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Abstract

The previously developed Microplane Concrete Model is improved to
expand its applicability and reconstructed into the Enhanced Microplane
Concrete Model as a more general constitutive law. One of the main
improvements is to take account of resolved lateral stress (resolved lateral
component of the macroscopic stress tensor) in normal compression
response on the microplane. Another main improvement is to adapt a
transition model from brittle to ductile fracture for shear response on the
microplane with increasing resolved normal compression stress (resolved
normal compression component of the macroscopic stress tensor). Those
improvements bring the model a complicated interaction effect between
microplanes through macroscopic stress tensor. It is verified that the
Enhanced Microplane Concrete Model can predict well experimental
constitutive relations of concrete from references.

1 Introduction
The microplane model has been shown to be effective for describing

constitutive relations and damage of concrete material. The primitive model
has a clear physical image in the microscopic level, and it is based on a

857



characteristic hypothesis that the inelastic origin of concrete as a
heterogeneous material is microcracks which occur within the interface
region (microplane) between the mortar matrix and large aggregate.
However, some of the previous models lose the conceptional clearness of
the microplane to expand their applicability. Bazant and Gambarova (1984)
developed the normal component formulation model in which an additional
elastic body was incorporated with the microplane system for adjusting
Poisson's ratio. The recent models by Bazant and Prat (1988), Ozbolt and
Bazant (1992), and Carol et al. (1991) adapted volumetric-deviatoric-shear
component formulation to obtain an arbitrary Poisson's ratio. It seem to go
against the basic hypothesis of the microplane model to split microplane
responses into an overall macroscopic response and each microplane
response.

In view of the previous microplane models losing conceptual clearness,
Hasegawa and Bazant (1993) reconstructed the Microplane Concrete Model
(MPC Model) so that no additional elastic body or volumetric component of
microplane was used for adjusting Poisson's ratio. In the present study the
previously developed MPC Model is improved to expand its applicability
and reconstructed into the Enhanced Microplane Concrete Model (EMPC
Model) as a more general constitutive law for concrete.

2 Formulation

2.1 Hypotheses

By contrast with the microplane model by Bazant and Prat (1988), the

normal strain component on the microplane in the EMPC Model is not split

into volumetric and deviatoric parts. The following are the hypotheses in
the present model.

Hypothesis I : Normal strain €, shear strains €, €5,,, and lateral straing;
of a microplane are the resolved components of the macroscopic strain
tensor ¢;; (tensorial kinematic constraint).

Hypothesis I : Normal stresso, and shear stresseso,,0p, On a
microplane depend on normal straing, and shear strains &;, €5,,. The
relations between those strains and stresses are described by
microconstitutive laws.

Hypothesis III : The normal stress increment on a microplane depends on
the resolved lateral strainég,; (lateral strain effect) and resolved lateral
stress S, (lateral stress effect) on the same microplane as well (additional
static constraint).

Hypothesis IV : The inelastic shear stress increment on a microplane
depends on the resolved normal component S, of the macroscopic stress
tensor ¢, on the same microplane (additional static constraint).

Hypothesis V : The microconstitutive laws for the normal and shear
components are based on a generalized Maxwell rheologic model in
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Fig.1. Hypotheses of Enhanced Microplane Concrete Model

which a linear viscous element is coupled in series with an elasto-plastic-
fracturing element.
Hypothesis VI : The microconstitutive laws for the normal and shear
components on each microplane are mutually independent.
Fig.1 represents the hypotheses.
According to hypothesis I, normal strain €, and shear strains €, £, on
a microplane of direction cosines n, are

Ey =N;ME, (1)
1 1
where k; and m, are components of in-plane unit coordinate vectors k, m
normal to each other as shown in Fig.1. They are determined as described in
Hasegawa and Bazant (1993).
max

The maximum and minimum principal values £™, ™" of lateral strain
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on each microplane are evaluated to implement hypothesis III.

2 2
HAE ;8’” +\/(8K _Z_SM) +(8K ZgM "‘8[)) (3a)

2 2

min _ €x T €y (SK _EM) (SK +Ey )
grn K _“M _ J|ZK "M | L |ZK "M _g 3b
L 2 \/ 2 2 i (3b)

in which &y =kk;e; , €, =mm;e; , and €, = p;p;€; are the lateral
normal strains in the dlrectlons of k m and p. The in- plane unit vector p
has 45° angles with k and m as shown in Fig.1.

