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Abstract 
The fracture process in concrete cannot be properly understood in an 
Euclidean framework, due to its complex morphology at the micro­
and meso-level. The inherent flaws interact through a multi-scale 
process, leading to self-affine fracture surfaces. Furthermore, the net­
work of microcracks possesses non-Euclidean geometrical properties. 
A new experimental equipment has been developed, which allows the 
entire fracture surface, or any plane cross section, to be digitised 
and analysed. This represents an important progress with respect to 
the study of mono-dimensional profiles. In this paper, the 3D algo­
rithms developed for evaluating the fractal dimension of surfaces and 
stress-carrying sections are described. The invasive fractal character 
of the fracture surfaces is confirmed. Moreover, the lacunar fractal 
character of the stress-carrying cross sections, a priori assumed by 
Carpinteri (1994), is proved experimentally. 
Key words: Fractal geometry, fracture surface, porous microstruc­
ture. 
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1 

The disordered microstructure of concrete is responsible for many 
peculiar features of the fracture phenomenon. For example, size 
effects are not explicable in the classical framework. Pre-existing 
pores, debonded zones and microcracks, interact with each other in 
a complex manner. Attempts to describe this behaviour by means 
of deterministic methods (e.g. continuum mechanics) are deemed to 
be incomplete if not even misleading. Even the most sophisticated 
measurement of material properties, coupled with the most powerful 
computers, would not succeed in the exact (deterministic) modelling 
of the fracture phenomenon. On the other hand, randomness alone 
cannot justify self-organised complexity which comes into play in 
the fracture of concrete. On the contrary, the invariant features can 
be put into evidence by approaching the problem from a completely 
new viewpoint (Carpinteri, 1994). 

Cooperative phenomena are nowadays successfully interpreted by 
means of alternative methods, such as catastrophe theory, fractals, 
renormalization group and chaos theories. Modelling the microstruc­
ture by means of fractal domains permits to capture the hierarchical 
aspect of damage accumulation and crack propagation. It is nowa­
days well known that the fracture surfaces of concrete are invasive 
self-affine fractals over a broad scale range (Mihashi et al., 1995). This 
implies that the stress-singularity at the tip of a propagating crack 
is smoothened the energy is dissipated over a higher dimensional 
domain. effect on fracture energy and the crack-resistance 
behaviour can both be explained (Carpinteri & Chiaia, 1996). 
other aspect same problem is represented by the lacunarity 
of the porous microstructure, which represents a random 
plaining effect on the nominal tensile strength 
1994). 

this an innovative experimental methodology is 
a completely automatic laser system, the 3D 

can be digitised. The application 
to these domains confirms the invasive char-

acter loci. In addition, if planar cross-sections of 
the virgin are considered, the pore and void distribution 
(like moon-craters distribution) can be easily extracted the 
laser-scanned topography. This procedure, which yields the ~~~-,~v~ 
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depth and shape of the pores, permits to overcome the drawbacks 
and ambiguities of traditional image analysis techniques, where dark 
particles often confuse with pores. Several analyses have been car­
ried out, confirming the lacunar fractal character of the ligament. 
The same investigation allows us to confirm the self-similar charac­
ter of the pore size distribution, which has been assumed in various 
statistical models of brittle fracture. 

2 Experimental methodology 

A new experimental methodology has been developed at Politecnico 
di Torino, with the purpose of overcoming two major limitations com­
monly encountered with the existing techniques. First, it allows to 
acquire the entire three-dimensional surface topography, which is nec­
essary for a real three-dimensional fractal analysis. In the literature, 
the fractal dimension of surfaces is often calculated only by extrap­
olating the values of the fractal dimension of vertical sections (pro­
files) or horizontal sections (in the slit-area method). The relation 
that links the fractal dimension of a set with that of its subsets is 
demonstrated only in the case of mathematical fractals, not in the 
case of natural fractals. The second result is to avoid the ambiguities 
of traditional image analysis techniques, where dark particles often 
confuse with pores. 

