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Abstract: A nonlinear fracture mechanics model is applied 
with linear elastic fracture mechanics solutions to analyze 
ural behavior of different composite materials. A cracked cross sec
tion of a beam in bending is considered and the constitutive 
relationship is evaluated, on varying the mechanical and geometrical 
properties. The influence of material composition on the 
behavior as well as the size-scale effects are studied. 

1 Introduction 

Cementitious materials, such as concrete or mortar, and 
reinforced cementitious materials are characterized by an ............. '"' ........ ...., ... 
crack controlling mechanism, exerted by the secondary phases, , 
aggregates and fibers. The secondary phases bridge the macrocracks 
along their wake and the microcracks in the process zone ahead 
the macrocracks, thus preventing their coalescence, opening 
growth. The mechanical behavior of structural components, 
type of response and the size-scale effects are controlled by 
above mentioned bridging mechanisms. 
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Two analytical approaches, based on fracture mechanics con
cepts, are used analyze the composite failure process: the bridged
crack model, which assumes a non-vanishing crack-tip stress inten
sity factor, and the cohesive-crack model, which assumes a vanish
ing stress intensity factor. Numerous theoretical models, derived 
from the models of Barenblatt (1959, 1962) and Dugdale (1960), 
have been proposed (Cox and Marshall 1994). Many of these are 
concerned with the flexural behavior of composites used in civil en
gineering applications, such as, concrete and mortar (Hillerborg et 
al. 1976, Jenq and Shah 1985, Shah 1988, Carpinteri 1989, Cotterel 
et al. 1992), fiber-reinforced cementitious materials (Wecharatana 
and Shah 1983, Visalvanich and Naaman 1983, Ballarini et al. 1984, 
Mai 1985, Jenq and Shah 1986, Foote et al. 1986, Li and Liang 1986, 
Hillerborg 1989, Carpinteri and Massab6 1995.a, b) and reinforced 
concrete (Romualdi and Batson 1963, Carpinteri 1984, Desay and 
Ganesan 1986, Bosco and Carpinteri 1992, Bosco and Carpinteri 
1995). 

In this paper a nonlinear fracture mechanics model, previously 
formulated by the authors for analysis of the flexural behavior of 
brittle-matrix composites (Carpinteri and Massab6, 1995.b ), is ap-
plied along with Linear Elastic Fracture Mechanics (LEFM) solu
tions to analyze the influence of mechanical and geometrical prop
erties on the constitutive flexural relationship of a composite beam. 
Different bridging mechanisms are examined and the predicted size
scale effects in the flexural response are explained. Numerical ex
amples and simulations of experimental tests are also shown. 

2 Theoretical model 

proposed theoretical model analyzes the evolution of crack 
propagation in a brittle-matrix composite cross section in bending. 
This defines the constitutive flexural relationship which links the 
applied moment M to the localized rotation ¢. The scheme of 
Fig.I, representing the cracked cross section of a beam of depth 
h and thickness b, is considered. In accordance with the models 
of Barenblatt (1959, 1962) and Dugdale (1960), the crack of depth 
a consists of a traction-free part of depth ar and a fictitious part 
of depth a f, acted upon by closing tractions ao. The fictitious 
crack can represent either a microcracked process zone ahead of a 
macrocrack or a macrocrack wake bridged by reinforcing elements. 
The normalized crack depths€= a/h, €r = ar/h and €1 =a! /hare 
defined together with the normalized value ( = x / h of the generic 
coordinate x related to the bottom of the cross section. 

The reinforcements are assumed to be uniformly distributed and 
are taken into account in the post-cracking loading phase through 
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the closing tractions era, which are linked to the crack profile w ( x), 
according to an assigned relationship o-0 ( w) (Fig.1). If the reinforce
ments are present in a low volume ratio, the pre-cracking response of 
the composite coincides with that of the matrix, which is assumed to 
be linear-elastic. Reference is made to the two-dimensional single
edge notched-strip solutions (Tada et al. 1985) to define the fracture 
mechanics parameters. 

At the tip of the crack a global stress intensity factor K1 can be 
defined by means of the superposition principle: 

where K 1M and Kfo are the stress intensity factors due to the ap
plied bending moment M and to a distribution of opening tractions 
o-0 , respectively. The minus sign on the right-hand side of eq.(1) 
accounts for the shielding effect exerted by the closing tractions on 
the crack tip stress intensification. 

I· /!;.1-0 I· ~ b 

Fig.I: Schematic of the cracked cross section in bending. 