The resolved normal component S, of the macroscopic stress tensor
0, on a microplane whose direction cosines are ; is

SN n;6; =nno, 4)
The max1mum and minimum principal values S, S/ of resolved
lateral stress on each microplane are

2 2
S = S ;SM +\/(SK ;SM) +(SK ;SM _Sp) (5a)

Sinin — SK ;SM _\/(_S_K__—QLS_M_)Z +(S—K—Z~i~—s )2 (Sb)

in which Sg =k;k;0;, Sy =mm,0; , and S, = p;p;0,; are the resolved
lateral normal stresses 1n the directions of k, m, and p.

2.2 Normal-shear component formulation
The incremental microconstitutive relations are written separately for the
normal component and the shear components in the K and M directions

doy=C deN—dO.anle(SN’gL’SL):fNZ(Ekl’O-AI’ ) | (6a)
dorg = Crydery —dop "= le(gTK’ ) Jr2 (8k1’0'k17 ) (6b)
dopy = Crydery —dony, "= fry (ETM» ) Jra (gkl’o-kl’ ) (6¢)

in which C, Cp, and C;,: incremental elastic stiffnesses for the
microplane; do,", doy", and dop,": inelastic microplane stress
increments; fy,(ey.€;,S;,) and fy,(&,,04.n,) are doy expressed in
terms of €, €, and S, and in terms of &, 6, and n,; fr,(g5,Sy) and
fr2(€44,0 1, ) are do, expressed in terms of €, and Sy, and in terms of
€., Oy, and n, (Ts=TK,TM).

Using the principle of virtual work, we can write

fdo,.jae,.,dv =2 f (doy ey +doyders +dopden ) f@dS (1)
S

in which J¢;;, 8¢y, 0€r, and O€r,,: small variations of macroscopic strain

tensor and the strains on the microplane; V: the volume of unit sphere; S:

the surface of unit hemisphere; f(n): a weight function for the normal

direction n. Expressing Jey, 0e¢, and ey, from (1) and (2), and

substituting them as well as (6) into (7) , we can get the macroscopic
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incremental stress-strain relation

do, =C;de, —do;" (8)
where C;,; denotes the incremental elastic stiffness tensor
3 1
Crs =5 j inin mn,Cy + Z(k,.n ; ko )(kong + k,n,)Crg ©9)

+%(minj +m;n, )(mrns + msn,)CTMJf(n)dS

and dO'ij " denotes the inelastic stress increment

.3 | "
do; =§Eﬂnz‘”]’dcw +§(ki”j +kj”i)dGTK (10)

1 "
+5(minj +m;n, )dO'TM f(n)dS
Since doy, do, and doq,, are the functions of strain tensor €, and
stress tensor 0, the incremental stress tensor dO'ij can be written as

1
do; L[ni”jfzvz (&4 0usm, )+ }:(kinj +kjn; )fTZ (€ 0uem,) (1)

3
2w
1

+‘2‘(mi”j +m;n, )frz (usOm, )}f(n)dS

As you see from the fact that the incremental stress tensor depends on not
only strain tensor but also stress tensor, interaction effect between
microplanes is modeled in the EMPC Model through the additional static
constraint. The interaction effect makes the present model deviate from the
basic concept that individual microplane responses are independent from
each other, which principally comes from the kinematic constraint. The

effect is necessary to take account of a situation within concrete where
microcracks, damage, and plasticity in each direction effect each other.

2.3 Microconstitutive law for normal component
The purpose of taking account of the lateral strain and stress effects on
normal response of the microplane according to hypothesis IlI is to achieve
the following (Fig.1(d)):
1. The normal strain response would not be the same as the hydrostatic
response except when the lateral strains €, are the same as the normal
strain €, which is the case of hydrostatic loading.
2. The normal response would have a plastic plateau when the difference
between the normal strain €, and the lateral strain g, is large, and when the
resolved lateral stress S; of the microplane is a large, compressive value,
1.e., it would exhibit ductile plasticity.
3. The normal response would be more brittle when the difference between
the normal strain €, and the lateral strain €, is large, and when the resolved
lateral stress S, of the microplane is a small, compressive value or a tensile
value, i.e., it would exhibit more strain softening.