The experimental equipment is sketched in Fig. l. The specimen to 
be analysed (Fig. lf) is rigidly framed into a solid truss. The surface 
height measurement is performed by means of a Keyence™ LB-12 
laser profilometer (Fig. lg), by counting the number of wave-cycles 
between the ray emission and the ray reception after the reflection 
on the specimen surface. The laser is driven by two orthogonal mi­
crometric step-motors (UE30CC: UT 100-100, Fig. lh), controlled 
by the MM2000 interface (Newport Klinger™, Fig. ld), plugged in 
an ISA-slot of a PC motherboard (Fig. lb). The analogical signal 
provided by the LB-72 laser controller (Fig. le) is converted in a 
16-bit precision digital signal by the DAQ PC-LPM-16 data acquisi­
tion board (National Instruments TM, Fig. le). A dedicated software 
(Fig. la) provides extreme versatility and the full automation of the 
surface acquisition process. The digitised surface can extend over 
a 50mm x lOOmm area, and a maximum precision of 2µm can 
achieved both in vertical and horizontal directions. 
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Fig. 1. Experimental equipment: monitor (a), PC case (b), PC-LPM-
16 (c), MM2000 (d), LB72 (e), specimen (f), LB12 (g), UE30CC (h). 

Several concrete fractured surfaces, after tensile rupture, have been 
digitised. One of them is shown in Fig. 2a. This surface extends over 
a 4 x 4cm2 projection area, and has been stored as a 2048 x 2048 pixel 
array. Therefore, a 20µm step was adopted. It is believed that further 
refinement is not necessary for the mesostructural characterisation of 
concrete-like materials. The surface is extremely rough and shows 
more and more details as the observation resolution increases. The 
same morphology is observed under different magnifications. This 
confirms a substantial scale invariance. As it will be shown in the 
following, the scale-dependent value of the apparent area tends to 
infinity as the resolution increases. Therefore, it is not consistent to 
treat this domain as a smooth Euclidean surface. 

Furthermore, planar concrete cross sections have been digitised. 
They were obtained by cross-cutting undamaged specimens. These 
surfaces appear almost flat, with localised distribution of moon-like 
craters (Fig. 2b) due to the intersection of the cutting plane with the 
inherent microstructural voids. Therefore, the effective resistant cross 
section is less dense and compact than the nominal cross section. In 
the case of uniform porosity, referring to the nominal cross section 
does not provide scaling effects. In the real situations, as will be 
outlined in the following, the porosity is not uniform, and the relative 
percentage of voids depends on the cross section linear size. 
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Fig. 2. Shaded reliefs: fracture surface (a), plane cross-section (b). 

3 Invasive fractality of fracture surfaces 

The digitised fracture surface of concrete has been analysed using 
three different algorithms and definitions for the fractal dimension 
calculation. Based on the classical concept of covering dimension, by 
Mandelbrot (1982), the box-counting method allows to calculate the 
fractal dimension of lacunar and invasive fractal sets. The fracture 
surface is assumed to be an invasive self-affine fractal in a statistical 
sense. This means that a three-dimensional representation of the sur­
faces f ( x, y, z) will be statistically similar to f ( rx, ry, rH z), where r is 
the scaling factor and His the Hurst exponent due to the anisotropy 
in the scaling process. 
As shown in Fig. 3, the fractal dimension can be evaluated from 
the rate of growth of the number N of prisms, necessary to cover 
the surface, as the size d of the elementary prisms (whose volume is 
V = d x d x dH) decreases. The following equation holds: 

. logN 
Li box == hm l ( j d)" d-tO og 1 

(1) 

The fractal dimension of the surface shown in Fig. 2a, calculated 
according to eq. (1), is equal to .6.box = 2.15, and confirms the invasive 
fractal nature of this domain. 

