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Abstract

Finite Element analysis of strain localisation in transient dynamics requires
a mathematically consistent model for the description of localisation and a
rich Finite Element discretisation in order to describe correctly the localised
zones. In this paper, a mesh adaptive method based on the Arbitrary
Lagrangian Eulerian formulation is coupled to a non local damage model.
A bending beam example illustrate the application of this strategy in the
context of beam analysis. A first attempt to develop the ALE strategy to
two-dimensional problems is discussed.

1 Introduction

Numerical analysis of concrete and reinforced concrete in transient
dynamics addresses theoretical and computational problems. First a
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mathematically consistent model for the description of localisation and of
the post localisation behaviour of the material must be implemented.

Models that introduce an internal length scale, as non local models,
guaranty that fimte element computations on strain softening materials up to
failure remain sound from a theoretical and computational viewpoint . But
when localisation occurs, high localised gradient zones appear. An
accurate description of the localised zones implies a rich Finite Element
discretisation, for instance a very fine mesh (Huerta et al. (1994b)). As the
size of the localised zones are generally small compared to the size of the
entire structure, an uniform fine mesh is not necessary and would provided
a prohibitive computer cost. An adaptive refinement strategy based in
reducing the element size on the localisation bands, seems to be an
interesting solution.

We have chosen to use such a technique based on a special cinematic
formulation, the Arbitrary Lagrangian Eulerian (ALE) formulation. The
efficiency of coupling such a method to transient Finite Element analysis of
localisation 1n a non local continuum, has been already illustrated on one-
dimensional examples (Huerta et al. (1992)). This paper deals firstly with
an extension of the ALE for beam problems, and secondly with a first
feasibility study for two-dimensional problems.

The non local constitutive relations used will be briefly presented. Then
after having recalled the basis of the ALE formulation, the attention will be
focused on the treatment of the update problem and on the choice of the
remeshing strategy. Finally, an example of application of ALE in beam
analysis will be presented.

2 Non Local Constitutive Relation

The localisation limiter used in this study is a non local damage model. The
stress-strain relation is identical to that of a scalar continuous damage
model

o, =01-D)Cpe, (H)
in which o; and g; are the components of the stress and strain tensors
respectively.  The scalar D is a damage variable and Cy, are the
components of the elastic stiffness of the undamaged material. The growth
of damage is defined by a loading function :

Y(x) 5
fT(x),Dy= [F(z)dz-D @)
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where F is a function which describes the growth of damage, and Y (x) is

the average energy release rate due to damage at point x. This quantity
introduces the non local nature of the model

r(x )-mf Y(s—x)Y(s)ds with Y(x)_ €k, 3)
The average energy release rate is deﬁned as a weighted average of the
local energy rate given in Eq. (3) over the entire material domain denoted
as V. V(x) is the representative volume defined as :

V,(x)= L\y(s—x}is “4)
The weighting function y is a normalised bell-shaped function :
R
W(S—x)—exp{——zl?— (5)

where Ic is the internal length of the non local continuum. The evolution
law of damage is :

_% ©)

oY
with the Kithn Tucker conditions 8 > 0,f < 0 and 8f = 0. g is the evolution
potential which is simply g = Y(x) in the present model. In the
applications, function F is of the form :
PP
[1+B(7-1,)]

where B and Y, are material parameters.

™)

3 ALE Formulation

The ALE approach is based on an arbitrary motion of the mesh,
independently of the material particles motion and independently of the
spatial frame. In others words, the adaptivity of the discretisation size is
made moving the nodes during the computation.

This formulation has been used in the past for large boundary motions
problems in fluids (Donea et al. (1982, Huges et al. (1981) and more
recently in solids (Liu et al. (1986), Huerta et al. (1994a)). The same
formulation is used here not to account for boundary motions but rather to
refine the spatial interpolation in order to capture localisation areas.
Compared to others adaptive techniques its application to strain localisation
problems in dynamics is essentially motived by the fact that it allows a
precise description of the moving interface while the number of degrees of
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freedom and the mesh connectivity remain unchanged from one time step to
other.

The ALE cinematic formulation introduces a third configuration
(reference configuration attached to the mesh) that can move independently
of the two classical configurations : the Lagrangian one (attached to
material particles) and the Eulerian one (attached to spatial domain). The
material points are noted X and their coordinates are noted, x in the space
at time t and y in the ALE domain.