Two different crack growth criteria are applied depending on the 
assumed crack tip stress field. If the matrix is brittle and K IC is the 
fracture toughness, a singular stress field can be assumed and the 
crack starts propagating when KI reaches the critical value K IC. 

this case the closing tractions (bridging tractions), which control 
crack opening, are governed by the properties of the reinforcing 
phase and by its interaction with the matrix. 

On the other hand, a finite stress field can be assumed in the 
crack tip vicinity provided the closing tractions (cohesive tractions) 
represent the combined restraining action of the matrix and the sec
ondary phases on crack propagation. In this case the crack propa
gates when the global crack tip stress intensity factor K1 vanishes, 
the matrix toughness being merged with the toughening mecha
nism of the secondary phases. The damage process producing the 
advancement of the crack is the same as that governing the opening 
process along the process zone. 

By means of eq.1 and the assumed crack growth criterion the 
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crack-propagation moment can be evaluated. In dimensionless form 
is given by: 

1 {B fe O"(w(()) Yp(U) d( + x} (2) 
(~) Jer 0-u 

YM(O and (~, (i) are polynomial functions related to the 
•TLLL,&,IJ'L, of the specimen, and the parameters K and B characterize 

crack tip stress field and the brittleness of the cross section, 
respectively. 

On assuming a singular stress field at the tip of the crack, 
represents the matrix fracture toughness, K is equal to 1, o-u 

ultimate strength of the reinforcements, or the maximum 
of the bridging relation o-( w), p is the fiber volume ratio, 

B==N p==(po-uh0
·
5
)/ K1c is the brittleness number, formerly pro

Li''U''-''"''"-" by Carpinteri (1984) for the description of the failure mech
anisms in reinforced concrete. On assuming a finite stress field at 

tip of the crack, represents the homogenized toughness of 
composite, K is equal to 0, o-u is the homogenized ultimate 

strength of the composite, or the maximum value of the cohesive 
...., ...... ,., ............... o-(w), and B=l/s=(o-u h0

·
5
)/ K1c is the reciprocal of the 

brittleness number s originally defined by Carpinteri (1981) for the 
of the mechanisms in brittle homogeneous mate-

localized rotation ¢for the crack at the onset of propagation 
can be calculated using the superposition principle and the localized 
compliances due to the crack. It is given by: 

(3) 

E is Young's modulus of the composite. Eqs.(2) and (3) 
a nonlinear statically indeterminate problem, the indeter

minate closing tractions depending on the unknown crack opening 
displacements. A numerical iterative procedure has been formu
lated to evaluate the beam configuration satisfying equilibrium and 
compatibility (Carpinteri and Massab6 1995.a). 

3 Constitutive flexural relationship 

The shape of constitutive flexural relationship of a brittle-
............... .., ... ~ ....... composite undergoes modifications when the mechanical and 
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geometrical properties of the member are varied. Two 
applications of the proposed model, which highlight different 
of behavior of the member flexure, are shown. 

In the first case the stress in the crack tip vicinity as-
sumed to be finite and the composite material is characterized 
a linearly decreasing cohesive law, linking the closing 
the crack opening displacement w. The cohesive relation 
O'u(l - w /we) is assumed, We being the critical crack opening 
placement beyond which the closing tractions vanish. The evolution 
of crack propagation in a cross section with an initial notch 
a0 == O.lh is analyzed. 

Fig.2 the dimensionless relationships relating the crack propa
gation moment Mp/(K1chl. 5 b) to the normalized rotation (</>Eh0

·
5
)/ 

K IC, are shown. In accordance with the theoretical model proposed 
by Carpinteri and Massab6 ( 1995. b), the flexural behavior 
trolled by the dimensionless parameter s==K1c / ( O'u h0

·
5

). 

curves in the diagram relate to s==l0.00, 5.00, 2.00, 1.00, 0.50 
0.25. A transition from a strain-hardening behavior, for the great
est brittleness number s==l0.00, to a to strain-softening behavior, 
for the lowest brittleness number s==0.25, is found. the .LL.L''".LA . ..,.,.L ... 

ical properties are kept unchanged, this transition is consequent 
an increase in the beam depth. The theoretical model predicts a 
size-scale effect characterized by a ductile to brittle transition. 
kind of behavior, typical of quasi-brittle materials, such as con
crete, mortar or rocks, have been widely observed and theoretically 
reproduced (see, for instance, Carpinteri 1989). 

