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Abstract

The cohesive-crack idealization of quasi-brittle fracture processes, if
supplemented by a piecewise linear constitutive law for the interfaces,
leads to linear complementarity problems (LCPs) as recurrent mathematical
model governing both time-stepping (nonholonomic) and single-step
(holonomic) analysis whenever the crack propagation path is a priori
known. This paper is devoted to a preliminary investigation of typical
linear complementarity solution algorithms, as for their ability to capture
the expected multiplicity of solutions and for their main computational
potentialities in quasi-brittle fracture mechanics.

1 Introduction

The cohesive-crack model widely used for the engineering analysis of
fracture processes in quasi-brittle structures, rests on the following
assumptions (cf Fig. 1): (1) a locus T of potential displacement
discontinuities (briefly called “interfaces™) is characterized by a softening
constitutive law relating tractions p to displacement jumps w across I, so
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that I' can be conceived as the union of cracks I', (where p = 0), process
zone I, (where p# 0 and w = 0) and undamaged material (where w = 0);
(i1) outside I', in the whole domain Q occupied by the structure, Hookean
(hyper-)elasticity holds in a regime of linear (infinitesimal) kinematics.

At least in mode I fracture, experimental investigations (cf. e.g. Alvaredo
and Torrent, 1987; Wittmann and Hu, 1991) show that a piecewise linear
decay of traction p for increasing opening displacement w provides an
accurate description of the interface law for concrete and concrete-like
materials. In this case, the tensile strength ¢ and the critical opening
displacement W are the only parameters needed for the usually adopted
linear decay (Fig. 1b), with the addition of the “break-point” coordinates in
the case of bilinear decay.

The nonlinear interface law can be interpreted as holonomic (i.e. path-
independent, reversible, nonlinear elastic) whenever regularly progressive
yielding can be reasonably conjectured under monotonically increasing
loads. This hypothesis confers practical meaning to non-evolutive single-
step fracture analysis in finite terms, in the spirit of the so-called
“deformation theory” of plasticity. The piecewise linearity of the interface
behavior along I' can be analytically described by a linear complementarity
problem (LCP), i.e. by a mathematical construct which consists of a linear
relationship between two orthogonal vectors with sign-constrained
components. The linearity of the surrounding structure in Q leads, through
space discretization, to an LCP with the role of mathematical model
governing fracture phenomena as overall structural responses.

Nonholonomic (path-dependent, irreversible) interpretation of the current
process zone I, and consequent incremental descriptions (in rates or finite
steps) are required whenever significant local “elastic unloadings” are
expected, e.g. under non-proportional loading. Then the LCP format still
shows up at the constitutive level and, hence, at the structural level.

In all the above cases the LCP generally exhibits an indefinite matrix and
may admit a multiplicity (in particular, a discrete set) of solutions. This

Ql

['=Tcolule
(a) (b)

Fig. 1. Illustration of some symbols.
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essential mathematical circumstances reflect mechanically crucial
phenomena, such as response bifurcations and loss of overall stability.

The above outlined LCP formulations of quasi-brittle fracture analysis
have been presented by Maier et al. (1993) and by Bolzon et al. (1994) on
the basis of boundary element and of finite element discretizations.

This paper focuses on some computational techniques potentially apt to
efficiently solve the general LCP arising in the present context and possibly
to provide the complete set of alternative solutions. It is worth noting that
LCP with symmetric positive-semidefinite matrices admit either one or
infinite or none solution, are equivalent to convex quadratic programming
problems and can be solved by traditional algorithms. They have been
extensively studied since the late Sixties with reference to structural
plasticity and unilateral contact (cf. e.g. Maier, 1970; Maier and Munro,
1982; Wakefield and Tin-Loi, 1990; Cottle et al., 1992).

