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Abstract 
cohesive-crack idealization of quasi-brittle fracture processes, 

supplemented by a piecewise linear constitutive law for the interfaces, 
leads to linear complementarity problems (LCPs) as recurrent mathematical 
model governing both time-stepping (nonholonomic) and single-step 
(holonomic) analysis whenever the crack propagation path is a priori 
known. This paper is devoted to a preliminary investigation of typical 
linear complementarity solution algorithms, as for their ability to capture 

expected multiplicity of solutions and for their computational 
potentialities in quasi-brittle fracture rnt:i..f't'\'lrn 

1 Introduction 

cohesive-crack model widely used for the engineering analysis of 
fracture processes quasi-brittle structures, rests on the following 
assumptions (cf. ( i) a locus r of displacement 
discontinuities (briefly called "interfaces") is characterized a softening 
constitutive law relating tractions p to displacement w across r, so 
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where cp, r, A are ..... ,.,,., ...... _ .. , ....... 
softening. 

softening (with 
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nonholonomic version (in rates, denoted by dots) of the interface law 
current process zone r z c r can be derived from (1) and reads: 

Green function G(x, ~), x, ~Er, which relates tractions p to opening 
......... ...,1-1 ... ..,~..,..,u_ ... ...,, ...... l-'"' w with homogeneous boundary conditions, could in principle 

constructed on the basis of the geometric and elastic properties of the 
so that one can write: 

= G(x,~)w(~)dr + pE (x) X,~ Er (4) 

pE denotes tractions generated by external actions the 
uv._,,.., ... _. .. ,.., of displacement jumps, i.e. in a fictitious elastic regime. 

holonomic response of the system (in tenns of p and w) to given 
is fully governed by the association of Eqs. (1) and ( 4). Similarly, 

continuum formulation of nonholonomic analysis is achieved by 
associating Eqs. (3) to Eq. ( 4) re-written in rates. 

a boundary element (BE) approach or a finite element (FE) method 
by condensation of out-of-f (or out-of-r J variables 

generates a discrete counterpart to the linear integral equation ( 4 ), namely 

P Z +PE (5) 

influence matrix Z preserves essential features of the kernel G it 
approximates (i.e. symmetry and semi-negativeness), provided the space 
JlJLIL'V...._..,,,Jl .... l'". is such that field-governing variables in vectors W and P be 
"generalized variables" Prager's sense and, for BE discretization, a 
C"'lrrnm""t-r1

"' Galerkin approach is adopted (Maier et al., 1993). Consistently, 
same concept of generalized variables be adopted in the semi­

discretization of the interface laws ( 1) and (3). Thus these laws acquire the 
respectively: 

+ - BP ~ A :2: O, <I> TA = 0 (6) 

= (7) 

AT= [O I], BT= [I I being the identity matrix of order equal to 
node number on iterface r, primes denote the restriction of all variables 
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to the current process zone r z and to the currently active yield modes, 

with self-evident meaning of the other symbols. The discretized holonomic 
(single-step) analysis of quasi-brittle solids is formulated by combining 
Eqs. (6) and (5) to obtain the following LCP: 

<I>= (AZAT + H)A +(APE - BP)~ 0, ~ 0, 

Similarly, semi-discretization of the nonholonomic analysis turns out to 
be centered on the LCP arising from Eqs.(5) and (7) combined, on: 

<il'=(Z'+H')W'+P'E ~o, W'~o, <i>'TW=O (9) 

Matrices H Eqs. (8) and H' in (9) reflect softening 
nature of the interface constitution, so that AZAT+H Z'+ 
sign-indefinite. 

Evolutive analysis resting on a sequence of time steps, each which 
consisting of solution to LCP (9) and linear scaling, was described 
Bolzon et al. (1994). Alternatively, the finite-step problem can be 
formulated by a backward-difference scheme (De Donato Maier, 
1972) which again leads to a LCP in finite increments. 

What precedes shows that both single-step holonomic and evolutive 
nonholonomic analyses are amenable to a common format: 

y = M z + q ~ 0, z ~ 0, ZT y = 0 

where as crucial feature (in contrast to what occurs in traditional plasticity 
and contact problems), matrix M is not positive 
symmetric) in general. Clearly, this conclusion holds also outside 
restrictions listed earlier, provided a piecewise linear model is adopted for 
the interface law. 