MF 
Kie h1.5 b A s =10.0 

0.24 B s =5.00 

0.20 
c s =2.00 

D s =1.00 
0.16 E s =0.50 

0.12 
F s =0.25 

............... LEFM 
0.08 

B 

0.04 A 

0.00 
0.0 2.0 4.0 6.0 8.0 ¢ E h0·5 

Kie 

Fig.2: Relationships between dimensionless moment and 
normalized rotation for a composite characterized by a linearly 
creasing cohesive law. 
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The thick curve shown in the diagram of Fig.2 has been 
ated based on assumption of small-scale bridging, using LEFM 
solutions. small-scale bridging condition for brittle-matrix 
composites assumes the existence of a process or bridging zone at the 
tip of the traction-free crack, which is small in relation to crack 
size and the body dimensions. The diagram brings out well-
known result according to which the ultimate loading capacity of 
the cross section and the entire curve predicted by a cohesive-crack 
model, tend to the limit predicted by LEFM when the brittleness 
number s decreases (see curve Fin Fig.2). 

In Fig.2 it is also observed that, for decreasing values of s, the 
thin curves to draw nearer the LEFM curve after intersecting 
it. For brittleness numbers s ::;; 2, the intersection points repre
sent the beam configuration for which the traction-free crack starts 
propagating, and that point on the LEFM macrostructural re
sponses are almost coincident with the responses predicted by the 
cohesive option. other hand, the initial branches of 
curves, as well as peak values, differ from the ones predicted by 
LEFM, and are strongly dependent on both the brittleness ... _._ .... ~_ ........ ...,. . .., .... 
value and the shape of the assigned cohesive law. These branches re-
produce the response during the loading phase which 
the process zone increasing and the shape of the crack faces is 
controlled by the cohesive tractions. 

The diagrams of Fig.2 bring out that LEFM can be applied, 
with generic values of the brittleness number, for an approximate 
and conservative description of the constitutive branches beyond 
the intersection points. Application of LEFM to predict the tail 
of the constitutive flexural relationship considerably simplifies the 
calculations connected with the nonlinear integral problem of the 
cohesive crack model, which involve iterative numerical processes 
that encounter great difficulty in reaching convergence and require 
considerable mesh refinements whether for low brittleness numbers 
or for high crack depth values. 

The second application of the theoretical model concerns a com
posite material characterized by a singular stress field at the 
tip and by a discontinuous bridging relationship, a(w)==pau w ::S: 
We, and ao ( w )==0 w > We· 

In this case flexural behavior of the cross section is con-
trolled by two dimensionless parameters, N p==pauh0

·
5 

/ K1c and 
Ewe==(Ewe)/(K1ch0

·
5

) (see Carpinteri and Massab6 1995.b). 
only the size-scale effect is of interest, constant mechanical proper
ties can be assumed. The product of the two dimensionless param-
eters, NpEWe == (pauEwe)/ KJ0 , which does not depend on the 
depth of the cross section, is then fixed. 

The dimensionless moment-vs.-localized rotation diagrams, Mp/ 
(K10hl.5 b) vs. (¢Eh0 ·5 )/K1c, shown in Figs. 3, 4 and 5, relate to 
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~~~-L~~-~~~v values of the parameter N pEwc, namely 36, 256 and 
an initial matrix crack depth a0 == O.lh crossed 
have been considered. The constitutive relation

evaluated by following the evolution of the crack 
diagram a series of curves, for brittleness 

varying from 0.1 to 2.1, is depicted. Since the me
are kept unchanged, these curves represent the 

responses different depths. In particular, an increase in 
Np means an increase the beam depth. 

All curves the diagrams of Figs. 4, 5 and 6 are char-
branches. The first is the linear-elastic branch 