2 Problem formulation

The following restrictions are assumed here for brevity since they preserve
the essential features of the problems in point: (a) the locus I' of possible
displacement discontinuities is a priori known; (b) shear tractions and
tangential relative displacements vanish along I' (e.g. because of
symmetry, as in the examples presented later), i.e. the fracture processes
considered occur in mode I only; (¢) a linear sloping-down branch
describes the softening relationship between normal traction p and opening
displacement w. Assumption (a) is not very restrictive since I" can be
formed by a set of interfaces between finite elements or cells (like in Xu
and Needleman, 1994) with decreasing mesh dependence and alignment
subjectivity for increasing mesh finesse.

With reference to Fig. 1b, the holonomic version of the interface law on
[ under restriction (¢) can be expressed in the form:

@=ap+hh-b5<0, A20, ¢'A<0 Vxel )

efof ool ol L

where @, r, A are auxiliary variables and #=—G /W represents a measure

of softening. These relations are discussed and generalized to bilinear
softening (with “break-point™) in Bolzon et al. (1994).
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The nonholonomic version (in rates, denoted by dots) of the interface law
for the current process zone I', = I" can be derived from (1) and reads:

¢=p-hw<0, w20, pw=0,0onT,; w=0onI_,; p=0onT, (3)

The Green function G(x, &), x, EeI’, which relates tractions p to opening
displacements w with homogeneous boundary conditions, could in principle
be constructed on the basis of the geometric and elastic properties of the
structure, so that one can write:

p(x) =[G Ew(E) +p*(x)  x,Eel €

where pf denotes tractions generated by the external actions in the
absence of displacement jumps, i.e. in a fictitious elastic regime.

The holonomic response of the system (in terms of p and w) to given
loads is fully governed by the association of Egs. (1) and (4). Similarly,
the continuum formulation of nonholonomic analysis is achieved by
associating Eqs. (3) to Eq. (4) re-written in rates.

Either a boundary element (BE) approach or a finite element (FE) method
supplemented by condensation of out-of-I" (or out-of-I',) wvariables
generates a discrete counterpart to the linear integral equation (4), namely

P=ZW +PE (5)

The influence matrix Z preserves essential features of the kemnel G it
approximates (i.e. symmetry and semi-negativeness), provided the space
modeling is such that the field-governing variables in vectors W and P be
“generalized variables” in Prager's sense and, for BE discretization, a
symmetric Galerkin approach is adopted (Maier et al., 1993). Consistently,
let the same concept of generalized variables be adopted in the semi-
discretization of the interface laws (1) and (3). Thus these laws acquire the
forms, respectively:

O®=AP+HA-BP<0, A>0, ®'A=0 (6)
O=P'+HW'<s0, W20 dTW=0 (7)

where AT=1[0 1], B =[I I], I being the identity matrix of order equal to
the node number on iterface I, primes denote the restriction of all variables
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to the current process zone I', and to the currently active yield modes, and
with self-evident meaning of the other symbols. The discretized holonomic
(single-step) analysis of quasi-brittle solids is formulated by combining
Egs. (6) and (5) to obtain the following LCP:

®=(AZA"+H)A+ (APE-BP)<0, A>0, ®TA=0 (8)

Similarly, semi-discretization of the nonholonomic analysis turns out to
be centered on the LCP arising from Eqs.(5) and (7) combined, namely on:

& =Z+H)W'+PF <0, W20, ®TW=0 9)

Matrices H in Egs. (8) and H' in (9) reflect the softening (unstable)
nature of the interface constitution, so that AZA™+H and Z'+ H' may be
sign-indefinite.

Evolutive analysis resting on a sequence of time steps, each of which
consisting of solution to LCP (9) and linear scaling, was described in
Bolzon et al. (1994). Altematively, the finite-step problem can be
formulated by a backward-difference scheme (De Donato and Maier,
1972) which again leads to a LCP in finite increments.

What precedes shows that both single-step holonomic and evolutive
nonholonomic analyses are amenable to a common LCP format:

y=Mz+q<0, z<0, z'y=0 (10)

where as crucial feature (in contrast to what occurs in traditional plasticity
and contact problems), matrix M is not positive semidefinite (nor
symmetric) in general. Clearly, this conclusion holds also outside the
restrictions listed earlier, provided a piecewise linear model is adopted for
the interface law.