While the box-counting algorithm estimates the fractal dimension 
from the rate of vanishing of the overall covering volume as the reso-
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Fig. 3. Box-counting method: covering scheme (a), bilogarithmic 
diagram (b). 

lution increases, the patchwork method approximates the fractal do­
main by surface elements (Fig. 4a) and the fractal dimension is eval­
uated from the rate of divergence of the apparent area A (Fig. 4b). 
In other words, the patchwork method aims at evaluating the same 
limit value, i.e. the fractal dimension, by approximating it from a 
different path. For example, if the covering grid size is r = 20.48mm, 
then the apparent area A is equal to 1698.l 7mm2. Increasing the 
resolution, more and more details are counted and, when r = 20µm, 
A becomes equal to 2691.39mm2

. This confirms the scale dependent 
nature of fracture surface (Lange & Shah, 1994). The patchwork frac­
tal dimension, originally defined by Clarke (1986), can be computed 
as: 

. log A(r) 
~patch = 2 - hm l . 

r-tO og r 
(2) 

In Fig 5a, the bilogarithmic diagram log A versus log r is shown. 
The fractal dimension, equal to the slope of the curve, is correctly 
evaluated only for high resolution (local fractal dimension). On the 
contrary, it tends to the Euclidean integer value for poor resolution, 
due to the self-affine character of the surface. 

Finally, the fractal dimension of the fracture surface has been cal­
culated by a three-:dimensional spectral method, specifically designed 
for self-affine sets (Turcotte, 1992). It is based on the two-dimensional 
Fourier Transform, and provides the fractal dimension as a function 
of the mean spectral power S2j which, for self-affine surfaces, is given 
by the following power-law: 
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(3) 

eq. (3), k is the radial wave number and f3 is the slope of the curve 
in the log S2j versus log k bilogarithmic diagram shown in Fig 5b. 

spectral fractal dimension can be written as a function of (3: 

~s = !__!!__ 
2 

(4) 

The spectral method provides the value ~s = 2.23 for the same 
surface shown in Fig. 2a. 

In conclusion, the dimension of this surface should be set the 
range 2.15 - 2.29. Unfortunately, in the case of natural fractals, it 
is difficult to obtain only one value because the algorithms, although 
theoretically coincident in the limit, behave differently when applied 
to real sets. 

4 Lacunar fractality of stress-carrying cross 

the study of continuous media, we are concerned with manner 
which forces are transmitted through the medium. The 

definition of stress relies on some "regularity" properties (continuity 
and measurability) of the medium. Experimental investigations show 
that heterogeneities and defects are present at all the scales in engi­
neering materials and interact with each other in a complex manner. 
These aspects cannot be neglected when meso- or micro-scales are 
considered, and in the presence of strain localisation and large stress 
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Fig. 5. Bilogarithmic diagrams: patchwork method (a), spectral 
method (b). 

gradients, which is the case of fracture and contact problems. Carpin­
teri (1994) assumed that the fractal dimension of stressed ligaments in 
disordered solids were lower than 2.0 due to voids and cracks. There­
fore, lacunar domains (possessing a fractal dimension lower than the 
topologic dimension) can be used to model the stress-carrying cross 
sections in real materials. The apparent Euclidean measure (length, 
area or volume) of lacunar sets is scale-dependent and tends to zero 
as the resolution increases. In these cases, the Cauchy definition of 
stress can not be applied. The "regularity" properties of the Eu­
clidean sets are lost and are replaced by the non-differentiability. On 
the other hand, self-similarity comes into play, providing a particular 
symmetry in the problem (dilatation symmetry). Accordingly, the 
stress concept needs to be revised and scaling laws must be included 
( Carpinteri & Chiaia, 1996). 