3 Examples 

Two familiar cases are analyzed below for reference in the subsequent 
discussion of solution algorithms. 

Fig. 2 shows results concerning a 3-Point-Bending test 
characterized by the following parameters: length 400 mm; and 
depth 100 mm; Young's modulus E = 14700 MPa; Poisson's ratio v = 0.1; 
tensile strength cr = 1.285 MPa~ critical · 
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....,....,._ ..... ..,." .. ..,was 
same interface 

case fracture develops with regularly progressive yielding 
so the and the · description 

are fully 
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(2NT) test are shown Fig. 3, geometry 
elastic properties same as in Rots and de Borst (1989), 
3.4 MPa and w = 0.0698 mm. The of the end tractions 

displacement of of the specimen 
r.a.1""!,rt:>CA1'1T the results of evolutive analyses, 

holonomic <"'n .• ., ... ,,.,......... based on a 21-
of the interface. 

symmetric and two 
from a point on the 

and leading to different 
"'" ........ _.''"'""''""'"'""'"·'I'". occurs for overall load, so the 

and nonholonomic description is 
Fig. 4, where opening displacement 

C"'<rt''1rna.t-..-·u,-. response on ascending branch and 
configurations resulting from holonomic and 

a load just below the peak resulting the 
fracture process. 
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4. Opening displacements in 2-Notch-Tensile test simulation for 
P = 163 N: the symmetric response on the ascending branch (light line); 
nonsymmetric nonholonomic analysis (heavy line); nonsymmetric 
holonomic analysis (very thin line). 
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4 Solution methods 

The general LCP (10) turns out to be equivalent to: a nonconvex 
quadratic program (QP) (cf. e.g. Harker Pang, 1990); a system 
smooth equations (Harker Xiao, 1990; Pang 
1993; Ralph, 1994); a hemivariational _· __ .--.~·----
1994). These equivalencies will not be considered 
often useful the theoretical foundations of LCP ...... !O'.'V ............ JU,..,. 

spectrum of algorithms now available 
untested in present engineering context, 
categories: (a) enumerative, branch-and-bound 
termination; (b) Newton-type algorithms with asymptotic termination; 
( c) genetic algorithms for direct search optimization e.g. Goldberg, 
1989); ( d) networks (cf. e.g. Avdelas et 1995); 
convex optimizations (Mistakidis and Panagiotopoulos, 1994). 

this paper, for paucity of space, only algorithms representative of the 
approaches (a) and (b) will be tested and briefly discussed to present 
purposes, others will investigated elsewhere. 

The enumerative method (Judice 1 on 
observation the solution of an LCP can be an exhaustive 
exploration of a binary tree. tree can be generated as follows: first 
node corresponds to an · 'basic feasible solution" (satisfying 
constraints of LCP; no such a solution exists, 
solution); nodes are generated by solving each case a linear 
programming sub-problem, namely by minimizing, a modified 
simplex method, either Yi or Zi subject to linear constraints of 
original LCP the constraints Yj = 0 or zk = 0 fixed level nodes. 
Two cases can then occur: either the minimized variable assumes a positive 
value at optimum, then corresponding node is and node is 
fathomed; or minimized variable is zero at it is fixed to 
zero in all descendent paths of the tree (in the case 
the variable become · and is no longer 

this by feasibility 
attempts to a complementary solution (z, satisfying 

y = 0 by generating successive nodes of the tree. 
and exploring 211

+1-1 nodes of the tree cannot 
computer for most practical 
primarily on nature of problem on 
fathom nodes (leading to a tennination of the relevant branches). 