3 Examples

Two familiar cases are analyzed below for reference in the subsequent
discussion of solution algorithms.

Fig. 2 shows results conceming a 3-Point-Bending (3PB) test
characterized by the following parameters: length 400 mm; height and
depth 100 mm; Young’s modulus E = 14700 MPa; Poisson’s ratio v = 0.1;
tensile  strength o =1.285 MPa; critical opening displacement
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w =0.03 mm. Solid lines represent the solutions obtained from evolutive
analyses with a coarse mesh (5 nodes retained on the interface I') and a
refined mesh (80 nodes on the same interface); circles visualize the single-
step solutions of the holonomic problem based on 5-node discretization.
Analyses with different numbers of pairs of complementary variables
(ranging between 5 and 160) have been carried out but are not documented
here; the mesh designed for giving the elastic response represented by
integral equation (4) uses 3600 nodes for modeling half the specimen.

The main features of the 3PB test (namely: the initial elastic branch; the
limit point or peak; the unstable behaviour beyond the peak) can be well
captured with only few variables on the interface; increasing the number of
unknowns mainly smoothes the asperities of the load-displacement
curves. Excellent agreement was found between the results of evolutive
and single-step analyses for the same interface discretization. In fact, in
this case fracture develops with regularly progressive yielding (no crack
closure), so that the holonomic and the nonholonomic description of the
process are fully equivalent.
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Fig. 2. Simulations of 3-Point-Bending tests: evolutive (light line: 5 interface
nodes; heavy line: 80 interface nodes); holonomic single-step (circles).
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Fig. 3. Simulations of 2-Notch-Tensile tests: (a) evolutive nonsymmetric (heavy
line); evolutive symmetric holonomic or nonholonomic (light line);
holonomic single-step (symmetric solutions: circles; nonsymmetric
solutions: rhombs); (b) details by zooming (a).
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Results for the 2-Notch-Tensile (2NT) test are shown in Fig. 3, geometry
and elastic properties being the same as in Rots and de Borst (1989), with
6 =34 MPa and w =0.0698 mm. The resultant of the end tractions
isplotted versus the relative displacement of the mid-points of the specimen
end sides. Solid lines represent the results of the evolutive analyses, circle
and rhombs refer to the single-step holonomic solutions, all based on a 21-
node discretization in space of the interface.

Bifurcation of the overall response into a symmetric and two
nonsymmetric configurations is observed, starting from a point on the
ascending branch of the load-displacement plot and leading to different
peak loads. Local unloading occurs for increasing overall load, so that the
equivalence between holonomic and nonholonomic description is
mvalid. This is evidenced by Fig. 4, where the opening displacement
profiles are drawn for the symmetric response on the ascending branch and
for the nonsymmetric configurations resulting from holonomic and
nonholonomic analyses, under a load just below the peak resulting from the
holonomic description of the fracture process.
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Fig. 4. Opening displacements in 2-Notch-Tensile test simulation for
P =163 N: the symmetric response on the ascending branch (light line);
nonsymmetric nonholonomic analysis (heavy line); nonsymmetric
holonomic analysis (very thin line).
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4 Sclution methods

The general LCP (10) turns out to be equivalent to: a nonconvex
quadratic program (QP) (cf. e.g. Harker and Pang, 1990); a system of non-
smooth nonlinear equations (Harker and Xiao, 1990; Pang and Gabriel,
1993; Ralph, 1994); a hemivariational inequality (Panagiotopoulos,
1994). These equivalencies will not be considered herein explicitly but are
often useful for the theoretical foundations of LCP algorithms.