flexural response until the crack starts to propagate. 
~~~,~~i.~ ~-L~~.~~~~ depends on the brittleness number Np and has 

'UJ ........... ...,"..._,....._ by applying the proposed model. It describes the 
large-scale bridging, namely when the bridging 

the cross section and the crack is fully crossed by 
unstable branch does not depend on the as

sumed number Np, and has been evaluated using LEFM. 
It describes the behavior in small-scale bridging, when the traction
free propagates in the cross section. The ~mall-scale bridging 
regime controlled by the sole parameter Np Ew c. As this param
eter has been fixed for each figure, a single curve describes the third 
branch all cases (see Carpinteri and Massabo, 1995.b ). 

us first consider the diagrams shown in Fig.4, which depict 
all the probable behaviors. In the inset some curves are re
drawn to highlight the variations in the structural response. The 

with N p==0.5 shows a hyper-strength phenomenon, i.e. a 
peak loading capacity greater than the ultimate loading capacity 
at total disconnection. The response of this beam in the first post
cracking phase is strongly affected by the matrix fracture toughness, 
which prevails over the secondary phase toughening action control
ling the ultimate loading capacity. The beam with N p==l.l shows 
a snap-through instability, which is an indication of an unstable 
crack advancement, arrested by the toughening action of the re
inforcements. This instability would be represented by a jump at 
constant load if the process were controlled by the applied moment. 
After the discontinuity, the strain-hardening branch is controlled by 
the toughening action of the reinforcements which cross the crack 
up to total disconnection of the beam. The beam with N p==2. l 
reaches the third unstable branch, which results in a catastrophic 
crack propagation, before complete disconnection. 

The global responses of the beams with Np == 0.5, Np == 1.1 
and Np == 2.1 are strain-softening, strain-hardening and strain
softening, respectively. This composite material is therefore char
acterized by a size-scale effect represented by a double transition 
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Fig.3: Dimensionless moment-vs.-rotation diagram for a composite 
characterized by a rectilinear bridging relation and N pEwc == 36. 
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Fig.4: Dimensionless moment-vs.-rotation diagram for C: composite 
characterized by a rectilinear bridging relation and N pEwc == 256. 
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Fig.5: Dimensionless moment-vs.-rotation diagram 
characterized by a rectilinear bridging relation 

the flexural behavior, brittle to ductile and then reversal duc-
tile to brittle. To estimate the kind of effects the transition 
can have on the design of the structural components, consider a steel 
fiber-reinforced cementitious material with K rc==50N mm-1.5

, 

40000 Nmm-2
, p==0.02,_ O"u==200Nmm-2

, and This re-
sults in a value of N pEwc equal to 256. The curves 
set of Fig.4 characterize the constitutive flexural behavior of three 
beams made of this composite, and of different depths, h ~ 40mm, 
h ~ 190mm and h ~ 690mm, respectively. The depths of 

two beams are in the range normally covered by the labora
tory specimens and in this range a typical brittle-ductile 

predicted when the beam depth increases. 
this kind have been obtained by Jamet et al. (1995) on 

reinforced concrete beams. However, in the steel fiber 
composite under consideration a new dangerous ductile-brittle tran
sition is predicted when the beam depth is further increased. 
largest beam considered, which could represent a structural 
component, shows a strain-softening behavior. 

When the mechanical properties the 
structural responses show substantial alterations. 
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lowest value N pEwc 
all brittleness numbers. 

to a small critical 
~ .................... ,.., ratio. 

the diagrams Fig.5, 
structural responses vary 
when the brittleness number 

._..._,.._.,.Ll. ... JLF, transition is predicted. 
does not intersect 

for this reason, 
.., ....... , .............. .., ... ,_,._._ ... , shown by previously '"'"".._,...., .................... '",'U. 

range of the brittleness ... ..._~ .... ..._..._,~'VA-~ v'V.L.L>;:U.U.. 

Fig.5 represent, for instance, 
material with K1c==25N/mml. 5 , 

N/mm2
, Wc==7mm 

and h ~ 690mm, 
coincide with the ones of a compos-

'V ............... .....,'-' ......... ,<->" by a rigid-perfectly plastic 
brittleness number Np is 

the assumption of a different bridg
ing O"o ( w) theoretical curves, generally giving rise 
to smoother responses and more complex trends of the branches 
preceding the intersection points with the LEFM solution. 

conclusion, the proposed theoretical model predicts that for 
each brittle-matrix composite material of known mechanical prop
erties and bridging mechanism, there exists a critical beam depth 
(or a critical Np) beyond which the flexural responses change from 
being globally stable to globally unstable. The existence of this crit
ical value in the range of depths embracing the laboratory samples 
and the actual structural components, depends on the properties of 
the composite material and on the position assumed by the 
curve in the dimensionless moment vs. rotation diagram. It is there-
fore evident that composition of the composite (kind of matrix 
and fibers and volume ratio) can be suitably designed in order 
to avoid the dangerous ductile to brittle transition. 

4 Applications 