For a general physical property denoted as f, the following fundamental
relation can be obtained (Donea et al. (1982)) :

of of o _off . - (8)
=L e LY yegad
ot| x azx”l ox, aszgm /
. . k) of L L
with the notation =5 that means “partial time derivative at x
fixed*.
¢ is the convective velocity defined as 6=V - (%a)
A 0% ox
h . Y o= d V= —
where | v 5 y and v oty (gb)

The conservation of momentum that governs the motion of the continuum
may also be written in the ALE description (Liu et al. (1986)) :
(10)

pg‘i +pc.gradv = diveo+b
o,
i
where is the mass density and b are the body forces.
The weak formulation from this equation leads to a standard form :

dv + [ p89.(C.grad v)dv — [Svhay - [svfdr=0 (11)
X

jVaé:o av + jV psv.%:-

with 7 = external forces applied on frontier T
In the following, no body forces have been considered.  Upon
discretisation, this equation reads :

Ma=f., = fomn * fin (12)
where M is the lumped matrix, £ are the external forces, f, the internal
forces and a is the nodal acceleration vector.

The only difference with the equations obtain in the classical Lagrangian
formulation is that an additional convective term appears: f,,, are the
convective forces.

A central difference scheme is used for the integration of the momentum
equation. This integration scheme has the advantage of being explicit.
Nevertheless, the stability of this scheme is only assured for a time step
lower than a critical time step.
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4 Update problem

In ALE description, convective terms appears in all time derivative
quantities, including in the constitutive relations. In the case of non linear
solids, the stresses at a given time depend of the total history of state
variables. For such materials, the ALE expression of incremental
constitutive relations leads to systems of differential equations. For each
scalar component of a tensorial variable, we have :

%:— +C.gradt =q (q non linear term) (13)

x

The numerical integration of theses differential equations introduces an
additional difficulty compared to the Lagrangian case : Due to the mesh
motion, the integration points correspond at different material particles
from one time step to other. Simultaneous, the state variables have to be
transferred from the old mesh to the new mesh.

This is performed in two step : First, a pseudo-Lagrangian integration is
performed (we assume that the mesh has not move). Secondly, the
variables are then updated from the old mesh to the new mesh. We use
here integrated equations of evolution. Hence the first step is immediate :
Starting with 1(t), we obtain T*(t+t).

In beam analysis, the second step is then performed using a full upwind
method (Huerta (1994a. This update algorithm is explicit.

T+ AN =T, ¥+ Az)—Az.{<c,,)+fL?];—e:l-+(cM>_&ﬂ7_&} (14)
with 1, is the value of in element e, h, is the length of element e, i and i+1
are the two nodes of the element e and c;, ¢, are the values of the
convective velocity at nodes i, i+l respectively. () ~— and () _are

e

respectively the positive part value and negative part value operators.

In two-dimensional analysis, we transferred state variables values
making, for sake of simplicity, a projection from the old mesh to the new
mesh.

S Remeshing strategy
The remeshing consists in expressing the field of the convective velocity at
each node. Then the motion of the mesh will be perfectly defined. As it is

currently done, the remeshing strategy that we used is defined, first by a
mesh indicator and second by a mesh optimality criterion.
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5.1 Mesh indicator

In the present problem, the interest is focused on obtaining the best
description of the damage localisation zone. Therefore, the mesh indicator
will be defined in order to concentrate elements in the neighbourhood of
sharp variations of damage.

Our mesh indicator belongs to the family of remeshing indicators related
to the quality of the interpolation of the unknown variables. It is simply
expressed as a function of the variation of a dependant variable, damage or
strain invariant. It provides only a control of the quality of the mesh, that is
it simply detects when the mesh is too coarse. As the number of elements
in the mesh 1s unchanged, if an area of the mesh needs more elements, the
number of element will decrease in the rest of the mesh.

Fig. 1. Computation of the mesh indicator (node I)

The mesh indicator, denoted as x;, computed at the nodal point I is a
function of the state variables denoted generally as 7; defined at the gauss
points i of adjacent elements. In two dimensions (Fig 1), the mesh
indicator is given by the formula :

K, =a”1<‘,xf+1<,y)7“+b (15)
> >
I (T F.(On
with =M1 i =12 7 (16)

N N
2 2
k=1 k=1
where N is the number of element boundaries arriving to node and F,(7) is a
function of the state variables at Gauss points which are apart from the
considered boundary. This function may be absolute value of the jump of

state variables across the boundary (Eq. 17a) or their average (Eq. 17b)
computed over the Gauss points which are separated by the boundary :

Fk(T):ZITi+1'"Ti| (173)
EC(T)ZZ Ti+12+T1'

The constants a and b define the sensitivity of the mesh indicator.

(17b)

950




5.2 Remeshing strategy
When the distribution of the mesh indicator is computed, the following step
consists in expressing the new position of the nodes, which verifies the
chosen mesh optimality criterion. We use a classical mesh optimality
criterion based on the equidistribution of the variation of over the entire
domain. This implies to defining a mapping between the referential
coordinates and the material coordinates x.

