed. 

A comprehensive summary of the state-of-the-art microplane and 
multicrack models at the time of FraMCoS-1 was presented in Carol et 
al. (l 992a). Since that time, significant advances have taken place, and 
some of them are summarized in the following. For mi crop lane model, a the­
oretical framework is presented which incorporates traditional damage and 
plasticity concepts into the formulation in a simple and natural fashion, en­
compassing at the same time the previous formulations. For the multicrack 
model, the formulation is described in terms of multisurface elastoplasticity. 
The corner problem with two or more surfaces potentially active is discussed 
and the algorithm used is described and demonstrated with an example 
application in which principal directions rotate significantly and non-trivial 
patterns of crack activation and deactivation are obtained. 

2 Microplane model * 

2.1 Standard formulation for concrete with kinematic constraint 
A microplane is any plane cutting the material, defined by its unit normal 
vector of components ni. Normal and shear stresses aN, ar, and strains EN, 
Er, are considered on each microplane. Strains on the microplane EN, Er, 

are assumed equal to the projections of the macroscopic strain tensor Eij 

(kinematic constraint). Application of the principle of virtual work leads to 
the expression of the macroscopic stress tensor as an integral of the stress 
over all possible microplane orientations: 

(1) 

Without the shear contribution on the right-hand side, and a stress-strain 
law of the type aN = :FN(EN), Eq. (1) represents the first formulation con­
sidered for the microplane model, which yielded satisfactory data fits for 
tensile cracking and shear data (Ba.Zant and Oh, 1985; Ba.Zant and Gam­
barova, 1984). With it, however, it was not possible to obtain the type 
volumetric-deviatoric interaction observed in experiments in compression. 
Then, the split of the normal microplane stresses and strains into volumetric 

* This section is authored jointly by I. Carol and Z.P. BaZant. 
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and deviatoric parts (aN=av+aD, EN=Ev+ED) was introduced, which lead to 
the alternative expression: 

3 1 3 1 arr a··= av8·· + - aDn·n·dQ + - -(n·8 · + n·~ ·)dQ lJ 11 2 1 J 2 2 
i r1 1Uri (2) 

n n n n 

In the formulation with volumetric-deviatoric split, the stress-strain laws are 
assumed 

av =Fv(Ev) ; (3a, b, c) 

In practice, for a given strain history at the macroscopic level (input), the 
strains in the microplanes are immediate; from these, the stresses can be 
obtained with the material laws, and finally macroscopic stresses are ob­
tained with (2). Integrals over the hemisphere are performed numerically. 
A fixed number of "sample" directions (normally 21, 25 or 28 in 3D) are 
considered. They serve as integration points at which history variables for 
the microplane laws are stored and updated. The details of the stress-strain 
laws, integration rules and results obtained for a variety of concrete tests can 
be found in Ba.Zant and Prat (1988b) and Carol et al. (1992b). 

Although in all the references mentioned it was shown that in most 
loading situations the formulation with normal-deviatoric split performs 
satisfactorily, it has been pointed out recently that under uniaxial loading 
with significant tensile strains (i.e. representing tensile cracking) the intrinsic 
normal-deviatoric coupling causes undesirable volumetric expansion that 
cannot be eliminated (Ba.Zant et al., 1994; Ba.Zant et al., 1995). In these 
studies, the authors propose a model with boundary stress-strain curves that 
switches automatically from the formulation with split to that without split, 
depending on the loading situation. An alternative to this problem may be to 
decompose the strain into a continuous part and a cracking part, and relate to 
the classical microplane model only the continuous part, while the cracking 
part is handled directly by a cracking model along the line of the multicrack 
model described in Sec. 3. 