To verify applicability of the proposed theoretical model 
some of the experimental tests carried out on fiber-reinforced mor
tar beams by Jenq and Shah (1986) have been simulated. 
beams, loaded a three-point bending scheme, have a depth x 
thickness x span of 76x19 x 280mm and a notch of depth a0 rv 

25mm. The unreinforced matrix fracture toughness is equal to 
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K1c==27.5Nmm-l.5 , and Young's modulus has been evaluated to 
be 22000N mm- 2

• Four different beams with fiber volume 
equal to p==0.00, 0.005, 0.010 and 0.015, have been tested. 

The theoretical model has been applied with the 
of a singular crack tip stress field. The power law a 0 (w)==pau 
w /we) 2 has been assigned to describe the bridging mechanism 
steel fibers, where au=l69Nmm- 2 is the maximum fiber 
strength and We is the critical crack opening displacement, equal 
to 12.5mm. The above law has been chosen by Jenq and Shah to 
represent the results of pull-out tests on single aligned 
dimensionless parameters Ewe and Np, controlling the ........... ,J.._. ... ,,..,., .... ,, ......... ,_.. ... 

behavior, are given by Ewe=ll47 and N p=O, 0.27, 0.54 
for p=0.00, 0.005, 0.010 and 0.015, respectively. 

Fig.6.a shows the dimensionless moment-vs.-rotation diagram 
of the unreinforced mortar beam. The theoretical curve has 
tained by means of LEFM. Apart from the pre-peak loading phase, 
controlled by microcracking phenomena neglected by LEFM, and 
the peak value, which is greater than the real one, a good 
ment is found between the two curves (see Fig.2). 

MF (a) P(KN) - EXPERIMENTAL 

Kie h1.5 b 
p=o.oo 

1.2 THEORETICAL 
EXPERIMENT AL 

THEORETICAL Np=1.08 

0.12 LEFM 0.8 
N 

0.08 
0.4 

0.04 
N 

0.00 0.0 
0.0 4.0 8.0 0.0 10. 20. 30. cp Eho.s 

K CMOD(mm•1 

Fig.6: a) Dimensionless moment-vs.-rotation curves for a 
beam in bending. Comparison between experimental 
Shah, 1986) and theoretical results (LEFM). b) Load-vs.-CMOD 
curves for fiber-reinforced mortar beams. Comparison ex
perimental (Jenq and Shah, 1986) and theoretical results. 

In Fig. 6.b the experimental and theoretical curves, relating 
applied load to the crack mouth opening displacement ( CMOD), 
are shown for the three beams with p=0.005, 0.010 and 0.015. The 
diagram highlights a transition from a strain-softening behavior, 
the beam with p == 0.005, to a strain-hardening behavior, 
beam with p == 0.15. 
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It is observed that the global strain-softening behavior and the 
hyper-strength phenomenon of the beam with p == 0.005 are faith
fully reproduced by the model, and are accounted for by the low brit
tleness number Np== 0.27. The two theoretical curves for Np==0.75 

N p==l .08 reproduce the behavior of the beams with p == 0.01 
and p == 0.015, respectively. Note that the values of Np are higher 

those previously evaluated for the two beams, which would 
have led to ultimate loads lower than those experimentally deter

This discrepancy is explained by the initial assumption of a 
maximum pull-out load au equal to the experimentally determined 
value for fibers pulled-out along their alignment. actual fiber
reinforced beams the fibers are usually pulled out off-axes during 
crack propagation. In high fiber volume ratio beams, the above fact 
usually leads to an increase in the maximum pull-out load ( Ouyang 

al. 1994). The higher pull-out load can be accounted for by 
assuming a higher effective fiber volume ratio Pe. The discrepancies 
between the theoretical and the experimental values disappear on 
assuming Pe 0.014 and Pe == 0.020, which leads to Np == 0. 75 and 
Np == 1.08, respectively. 

5 Conclusions 

Some applications of a nonlinear fracture mechanics model, for
mulated by the authors for analysis of the flexural behavior of 
brittle-matrix composites, have been shown. The constitutive re
lationship, linking the crack-propagation moment to the localized 
rotation of a cracked cross section, has been evaluated based on dif
ferent assumptions for the crack tip stress field, crack growth 
criterion and the bridging mechanism of the secondary phases. Lin
ear elastic fracture mechanics solutions have been used to predict 

tail of curve. 
the first application a finite stress field has been assumed 

crack tip vicinity, and the global toughening mechanism of the 
homogenized composite has been represented by a closing traction 
distribution, acting along a fictitious crack and linked to the crack 
opening displacement by a cohesive law. On modeling the cohe
sive tractions as a linearly decreasing function of the crack opening 
displacement, a ductile-brittle transition in the flexural response of 

beam has been predicted, when the depth increases. 
In the second application a singular field has been assumed at 

the tip of the crack, and the toughening mechanisms for the ma
and the secondary phases have been modeled by means of a 

stress intensity factor and of a distribution of closing trac
tions applied along the fictitious crack, respectively. On modeling 

bridging tractions as a constant function of the crack opening 
displacement until a critical value, a double brittle-ductile-brittle 
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scaling transition has been predicted in the flexural behavior. The 
beam depth beyond which the mechanical response varies from glob
ally stable to globally unstable can be defined once the mechanical 
properties of the different phases, the volume ratios, and the prop
erties of the interface are fixed. 
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