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Abstract 
A new approach to determine the crack extension resistance curve had been 
developed by the authors recently. As a follow-up of the conventional 
approach by Irwin, the new proposed KR-curve is directly evaluated 
according to the cohesive force on the fictitious crack in front of a preformed 

. crack. It issuitable for the crack propagation in quasi-brittle materials with 
softening stress-separation law like concrete. As one of the sequels of the 
work, the case of mode I Griffith crack was investigated to derive the 
analytical expression of the KR-curve. For achieving the aim, the cohesive 
force distribution on the fictitious crack at various loading stages is assumed 
using the softening stress-separation law based on direct tensile tests of 
concrete. Then, the analytical solution of the fictitious crack model for the 
mode I Griffith crack is gained. Mathematical expressions of the KR-curve 
for mode I Griffith crack are presented. Once the O'oo-CTOD curve of a 
material is known, the KR-curve for mode I Griffith crack can be determined. 
Key words: analytical solutions, fictitious crack, KR-curve, cohesive force, 
mode I Griffith crack 
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1 Introduction 

During the last two decades, the fictitious crack model proposed by 
Hillerborg et al. (1976) had been successfully used in the numerical analysis 
of concrete structures. Later, some researchers attempted to analyse the 
fictitious crack model, like Reinhardt (1984), Li and Liang (1986), Horii et 
al. (1987), Li (1990) Planas and Elices (1992, 1993) as well as Lin et al. 
(1994) for the Griffith crack case. However, it was found that the case 
studied by Planas and Elices ( 1992, 1993) and Lin et al. (1994) could be 
taken as a special case during the post-critical situations. 

Furthermore, the conventional approaches, originating from Irwin in the 
1950s, to evaluate crack extension resistance in terms of KR-curve according 
to the length of a propagating crack and the corresponding load have been 
applied to concrete. This approach is phenomenological. Opposite to the 
conventional phenomenological approach proposed by Irwin, the new 
approach considers the cohesive froces along the fictitious crack. This 
approach was recently developed by Xu and Reinhardt ( 1997) for standard 
three-point bending notched beams. This work is now being extended to the 
mode I Griffith crack for quasi-brittle materials with strain softening 
behaviour. 

2 Fictitious crack model and softening traction-separation law 

A fictitious crack according to Hillerborg et al. ( 197 6) is composed of two 
parts: one part is the real crack of which the two crack faces are stress free 
and wholly separated; the other part is the fictitious crack. The fictitious 
crack is a conceptual crack as mathematical treatment. For simplicity, the 
original width of the fictitious crack was assumed to be zero. 

It was assumed that the fictitious crack can transfer distributed cohesive 
forces O" resulting from friction and interlock. The cohesive forces are a 
function of the fictitious crack separation width w. At the fictitious crack tip, 
the transferred cohesive force is assumed to be the tensile strength, fb of 
concrete. Behind the fictitious crack tip, the transferred cohesive force is 
assumed to decrease with the increase of the crack width. With the increase 
of applied load, the fictitious crack will develop continuously. Once the 
fictitious crack has fully developed, the cohesive force along the trajectory of 

410 



the developing fictitious crack will be zero. The distribution of the cohesive 
forces is sketched in Fig. 1 (a) and (b) before and after crack extension. 

Outside the fictitious crack the material behaviour is described by a linear 
stress-strain relation. Within the fictitious crack a bilinear stress distribution 
is utilized both in numerical studies by finite element code and in analytical 
investigations. The bilinear traction-separation law is illustrated in Fig. 2. 

w 
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crack crack crack 

Fig. 1. Cohesive force distribution behind the fictitious crack tip 
before (a) and after (b) a real crack extension 

Ws WO w 

Fig. 2. Illustration of the bilinear softening traction-separation law 

The area under the cr-w curve in Fig. 2 is defined as fracture energy Gp of 
concrete material by Hillerborg et al. (1976). It can be expressed as follows: 

411 



(1) 

The bilinear softening traction-separation law can be generalized as 
follows: 

O"== fr -(fr -<:5Jwlws 

O"==O's (Wo -w)l(Wo -wJ 

0"==0 

Oswsws 

ws <wsw0 

W~W0 

(2) 

Several researchers proposed different values of the break point O"s and w s 

and the crack width w0 at the stress-free point (Petersson, 1986). 
For convenience of analytical analysis of the fictitious crack model, we 

propose a modified approach to determine the values of CTs, Ws and w0 based 
on investigations in extensive experiments which is stated as following 
express10ns: 

as= f1(2- ftCTODC IGF)laF 

ws = CTODC 

Wo =aFGF I f1 

aF = A-dmax /8 

(3) 

where CTODc is the critical crack tip opening displacement of concrete; dmax 
is the maximum aggregate size in mm and A is a calibration factor which 
depends on the deformation property of concrete. The values of A are 4 to 10. 
When A= 9, aF leads to the same values as proposed in CEB-FIP Model 
Code 1990. 