Elastic behavior and double constraint 
In the elastic regime, the microplane laws can be simply written as 

(4a, b, c) 

By substituting these and the kinematic constraint into (2), and comparing 
(2) to the standard isotropic linear elastic stiffness tensor, one can obtain the 
equivalence conditions (Ba.Zant and Prat, l 988a): 

o E 
Ev= ; 

1-2v 
Eo = ~ [5(1-2v) 2f}o] E~ 

T 3 l+v 
(5a, b, c) 
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where E 0 and v are the standard elastic constants, and r/o is an additional 
constant, initially considered free to be set arbitrarily, and without significant 
influence on the data fitting capabilities. Later, it turned out that a value of 
rJo = (l-2v)/(l +v) was required to obtain a rheology-free damage tensor 
based on the strain equivalence approach (Carol et al., 1991 ). Recent results 
(Carol and Bazant, 1995), indicate that this is actually the condition for the 
linear elastic model to satisfy the double constraint, i.e. to be simultaneously 
kinematically and statically constrained (the static constraint means that 
microplane stresses av, av and arr are the projections of the stress tensor 
o-ii and that, by virtue of the principle of virtual work, the corresponding 
microplane strains and macroscopic strain tensor also satisfy an integral 
relation dual to Eq. 2). The double constraint in the elastic model turns 
out to be a requirement for most developments presented in the following 
sections. The initial microplane stiffnesses then become: 

o E E--­
v-1-2v 

o o E 
ED= ET= --

1 +v 

2.3 Microplane Elasto-Plasticity (MEP) 

(6a, b, c) 

Elasto-plasticity can be introduced at the microplane level with the following 
stress-strain relations 

Substituting (7) into (2), and assuming that the initial moduli satisfy ( 6) 
(double constraint), after appropriate manipulation one can obtain (Carol 
and Bazant, 1995) 

(8) 

(9) 

The repeated indices imply summation except when the indices are within 
parentheses. Eqs. (8)-(9) represent a classical plastic formulation in which 
the plastic strain is obtained as the integral of the microplane plastic strains. 

2.4 Microplane Elastic Damage (MED) 
Alternatively, one can consider elastic-damage relations for the microplane 
material laws 

0-v = EvEv 

0-v = EvEv 

aT, = ErEr, 
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Ev= avE~ 

Ev= avE~ 
Er= arE~ 

(lOa, b) 

(Ila, b) 

(12a, b) 



where av, av, ar are some damage coefficients varying from 1 to 0, which 
can be interpreted geometrically in terms of the undamaged area fractions for 
each microplane and component. The classical continuum damage theory 
resorts to the concepts of strain equivalence, energy equivalence or stress 
equivalence. In the most common strain equivalence approach, the preceding 
equations can be directly introduced into (2), and assuming that the initial 
moduli satisfy the double constraint, adequate manipulation leads to the 
following equations: 

(13a, b) 

(14) 

i.e., the equations a classical elastic-damage model in which the fourth-
order tensor damage is obtained as an integral of the damage at each 
croplane (Carol et al., 1991). 

The recent results (Carol and Bazant, 1995) include similar develop­
ments with the stress equivalence and the energy equivalence approaches. 
Especially attractive is the energy equivalence approach, in which the final 
equations obtained (again with the assumption that the elastic model satisfies 
the double constraint) are 

(l5a, b) 

(16) 

i.e., the fourth-order damage tensor f3ijkl has the same expression as aijkl 

except for the square root values of the microplane damage coefficients. In 
contrast to the strain equivalence approach, the secant stiffness tensor is now 
guaranteed to exhibit major symmetry even if f3ijkt itself as defined in (16) is 
not. This is a convenient feature for energy consistency of the model, often 
overlooked in the literature. 

2 .. 5 Combination of Microplane Damage and Plasticity (MDP) 
Damage and plasticity can be combined by considering microplane laws of 
the type 

av=Ev(Ev-EO; av=Ev(Ev-Eb); ar,=Er(Er,-Ef) (17a,b,c) 
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Assuming double constraint 
(1 Ob-12b ), introduction 
macroscopic expression 

...., ........ _,..,_._..., model and secant " ........ , ................. 
(2) and proper .U . .l.U.cU.JLIJ•c.acLU.~ . .LVJUL 

where plastic strains Ekt are secant l'1l"1iH"n.oc-C' 

3b,14) strain equivalence, or energy 

Sec. 2.4 
classical concepts in damage mechanics, such as 

stress and effective strain, are defined at both macroscopic 
eff,p) d · 1 eff eff eff eff eff eff,p eff,p 