The spectrum of algorithms now available in the literature, but largely
untested in the present engineering context, include the following
categories: (a) enumerative, branch-and-bound methods with finite
termination; (b) Newton-type algorithms with asymptotic termination;
(c) genetic algorithms for direct search optimization (cf. e.g. Goldberg,
1989); (d) neural networks (cf. e.g. Avdelas et al., 1995); (e) sequential
convex optimizations (Mistakidis and Panagiotopoulos, 1994).

In this paper, for paucity of space, only algorithms representative of the
approaches (a) and (b) will be tested and briefly discussed to the present
purposes, while others will be investigated elsewhere.

The enumerative method (Judice and Mitra, 1988) is based on the
observation that the solution of an LCP can be found by an exhaustive
exploration of a binary tree. The tree can be generated as follows: the first
node corresponds to an initial “basic feasible solution” (satisfying the linear
constraints of the LCP; if no such a solution exists, then LCP has no
solution); other nodes are generated by solving in each case a linear
programming sub-problem, namely by minimizing, through a modified
simplex method, either y; or z subject to the linear constraints of the
original LCP and the constraints y; = 0 or zx = 0 fixed in upper level nodes.
Two cases can then occur: either the minimized variable assumes a positive
value at optimum, then the corresponding node is pruned and the node is
fathomed; or the minimized variable is zero at optimum, then it is fixed to
zero in all descendent paths of the tree and (in the case of non-degeneracy)
the variable has become unbasic and is no longer eligible to become basic.

In this manner, by maintaining feasibility in each iteration, the procedure
attempts to find a complementary solution (z,y) satisfying the constraint
z'y =0 by generating successive nodes of the tree. However, generating
and exploring all 2""'-1 nodes of the tree cannot be achieved in reasonable
computer time for most practical problem sizes n. Success depends
primarily on the nature of the problem and on the efficiency of heuristics to
fathom nodes (leading to a termination of the relevant branches).

To assess the numerical performances of the method, analyses have been
performed on the 3PB and 2NT specimens of Section 3, and computing
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times for the holonomic analyses on an HP735 workstation are plotted in
Fig. 5 versus the number of unknowns. It can be seen that time consuming
grows almost exponentially with the problem size n. Therefore, holonomic
description seems to be particularly disadvantageous, since the nodes of the
interface discretization are considered all together, and the number of
unknowns for each node is at least two and increases with the complexity
of the assumed piecewise linear interface law. However, this method can
give sure answer at limited costs when no solution exists, as it happens
when the limit load of the structure is exceeded by the applied load.

Al-Khayyal (1987) discussed the use of various heuristics, coupled with a
reduced gradient method, designed to speed up the basic tree search
algorithm; these are however aimed at obtaining one solution to the general
LCP. More promising future approaches would be to exploit the
peculiarity of the expected solutions (made of subsets of consecutive zeros
either of the vector z or of the vector y) and to implement a parallel version,
possibly without communication between the subproblems of the
enumerative scheme (Laursen, 1994).
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Fig. 5. Computing time versus number of unknowns in simulations of 3-Point-
Bending test (white triangles) and 2-Notch-Tension test (black
triangles) by the enumerative method: Cartesian scale (left; light lines)
and logarithmic scale (right; heavy lines).
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Classical algorithms, such as pivoting-based Lemke method or other
methods proposed for computing solutions to LCPs with semidefinite
matrices, can still be tried although not much is known about their ability to
solve a general LCP (see the survey by Harker and Pang, 1990). One of
the most powerful schemes is a generalization, to the nonsmooth case, of
the classical Newton's method for solving systems of nonlinear equations.
Specific computer implementations include: (i) the B-DIFF code of Harker
and Xiao (1990) in which the search direction is determined by solving a
system of equations; (i1) the NE/SQP program of Pang and Gabriel (1993)
which makes use of the ‘min” operator and solves a quadratic
programming subproblem to find a search direction; and (iii) PATH, the
path-following code of Dirkse and Ferris (1993).