It has been already shown (Pijaudier-Cabot (1995)) that the one-
dimensional expression of a remeshing equation that translates this
application, could be written :

i(x(xﬂ_xj:o (18)
)3 )

Eq. (18) with the known position of the boundary defines a Dirichlet
problem governed by an elliptic equation. It forms a non linear system
which must be solved iteratively at each time step of the dynamic problem.
Such an implicit resolution is a drawback in the context of transient
dynamic problems where equations of motion are generally solved with
explicit integration schemes which induce a large number of time steps.
Hence, we have modified the remeshing equation as follows :

0 ox ox :

2 xZ |2 (19)

This 1s a parabolic equation which can be integrated explicitly at each
time step. In fact solving this equation is equivalent to solving eq. (18)
with a relaxation method where only one iteration is performed.

For two-dimensional problems, as the mesh indicator defines in eq. (15)
1s a scalar (isotropic remeshing), eq. (19) becomes :

0 ( ox, ) 0 ( ox, ) ox,
— KX, X)) — |+ KX, X )— |[=Y —
9x, N, ) N, dx, ot (20)

d ox, d ax, ox,
— k¥, x,)=—= |+ K(x,,x,)—= | =y =+
axl( ( i 2 axl] axz[ (x] x2)axz) Y at

This is system of two equations which are similar to transient non linear
heat equations with an isotropic conductivity in two dimensions.

6 Beam implementation
The ALE method has been implemented in a layered beam Finite Element

program (EFICOS) with a non local damage model (§2). Each beam
element is subdivided into layers whose behaviour is one-dimensional. The
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computation of the additional convective terms f.,, that appears in the
momentum equations is performed using a multi-layered integration scheme

v =Yn, [ [ e nav i de 1)

with V¢ is the spatial domain of element e, N is the number of layers in the
element, h,, and b, are respectively the height and the width of the layer m,
and y,, is the distance between the neutral axis of the layer and the neutral
axis of the beam.

L=28m,[=1.65m,x=02m, Widthb=02m, h=0.25m, 10 layers

. It
f

= i

v

Fig. 2. Impact on beam (Geometry)

Moreover we have to make sure that the updated generalised
displacements still verify the Bernoulli hypothesis. This leads to several
restrictions : First, the neutral axis of the beam must remain continuous so
that strain update preserves the linearity of the strain distribution over the
beam depth. Hence the nodal points corresponding to structural joints must
remain fixed. Second, the thickness of each layer was assumed to remain
constant from one time step to another and consequently the convective
velocity remains collinear to the neutral axis of the beam. Under this two
restrictions, the update algorithm (eq. (14)) is linear and Bernoulli
assumption is conserved with the update. Finally, for sake of simplicity,
we have introduce another restriction : The number of layers is kept
constant from one element to other.

We now show a test example which is an impact on a plain concrete
beam (Fig. 2). ALE computations with a mesh containing 12 elements have
been compared with a reference solution containing 72 elements of
constant length, and with the fixed mesh solution (ALE initial mesh
remained fixed). Figure 3 shows the comparison of the stram distribution
in the lower layer and figure 4 shows the evolution of the mesh.
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Fig. 3. Distribution of strain in the lower layer at t=1.6e-3 s

Here the mesh indicator has been expressed as a function of the average
normalised strain (t=€(x)/g,,,, in €q 17b) in order to points out the location
of the localisation zone, and the remeshing starts at the beginning of the
computation.

[T T T T T T T TTT] w
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t=0.0016s

Fig. 4. Evolution of the mesh

7 Conclusions - ALE in two-dimensional problems

A first feasibility study of the ALE implementation to localisation analysis
in two-dimensional continuum has been carried. Its goal was to evaluate
the generalisation in two dimensions of the ALE explicit transient dynamic
algorithm and of the remeshing strategy, that were used in one-dimensional
and beam analysis.

We have decided to use the Finite Element Object Oriented Code
CASTEM_2000. This code stores the information in objects that are
manipulated by operators of a macro-language (Gibiane). It allows a rapid
programmation of the mechanical problem equations. Hence the explicit
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integration of the momentum equation using the central differences scheme
has been implemented. The writing of a Gibiane procedure has been
needed in order to take account of the additional connective forces which
appear in the ALE formulation of the momentum equations. Moreover, the
mesh indicator (eq 15 to 17) have been implemented for two-dimensional
massive element (Quadrangle with four nodes, Triangle with three nodes).
The resolution of the remeshing equation (eq 20) has been easily
implemented using a procedure of CASTEM 2000 which makes the
resolution of a transient non linear heat equation. Finally, for sake of
simplicity the state variables update has been performed with a projection
from the old mesh to the new mesh.
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