, Eij an ffilCfOp ane , (JD, (JTr, Ev, ED, ETr, Ev , ED , 

....... .,...t-1-,.,"',,. details of these derivations can be found Carol and ,._,, .... ...., ........... 
Equations for MEP, MED and presented in Sec. 2.3-2.5 are not 

incompatible with the standard microplane model for concrete 1. 
Actually, expressions ( 4 ), (7), (10)-(12) and represent 
cases of the general microplane laws (3). The kinematic ...,..._,,'" . ...,""L ........ ,, .. ~ 

total nominal strains Ev, with Eij, and corresponding 
form of equilibrium between av, aD, ar, and aii (2) maintain 
through sections 2.2-2.5, and specific structure 
strain laws in MEP, MED and MDP, together with the 
assumed for the underlying elastic model, make it possible to 
tional structures and relations formulation, which hold .:) .. U.Jd.U.1.\-U..J..•...,vu..., ... 

with the original kinematic constraint. One consequence is 
ples given in the previous work on the classical microplane 11. .... ...., ...... ...., .. 

and Prat, 1988b; Carol et al., 1992b) can be directly reinterpreted as exam­
ples of MEP, MED or MDP formulations. This simply requires 
original stress-strain relations microplanes (3) in a form to 
(10)-(12) or (17), and extracting the laws for microplane damage (av, 
or plastic strains (E~, etc.), or both, in terms of the microplane .., .... ..,..., .... _,.u 

etc.). Then, calculation of the new integrals (9) and (14) or (16) 
responding stresses with (8), 3) or (15) for a specific 
yield exactly the same results (except for numerical integration 
off errors) as obtained in the same case with (3) and (2) using 
microplane formulation. This particular exercise was already done 
et al. (1991 ), where a uniaxial compression test was reproduced 
elastic-damage formulation, practically duplicating the same '-'LAL.LF\. ......... 

as obtained previously with the classical microplane model 
1992b). 

Other relevant aspects of the generalized microplane theory 
and plasticity, including alternative fourth- and second-order damage tensors 
obtained from the model without normal-deviatoric split, and ar-11.-................ ....,.uvv 

MEP with von Mises and other classical elastoplastic models, can 
in (Carol and Bazant, 1995). 
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3 Multicrack model * 

multicrack model can be considered an advanced formulation along 
the line of smeared crack representation initiated with traditional fixed or 
rotating crack models (Rashid, 1968; Cope et al., 1980; de Borst and Nauta, 
1985; Willam et al., 1987; Rots, 1988). Same as some of those models, 
one assumes an additive decomposition of strain into one contribution from 
the continuum between the cracks, plus additional contributions from each 
individual crack: 

N 

E == Eco + LE(~) (19) 
k=l 

The normal and shear stresses on each individual crack, aN and <Yr, are 
assumed to be projections of the stress tensor aiJ (static constraint). The 
continuum between cracks plays the role of the elastic part of the model, 
while each crack represents an additional plastic mechanism. 

3 .. 1 Multisurface elastoplastic description 
Each potential crack is represented by a cracking (plastic) surface F, and the 
corresponding plastic potential Q, hardening variable, etc., all formulated 
in terms of aN, <Yr,, E~ and E~ on the crack plane. The stress components 
and strain components in the crack plane are grouped into vectors sand ecr. 

Relations with the corresponding macroscopic tensors u and Ecr are based 
on the static constraint and the principle of virtual work, and so are the 
derivatives of F and Q, with the expressions 

aF aF 
--N-· au - as ' 

aQ aQ - == N- (20a, b, c, d) au as 
2-D, matrix N can be written in terms of the angle(} between the normal 

to the crack plane and the x-axis (de Borst and Nauta, 1985; Rots, 1988; 
Carol and Prat, 1990) 

[ 

cos28 
N == sin28 

2 cos(} sin(} 

- cos(} sin(} ] 
cos(} sin(} 

cos28 - sin28 
(21) 

initial loading surface is a hyperbola in the aN-ar space with tensile 
strength Xo = ft', asymptotically equivalent to a Mohr-Coulomb surface 
defined by c and tan</>. The plastic flow is associated in tension, and 
dilatancy is reduced in compression, vanishing for laN I =::: adi1• Softening 
laws are governed by wcr (fracture work), equal to the plastic work in tension, 
and to its tangential part, friction excluded, in compression. With cracking, 

* This section is authored by I. Carol. 
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X decreases, vanishing for wcr = gJ = mode I fracture energy. c decreases 
more slowly, vanishing for wcr = g}1a =fracture energy in mode Ila, normally 
larger than gj. Mode Ila is defined as a limit situation with shear and no 
dilatancy (i.e. high compression). At wcr == g}, the hyperbola changes little, 
but its tip is shifted to the origin. At wcr == g}1a, it degenerates into a 
of straight lines representing pure friction. More details of the model for a 
single crack can be found in (Carol et al., 1993; Carol and Prat, 1995). 