The Menger sponge can be considered as a fractal model for a 
porous solid. It is shown at the third iteration in Fig. 6a, and its 
Hausdorff dimension is equal to ~ = log 20 /log 3 = 2. 73. The sponge 
has zero volume and possesses very peculiar mass properties related 
to its non-compactness. In fact, if sponges of different linear size 
are compared, one notes that the nominal density decreases with size 
according to a non-integer exponent equal to D- 3. This is confirmed 
by natural sponges, where the larger the specimen size, the higher 
the probability of encountering a large hole. Planar cross sections 
of the Menger sponge are Sierpinski carpets, whose iteration scheme 
is shown in Fig. 6b. This set presents zero area (~ = log 8/ log 3 

288 



Ill IJ --
g I • g 
~I . ~ 

--
Ill IJ 

(a) (b) 

Fig. 6. Menger sponge (a). Sierpinski carpet iterative generation (b). 

1.893) and can be considered as a lacunar cross-section inside a porous 
medium. In Fig. 2b, an example of a nominal stress-carrying cross­
section is shown. It is worth to remind that this lacunar domain is 
obtained from an undamaged solid. If load had been applied, a larger 
damage would be present furtherly lowering its compactness. 

The true stressed domain is made out of the points that do not 
belong to the craters, i.e. to the pore structure. Hence, from a the­
oretical point of view, the actual resisting section can be evaluated 
by considering the set of points whose heights are exactly equal to 
the cutting plane height. Practically, the obtained surface (Fig. 2b) 
is not absolutely plane and presents a low uniform roughness due 
to the cutting process that can be confused with porosity. For this 
reason, another virtual plane has been considered, parallel to the 
cutting section, but at a lower height, which is able to intersect 
only the real cavities (Fig. 7a). Then, the points, whose height is 
greater than the virtual plane height, are considered to belong to the 
real stress-carrying domain, while the remaining points belong to the 
(complementary) void set. This procedure allows to filter out the 
noise produced .by cutting. However, some information is lost about 
the finer porosity. To perform the virtual cut, it is also necessary to 
know the mean real cutting plane by a de-trending algorithm. Fig. 7b 
shows the resulting cross-section, which can be considered as the real 
stress-carrying domain. 

The fractal dimension of this domain has been calculated using two 
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7. Virtual plane section scheme (a) and bidimensional map of 
the effective cross section (b). 

different algorithms. At first, the previously introduced box-counting 
method. The number of boxes needed to cover the set has been calcu­
lated for a decreasing value of the size of the square covering element 
(Fig. Sa). The effective ligament presents a fractal dimension equal 
to 6-box = 1.96 (Fig. 8a), which is lower than the integer Euclidean 
value (equal to 2). 

The fractal dimension can be also evaluated by referring to the 
mass logarithmic density. If the effective cross section were charac­
terised by a uniform distribution of cavities, it would be possible to 
calculate the density defined as the ratio between the effective area 
Aeff and the nominal area Anom· In the actual case, this density can 
not be unambiguously calculated because it depends on the resolu­
tion and on the size of the considered area. In fact, the complex 
distribution of the pores causes the probability of finding large cav­
ities to be higher as the size of the considered area increases (like 

a natural sponge, Mandelbrot (1982)). The classical density is 
not constant, but decreases by increasing the nominal size. To ob­
tain a scale-invariant value, it is necessary to refer to the logarithmic 
density, defined as:· 

log Aeff 
Piog = l A · ( 5) 

og nom 

d is the linear size of the considered area, the fractal dimen­
s10n ~log can be evaluated as the limit slope of the bilogarithmic 
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Fig. 8. Bilogarithmic diagram: box-counting method (a), apparent 
density (b). 

diagram (log Aeff versus log d). In the case of concrete (Fig. 8b), 
the value ~log = 1.97 was determined, in good agreement with the 
box-counting method. 

As a final remark, it is our opinion that this value is too high, even 
for an undamaged specimen. Higher resolutions should reveal the 
presence of micro-porosity, which would lower drastically the density 
and compactness of the stress-carrying domains. 
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