For the lateral strain effect it is useful to introduce a lateral-deviatoric
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strain €, to define the difference between €, and ¢€;
max min

€p = ’81\1 —€L IEN —€r (12)
The following hardening-softening function ¢(g,,) in terms of &, is
introduced

1

$lep)= N (SLD/EILD)M :when S, <0 (13)
= ! = ¢’
14 (SZD/EiD)m : when €,, =€7,
=0 :when §,-. 20

in which &, €,,, value when ¢(€,,,) = 0.5; m: a constant that specifies the
shape of the curve ¢(g,,); and ¢”: ¢(g,;,) value corresponding to the case
of plastic response.

To take account of the lateral stress effect on the normal response, the

following lateral confinement stress S, is defined combining S;™* and
Smm

S,c =S +8S™  :when S <0 and S <0 (14)
= : when S/ >0 and S]™ <0
= : when S >0 and S >0
= : when Sy = 0 on any other microplane
=87 :when S, <87
in which S7- <S,.<0; Sf.: §,. value corresponding to the case of plastic
response.

Weight functions are set in terms of ¢(g,,) and S, and utilized to
obtain a gradual transition from hydrostatic response to plastic response and
softening response for the virgin loading curve of the normal component of
the microplane (Fig.1(d))
when 12> ¢(g,,) 2 ¢” and any S,

O'N(SN’SLD’SLC)Z(WJho(SN)-*—(};?(——))pr( v) (15a)

¢’ ¢’
when ¢’ >¢(g,,)20 and S, < Sf
oy(ey.ep.S1c) = pr(gN) (15b)
when ¢” > ¢(g,,)20 and S/ < S, <0
S Sfc —SLC
O-N(EN’SLD’SLC) S pr(gN)+ o st(gN) (15¢)
Lc

when ¢” > ¢(g,,)20 and 0<S,¢

on(En€105Sic) = frs(En) (154d)
in which fy,(&y): hydrostatic loading curve when (ELD) I fu(en):
plastic loading curve when ¢(g,;,)=¢”; and fy,(gy): softening loading
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curve when ¢” > ¢(g,,)20and 0< S, ..

The loading tangential stiffness and linear unload-reload stiffness in
normal compression of the microplane are formulated with the similar
weight functions to the loading curves.

In the EMPC Model the same type of formulas as the MPC Model are
used for tensile softening curve fy;(€y), compressive softening curve
frs (€y ), and hydrostatic curve f, (&) of the normal component (Fig.1).
On the other hand, unlike the MPC Model f,,(ey) is specified separately
from fy,(€y) in the present model.

2.4 Microconstitutive law for shear components

In the present model shear loading curves are defined individually for
softening (subscript 77) under resolved normal tension stress, softening
(subscript TC) under resolved normal compression stress, and plasticity
(subscript Tp) under resolved normal compression stress. A shear friction
law is applied to evaluate shear peak stress for pre- and postpeak curves
under resolved normal tension stress and for prepeak curves under resolved
normal compression stress. On the other hand, postpeak shear response
under resolved normal compression stress is calculated weighting the
softening and plasticity curves with resolved normal stress. This brings a
transition model from brittle to ductile fracture for shear response on the
microplane (Fig.1(e)).

when S, < S%

or(er:Sy) = fr,(€r) (162)
when S§ < S, <0 and in the prepeak

GT(gT’SN)zfTC(ST):pr(ET) (16b)
when S§ < S, <0 and in the postpeak

or(ersSi)=| 2 fpler)+| B2 |reler)

T\ETs2N S? pA\ET s? re\éT (16¢)
when 0< S,

or(erSy) = frrler) (1ed)

in which f (e;): plastic loading curve when S, <S%; fr-(e7) and
frr(€7): softening loading curves under resolved normal compression and
tension stresses; S§: S, value when shear response becomes the plasticity
curve.

The loading tangential stiffness and linear unload-reload stiffness in
shear components of the microplane are formulated with the similar weight
functions to the loading curves.

frc(€r) and frr(€7) are the same type of formulas as the shear
softening curve used in the MPC Model. While the prepeak portion of
fr,(€7) is the same form as f.(€;), a constant peak stress (perfect
plasticity) is assumed after the peak.