Assuming N cracks simultaneously satisfying F == 0 (corner situation), 
the elastoplastic rate equations are 

· _Eco(·_~ ·er) u - € ~€(i) 
i=l 

(22) 

. er ~ a Q(i) 
€ (i) == (i) -au- ; i == 1, N (23) 

. [ a Fci) ] 
/ 

. ~ . 
F(i) == au u - f::r H(i,j)AU) ; i == 1, N (24) 

where H(i,j) are the hardening-softening parameters which, 
defined as 

this case, are 

a Fci) a·F(i) ap(i) aw(;) a Q(i) 
H(i,i) == --- --- -- -- --

a"Aci) ap(i) aw(I) B€([) au 

H a Fci) 0 .c i· -1- 1· 
(i,j) == --a'\ == ior I 

l\,U) 

(25a, b) 

(25a), pare the vectors with the surface parameters which change 
hardening-softening; in this case p == [X, c ]! for each surface. With these 
definitions, H(i,j) is diagonal and its terms are always negative, i.e. one has 
a purely softening law uncoupled between the various surfaces. 

3.2 The infinitesimal corner problem and tangential stiffness 
At a corner with N crack surfaces, equations (22)-(24) can be combined to 
obtain 

[

- ~(1) ] [ f!.(1,1) 
- Fc2) - HC2, 1) 

. . 
-P(N) H(N,1) 

H(l,2) 

H(2,2) i!_(l,N) ] [ ~(l) ] [ B(l) ] Hc2,N) 'Ac2) + B(2) 
. . . 

H(N,N) ~(N) B (N) 

(26) 

where the matrix and the right-hand side vector are known advance 

- [ a F(i) J t co a Q U) He· ·)=He· ·) + -- E --
1'1 l,j au au ' [

a F ]
1 

B(i) =- a:) Eco~ (27a, b) 
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i = 1, 

0.n.1rnn1n<J1t-1ri.n with 
.......................... to 12 predetermined 
across the upper semicircle. 

IU'.L...,.ILI''-'•'""'~ recently without 
'3..,Jl • ..,.., .. L...,Jl.A of predefined 1-''"''·'"''""'" ........ Jl 

....,....,,, .. .., ... ~...., .. ..., ...... analogous to restriction that cracking 
element can occur at integration points; if enough direc-

are considered, it does not pose a severe restriction on the cracking 
in exchange it is a way to circumvent a number of practical 

•J.11.'U'U' ...... ,,. ........ ., that otherwise arise the implementation of the model. 
computer routine constitutive verification follows a scheme simi-

to proposed in Carol et al. (1992b) for microplane model, with a 
strain-driven constitutive subroutine, managed from a I-point main program 

iterates according to a Newton scheme only on those degrees of free­
with prescribed stresses. The constitutive subroutine is mainly based 

on the calculation of new contact-deactivation points, a crucial aspect in 
type of model with many loading surfaces. While the number of active 

surfaces remains constant, the increment of prescribed strain is divided into 
subincrements, and for each of them a trapezoidal rule is applied iteratively 
to integrate the plastic equations. changes the set of active surfaces 
are detected at the end of the subincrement, the earliest contact/deactivation 

is obtained, and subincrement size is reduced accordingly for the 
next iteration. In this way, upon convergence of the process, the contact 

will be reached precisely. 
Once a contact-deactivation point involving more than one surface (i.e. a 

corner point) has been reached, an iterative procedure is initiated to deter­
the precise set of active surfaces for the following subincrement. The 
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active set of surfaces must be a subset of the total number surfaces at 
corner. In the first iteration, all the surfaces involved are assumed active. 
The entire left-hand side vector in (25) is therefore null, and the system 
can be solved to obtain the plastic multipliers. If one or more multipliers 
obtained are negative, those surfaces are dropped, the corresponding rows 
and columns are eliminated from the system, and a new solution for 
multipliers is obtained. In the second and further iterations, verification 
that all surfaces assumed inactive are really in that state is also required. 
This consists of simply calculating the corresponding left-hand term (25) 
and checking its positiveness. Otherwise, the surface must be reincorporated 
into the active set for the subsequent iteration (this second verification was 
not stated clearly in the earlier algorithms proposed (Simo et al., 1988)). 
More details of the numerical implementation with discussion of ........ "' .............. ...., ............ 
difficulties that may arise during calculations can be found Carol 
(1995) .. 