To assess numerical perfonnances of the analyses 
performed on 3PB 2NT specimens of Section 3, 
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is at least two and increases with the ...,'VA ...... ..., .. , .. ,,~ .... ., 

n1 P•f'P'\UH~P linear interface law. However, this method can 
......... _.._.................. costs when no solution exists, as it happens 

structure is exceeded by the applied load. 
987) discussed the use of various heuristics, coupled a 

designed to speed up the basic tree search 
aimed at obtaining one solution to 

approaches be to 
t'.»VT"\/:::\f'Tt:l>r'I solutions (made of subsets of consecutive zeros 

vector y) and to implement a .,, ..................... ,, .. 
between the subproblems 

....., .............. ,_,,,., ... JI., 1994). 
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Classical algorithms, as pivoting-based 
methods proposed for computing solutions to 
matrices, can be tried although not 

a LCP (see survey 
most schemes is a <TO."Yl,£:>11"''>"4'- .. L-'U.O..A'U'JLI.~ 

m<:>Tl1£"'•r'I for 

use 
programming subproblem 
path-following code of 

PATH 

=y-v, 

where: F(z) is a given 9111 ~ ~ l, u are 
bounds, respectively, and 1 is the vector 

is a special case of MCP vv•".4-.U.AV'-" 

u = +oo. 
standard linesearch-damped Newton's ...... ..., ........... , ....... 

equations, steps are distinguishable: 
linesearching. The solver similarly 

v=O 

steps: approximation, path generation pathsearch damping. 

1) 

order to Newton the as a 
the 

= F(xB) + x - XB = 0 

projection of x onto the 
B = u]. case of xB is the 
is max(xi, 0). It can be seen that 
solves the MCP and, conversely, a .... 'V ........ """" 

x = z - F(z) former. nonnal 
continuous on 9111

; in case of our 
boundaries orthants in 
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of Newton approach, in the general case F B is approximated, 
through a standard first-order approximation at Xk, by a piecewise linear 
...... ..,,,, Jl .. U ....... map Ak, which obviously coincides with F B itself for the LCP. 

finding a Newton point, i.e. a zero of function (12) or of its 
... ,,,1',AAU ....... ~ ..... Ak at xk, a path is constructed between the current point Xk 

corresponding Newton point by pivotal techniques using a 
(int) extension of Lemke method. Each linear portion of the 

identified by a new pivot step, and the whole path generation 
...,..., .. ,, ......... .., involves forcing parameter t from 1 down to 0 (details in Dirkse 

1993). 
robustness and efficiency of PA TH is due both to its theoretical 

soundness and to its implementation details. The PATH solver was tried 
on 3PB and 2NT problems in Section 3, of size n = 42 and n 146, 

using the setting in all instances. All runs were carried 
out on a Sun-Sparc2. 

PATH is able to generate one solution each run. An attempt 
was then made to capture all solutions by trying different starting vectors z. 

crude scheme adopted to generate these vectors is as follows. The 
z vector was divided into 6 subvectors {z1, ... , z6} (a different size 

course be used); the case of n = 42, each subvector was of length 
for n = 146 was of length 24x 1 except for z6 being of 

... ""'"" ............. 26x 1. All elements of a subvector were assigned a value of either 0 
or = 0.001 in both cases. This gave rise to an obvious 64 (or 26) 
combinations to try for each problem. The main reasons for choosing such 
a scheme were that (i) 6 subvectors do not lead to an unduly large number 

(ii) it is expected that any cracking occurs in definite patterns, 
either non zero z-values occurring in consecutive or alternate 

sequences. 
cases ran, above scheme managed to capture all solutions (the 
of which were known in advance). As a typical example: for the 

42-variable case, solutions were obtained after 9 runs; for the 64 runs, the 
.U.UJ ...... .., ...... of times the same solution was obtained were 36, 11, 7 and 6, with 

runs; and the average time taken for each successful run was about 
sec. The larger 146-variable case was similarly encouraging: both 

solutions being obtained after 4 runs; one solution was obtained 41 times, 
17 times, 6 failures. The average computing time for 

................ u .... ~ a solution was about 1. 7 secs. 
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5 Conclusion 

Holonomic (single-step) and nonholonomic (time-stepping) analyses 
quasi-brittle fracture based on the cohesive-crack idealization 
piecewise linear interface law can be formulated as a general 
complementarity problem. Among recent ad hoc solution algorithms, an 
enumerative technique and a Newton-type method have been investigated 
and found apt to provide the possible multiplicity of solutions, but 
computing burden standpoint, still improvements are needed which ...,, ... ...,Jl .... /.O • .., 

the peculiarities of the specific context. 
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