The PATH solver is an implementation of a stabilized Newton method for
solving the Mixed Complementarity Problem (MCP) which requires the
solution z, y > 0, and v > 0 to the following set of relations:

Fiz)=y-v, l<z<ul, @z-M'y=0, @l-z'v=0 (11)

where: F(z) is a given function R” — N"; [, u are given lower and upper
bounds, respectively, and 1 is the vector with all entries equal to 1. The
LCP is a special case of the MCP obtained by setting F(z) =Mz + q, /=0
and u = +oo,

In the standard linesearch-damped Newton’s method for solving smooth
equations, three steps are distinguishable: linearization, direction-finding
and linesearching. The PATH solver similarly involves three analogous
steps: approximation, path generation and pathsearch damping.

In order to apply a damped Newton method, the MCP is rewritten as a
zero-finding problem by using the nonsmooth “normal” equation (NE)

Fe(x)=F(xp) +x-xg=0 (12)

where xg is the Euclidean projection of x onto the rectangular set or “box™
B =[/, u]. Inthe case of LCP, xg is the vector in R’} whose i-th component
1s max(x;, 0). It can be seen that if a vector x solves NE (12) then z = xg
solves the MCP and, conversely, a solution z of the latter yields a solution
x = z - F(z) of the former. The normal map Fy is a piecewise smooth map,

continuous on R"; in case of our LCP, Fg is only nonsmooth on the
boundaries of orthants in R”.
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Typical of Newton approach, in the general case Fg is approximated,
through a standard first-order approximation at xx, by a piecewise linear
normal map Ay, which obviously coincides with Fyg itself for the LCP.

For finding a Newton point, i.e. a zero of function (12) or of its
approximation A at xi, a path is constructed between the current point xi
and the corresponding Newton point by pivotal techniques using a
parametric (in f) extension of Lemke method. Each linear portion of the
path is identified by a new pivot step, and the whole path generation
scheme involves forcing parameter ¢ from 1 down to 0 (details in Dirkse
and Ferris, 1993).

The robustness and efficiency of PATH is due both to its theoretical
soundness and to its implementation details. The PATH solver was tried
on the 3PB and 2NT problems in Section 3, of size n=42 and n= 146,
respectively, using the default setting in all instances. All runs were carried
out on a Sun-Sparc2.

Algorithm PATH is able to generate one solution each run. An attempt
was then made to capture all solutions by trying different starting vectors z.
The crude scheme adopted to generate these vectors is as follows. The
starting z vector was divided mto 6 subvectors {z,, ..., zs} (a different size
can of course be used); in the case of n =42, each subvector was of length
7x1, while for n= 146 each was of length 24x1 except for zs being of
length 26x1. All elements of a subvector were assigned a value of either 0
or z*=0.001 in both cases. This gave rise to an obvious 64 (or 26)
combinations to try for each problem. The main reasons for choosing such
a scheme were that: (i) 6 subvectors do not lead to an unduly large number
of trials; (i1) it is expected that any cracking occurs in definite patterns,
with either non zero z-values occurring in consecutive or alternate
sequences.

For all cases ran, the above scheme managed to capture all solutions (the
numbers of which were known in advance). As a typical example: for the
42-variable case, solutions were obtained after 9 runs; for the 64 runs, the
number of times the same solution was obtained were 36, 11, 7 and 6, with
4 failed runs; and the average time taken for each successful run was about
0.2 sec. The larger 146-variable case was similarly encouraging: both
solutions being obtained after 4 runs; one solution was obtained 41 times,
the other 17 times, with 6 failures. The average computing time for
obtaining a solution was about 1.7 secs.
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5 Conclusion

Holonomic (single-step) and nonholonomic (time-stepping) analyses of
quasi-brittle fracture based on the cohesive-crack idealization with
piecewise linear interface law can be formulated as a general linear
complementarity problem. Among recent ad hoc solution algorithms, an
enumerative technique and a Newton-type method have been investigated
and found apt to provide the possible multiplicity of solutions, but from the
computing burden standpoint, still improvements are needed which exploit
the peculiarities of the specific context.
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