3.3 Willam's test with rotation of principal directions 
The multicrack model described was demonstrated in past for exam-
ples in tension, compression and shear, without rotation of principal 
rections (Carol et al., 1993). Recent results include a numerical test 
significant rotations of principal stresses (Willam et al., 1987), which 
a correct performance of the the corner algorithm is required in order to 
get a consistent solution. In this test, uniaxial tension applied first 
in the x direction, reaching the onset of tensile cracking. Subsequent 
strain increments are prescribed to all degrees of freedom proportionally to 
b..E == [b..Exx' b..EYY' D..yxyY == [0.50, 0.75, 1.00]1. This implies increments 
tensile strain for both principal axes, accompanied by a rotation that reaches 
asymptotically the value of 38°. The parameters used are: == 10, OOOMPa, 
v == 0.18, tan¢ == 0.8785, ft' == l.OMPa, c0 == 1.5MPa, g} == 0.00015MPa, 
g}1a == 0.0015MPa, adiI == 1, OOOMPa, and ax== ac == 0. The crack orienta­
tions are numbered 1 to 12 starting counter-clockwise from the normal along 
the X-axis. The evolution Of 0-xx (equal tO 0-N(l)) and 0-xy (equal tO 0-r(l)) is 
represented in Fig. 1. Changes in crack status are indicated with a vertical 
line and+, - or= followed by crack number. 

The first load step shows a linear increase of the normal stress reaching 
the initial tensile strength, with zero shear stresses. At that point, crack 1 is 
activated. With the second load step, the normal strain continues to increase 
on plane 1 with decreasing stress (softening), although now accompanied by 
an increasing amount of shear strain, which causes the shear stresses to build 
up. At the same time, the strains (and stresses) begin to increase in other 
planes, until a corner point is reached involving planes 1 5 (60° apart 
from the initial crack). The corner situation is resolved with crack 5 opened 
and crack 1 deactivated. After that, axx initially continues decreasing (now 
in unloading regime rather that softening), although shortly after that 
tendency is inverted and the cracking surface for plane 1 is reached again, 
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Fig. 1 - Willam's test in rotating tension/shear 

0.0010 

with a new comer point involving the same surfaces 1 and 5. This second 
time, however, the comer is resolved with both cracks remaining active, 
and this situation is maintained for the rest of the test, with stresses slowly 
vanishing in all directions. 

3.4 Discussion 
the example presented, the multicrack model seems capable of handling 

complex crack states with non-trivial comer situations. The model exhibits a 
natural shielding effect of the first crack onto neighbor directions of potential 
cracking, without the need of introducing ad hoc threshold angle parameters. 
This is apparent from the fact that the second crack opens at 60°, even if 
strains prescribed are tensile and continuously increasing in all directions 
around the first crack. The shielding effect can be explained from the static 
constraint and the softening laws, since stresses on plane 1 decrease fast 
after first cracking, "taking back" with them also the stresses in neighboring 
planes which must lie nearby on the same Mohr circle. This adds to all 
previous features of multicrack model such as a consistent definition of the 
second mode of fracture, a reduced set of parameters including fracture 
energies, etc. All these advantages are, however, at the price of dealing with 
a 12-surface elastoplastic model, still posing theoretical and computational 
challenges to be addressed in the future. Further discussion and details on 
the model can be found in (Carol and Prat, 1995; Carol et al., 1995). 

4 Concluding remarks 
two models presented, microplane and multicrack, represent differ­

ent aspects of concrete behavior. The microplane model with kinematic 
constraint seems more naturally adapted to the behavior before severe lo-
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calization takes place, while the multi.crack model specializes precisely in 
that situation. Although the available results for the multi.crack model have 
so far been obtained only in conjunction with linear elasticity, any model 
could be used for that purpose, and in particular the possibility of combin­
ing microplane and multi.crack models in a single formulation seems a very 
attractive possibility to be explored in the future. 
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