The concept of shear frictional coefficient is utilized to model the
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dependence of shear peak stress 7° on S,,.
For tension of shear FST >0)

70 = +07¢ — HrcSy : when §,, <0 (172)
10 =400 — Sy 241505 when S, =0 (17b)
For compression of shear (&, <0)

TO = _O-;)‘C +ﬂTCSN : when SN <0 (17C)
0 =—0% + M Sy S —r9nOjr :when Sy, 20 (17d)

in which o7,(>0) and o%.(>0): shear peak stresses at S, =0 under
resolved normal tension and compression stresses; (> 0) and pz-(>0):
shear frictional coefficients under resolved normal tension and compression

stresses; r,;’m: a constant specifying a lower limit of shear peak stress under

resolved normal tension stress (O <rd < 1).

2.5 Cyclic modeling for the microplane

The generalized Maxwell rheologic model for rate dependence and the
exponential algorithm for stable numerical integration, which were
introduced in Hasegawa and Bazant (1993), are utilized in the present model
for each microplane.

The same cyclic modeling in microconstitutive law as the MPC Model
are adopted: i.e., the loading-unloading-reloading criteria for microplane
response; the microplane hysteresis rule using the concept of back-stress
and objective-stress; the microplane alternating cyclic rule covering both
the tensile and compressive stress range and general strain histories.
However, back-stress is redefined separately for unloading and reloading to
prevent hysteresis loop from becoming narrow. For hysteresis response of
normal compression on the microplane, the lateral strain and stress effects
are taken into account. Shear hysteresis response is formulated accounting
for resolved normal compression stress on the microplane. The details are
given in Hasegawa and Bazant (1993), and Hasegawa (1994).

3 Verification

3.1 Monotonic behavior

Stress-strain responses were calculated with the present EMPC Model to
verify it. The integrations in (9) and (10) were evaluated using the
numerical integration formula shown in Fig.2.

Fig.3 is the result of triaxial compression analyses along compressive
meridian comparing with the experiments by Smith et al. (1989); o, and f.'
are the lateral confining pressure and the uniaxial compressive strength.
The material parameter values are as follows: 1) For normal tension:
oYy =40kgf [em?®, £\ =05, ¥ur =5.0, pyy =1.0, and p,, =10’ sec;
2) for normal compression (softening): oy, = —400kgf/cm®, {ye = 0.3,
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Fig.4. Microplane responses for triaxial compression analysis
(0./f.'=-0.60)

Yne =10, pNCO:I.(), and p, :2107 sec; 3) for normal compression
(plasticity): Oy, =—1200kgf/cm”, and {,, =0.3; 4) for shear under
positive Sy: ¢l = 17kgf [em®, §p =09, Y =0.5, prr =10, Uy =
4.0, r. =0.1,and p,, =10%sec; 5) for shear under negative Sy O3 =
17kgffem?®, Cre=0.5, Yoo =10, pre=10, fe=0.6, SZ=-300
kgf [cm®, and py- =10°sec; 6) for lateral effects: €}, = £, = 0.003,
m=1.0, and S7. =-500kgf /em* . The notations are given in Hasegawa
(1994). These values are fixed for all the analyses in 3.1.

Figs.4 and 5 show the normal, K-shear, and M-shear responses of
microplanes (integration points) 2, 3, and 14 for the triaxial
(0./f.'=-0.60) and uniaxial (c,/f.'=0) compression analyses. From
Figs.3-5 we can see that the present model is able to describe transition from
brittle to ductile fracture and confinement effect, which is due to the rational
modeling for responses on the microplane.

Triaxial compression behavior along tensile meridian was also well

predicted with the EMPC Model as in Fig.6 where ¢, is the hydrostatic
pressure.
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In Figs.7 and 8 results of biaxial compression and compression-tension
analyses are compared with experiments reported by Kupfer et al. (1969).
€., in those figures is the axial strain corresponding to f,'. Relatively good
agreement between the calculation and the experiment was achieved. The
stress-strain responses under biaxial tension as well as uniaxial tension were
also calculated and shown in Fig.9. The analytical responses under biaxial
tension exhibit considerable nonlinearity in the prepeak regime, while the
typical average stress-strain relations in experiments show almost perfect
elasticity under biaxial tension. The present model is considered to evaluate
nonlinear behavior in a highly localized damage region such as fracture
process zone. Fig.10 shows the normal, K-shear, and M-shear responses of
microplanes 2, 3, and 14 for the uniaxial tension analysis. Since the concept
of shear frictional coefficient is applied under not only negative S, but also

positive Sy as in (17), shear responses on microplanes become small due to

the large, tensile values of S, in the uniaxial tension analysis (Fig.10). On

the other hand, normal tensile damage on microplanes are prominent

compared with shear damage, which suggests that tensile microcracks

dominate the macroscopic fracture rather than shear (Mode II) microcracks
866
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Fig.10. Microplane responses for uniaxial tension analysis

in concrete under tension.

The compressive and tensile meridians of failure envelope are evaluated
from maximum stresses obtained in the analyses and shown in Fig.11 with
experimental results from references (Chen (1982)), where ¢, and 7, are
the octahedral normal and shear stresses. The EMPC Model can predict the
compressive meridian very well, however, it slightly overestimates the
tensile meridian.

Fig.12 shows the analytical result for the biaxial strength envelope
compared with experiments by Kupfer et al. (1969). It confirms that the
biaxial strength of concrete can be estimated with accuracy using the
present model.

Axial stress 0, - average volumetric strain €, relations are shown in
Fig.13 for the uniaxial (0,/f,'=0) and triaxial (o./f.'=-0.60)
compression analyses. The volumetric response of the uniaxial
compression analysis is consistent with the experimental fact that the
volumetric compaction precedes the volumetric dilatation due to axial
tensile cracking that corresponds to normal tensile damage on microplane 3
(Fig.5(b)).
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Fig.12. Biaxial strength envelope

It is worth notice that all the present analyses were done with one set of
material parameters in spite of the wide range of stress, which verifies the
general applicability of the EMPC Model. On the other hand, the optimum
fit to experimental results were obtained individually for each stress
condition with the previous microplane model in Bazant and Prat (1988),
which is not enough to show the versatility (Hasegawa (1994)).

3.2 Cyclic behavior
In Fig.14 the calculated cyclic response under biaxial compression
I(-'Gxx { o, =-0.05 —1) is compared with the experiment by van Mier (1984).
ig.15 s'.VI‘V\ows the normal, K-shear, and M-shear responses of microplanes 2,
3, and 14 for the analysis. Comparing Fig.14 and 15, it is found that the
shape of the macroscopic hysteresis loops, especially the curve in the lower
stress level, results from the alternating stress responses between
compression and tension on microplanes. This suggests that complicated
hysteresis occurs in concrete due to tensile stresses induced in the
microscopic levels while no macroscopic tension is applied.

Based on the cyclic biaxial compression analysis as well as cyclic
uniaxial and triaxial compression analyses separately performed, the total
strain tensor g, is resolved into elastic £, and plastic ¢, strain tensors
considering that the residual strain after complete unloading is the plastic
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Fig.15. Microplane responses for cyclic biaxial compression analysis

strain at the start of unloading. Several invariants were calculated from the

tensors. As examples, J," f -K and J3¥* e, - I [e,,' relations are

shown in Fig.16 comparmg w1th the experlmental results by van Mier

(1984), where JJ* and J“;Od modified 2nd invariants of e,; and eplj,

I*°: modified 15t invariant of & »ijs K: fracture parameter; e,; and e,

elastlc and plastic deviatoric strain tensors.

1 mod __ 1 mod __ 1

2 el/ el] ‘] - _i Py PU I 3 pu K= 2G0]mod (18)

in which JJ*¢ = \JSiiSi /25 s+ deviatoric stress tensor; G 1n1t1a1 shear
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Jmod — J




modulus. Although the EMPC Model is derived without tensorial invariant
relations, it can reproduce the relations as shown in Fig.16, and therefore it
can predict cyclic responses with accuracy.

4 Conclusion

The Enhanced Microplane Concrete Model is reconstructed as a more
general consitutive law for concrete adapting a few additional static
constraints on the microplane. The model can predict not only monotonic
but also cyclic responses of concrete with accuracy.
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