3 The analytical solution of the fictitious crack model in case of a 
Griffith crack 

A typical Griffith crack with symmetric fictitious crack zones at the two ends 
is shown in Fig. 3 (a). In such a crack problem, an infinite plate of unit 
thickness with a mode I central transverse crack with a preformed length 2ao 

412 



is subjected to an externally applied tensile stress G= at the remote boundary 
and to distributed cohesive forces along the fictitious crack zones. An 
effective crack "a" consists of an equivalent-elastic stress-free crack and an 
equivalent-elastic fictitious crack extension. According to the superposition 
principle, the crack problem shown in Fig. 3 (a) can be taken as a 
superposition of the two cases shown in Fig. 3 (b) and (c). The stress 
intensity factor at the effective crack tip shown in Fig. 3 (a) is equal to the 
superposition of those in Fig. 3 (b) and (c). 

2a 

(a) (b) (c) 

Fig. 3. A Griffith crack with symmetric fictitious crack zones 
and its superposition 

If the stress intensity factor at the effective crack tip due to the external 
tensile force Goo is denoted by Kt in the case shown in Fig. 3 (b) and that due 
to the distributed cohesive force G (x) along the fictitious crack zones by K1c 

in Fig. 3 (c), the overall stress intensity factor in the case shown in Fig. 3 (a) 
can be stated as following equation (see Tada, Paris and Irwin (1985)): 

(4) 

During the complete fracture process the cohesive force distribution G(x) is 
different accordingly to the various loading stages. It starts with crack ao 
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only, then the crack extends that CTODc and Goo, max are reached at the same 
time, finally the crack propagates further. The distribution of the cohesive 
forces are assumed according to Figs. 4 to 7. The subsequent steps are de­
scribed by: 

a) loading stage I: CTOD = 0. 

(5) 

b) loading stage 2: CTOD:::;; CTODc. 

o-(x)=o-(CTOD)+ [{
1 
-o-(CTOD) ](x-a 0 )/(a-a0 ) a0 sx Sa (6) 

y 

0 
x 

~ cr(x) 

2a 

Fig. 4. The cohesive force distribution on the fictitious crack zones 
when CTOD < CTOCc 

At the critical state when Goo= O"oo,max and CTOD = CTOD0 the correspond­
ing solution is the following: 

(7) 
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c) loading stage 3: CTODc < CTOD < w0• 

K1 = <Y
00 

.J2na 

2 ~ {[a( CTO D} Gu al CTO D:)] [arccos llo - arc cos as ] 
1- a0 ! as 1J-; as a a (9) 

- a [a/ CTOD)-a(CTOD J] [~1-(a) a)2 
- ~1-(au I a)

2
]} 

--
2
- ~ {[aJCTOD)- as f

1
]arccosas +[t, -(JlCTOD)}Jl-(a)a)

2
} 

1-aJa 1J-; a a 

y 

0 
x 

2a
0 

2a. 

2a 

Fig. 5. The bilinear cohesive force distribution on the fictitious crack when 
the CTODc < CTOD < wo 

d) a special state: CTOD = w0 

(10) 

415 



y 

cr (x) 

0 
x 

2a
0 

2a 

2a .. 

Fig. 6. The fully bilinear cohesive force distribution on the fictitious crack 
when CTOD = w0 

e) loading stage 4: CTOD > w0. 

y 

0 
x 

2a. 

2a 

Fig. 7. After new formed stress free crack appeared the bilinear cohesive 
force distribution on the fictitious crack when CTOD > w 0 
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(12) 

-
2 ~{[cd CTOD:)- as f 1]arccosas +[Jr -<JJ CTOD:ijJJ-(as I a)

2
} 

1-aJa f; a a 

4 Crack extension resistance associated with the cohesive force for the 
Griffith crack in concretes 

The conventional approach of crack extension resistance curve was proposed 
by Irwin in the 1950s and early 1960s which can be expressed in terms of the 
KR-curve: 

(14) 

Where K is the stress intensity factor at the propagating crack tip and KR 
(~a) is the crack extension resistance during crack propagation which is a 
function of the extension of crack propagation L).a =a-ao. In the conventional 
approach to determine the crack extension resistance, KR (L).a) is evaluated by 
the external applied load and the corresponding length of propagating crack 
measured in tests. This approach was widely applied in practice. 

Later, through highly refined finite element calculations, Tvergaard and 
Hutchinson (1992) studied the crack extension resistance of strain hardening 
metal materials for mode I Griffith crack problem using a traction-separation 
law. 

Recently, a new approach to evaluate the crack extension resistance of 
quasi-brittle softening materials was proposed by Xu and Reinhardt (1997) 
according to the cohesive force on the fictitious crack which is directly de-
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scribed by the softening traction-separation law. The basic principle of the 
new approach is that the crack extension resistance is composed of two parts. 
One part is the inherent toughness of a material denoted with symbol K1cini 

which resists the initial propagation of an initial mode I crack. Another part 
is caused by the cohesive force distributed on the fictitious crack during 
crack propagation. The crack extension resistance determined by the ap­
proach is defined as follows: 

(15) 

ft is the tensile strength of a material, a is length of a propagating crack in a 
loaded body and f (a) is the distribution function of the cohesive force along 

fictitious crack which can be determined by the traction-separation law 
presented by eqs. (2) and (3). 

For distinguished loading stages for the mode I Griffith crack problem 
considered in this paper, the expressions of the distribution function of co­
hesive force f (cr) have been stated in equations (6), (8), (10) and (12). Using 
the analytical solution of the fictitious crack model for the mode I Griffith 
crack problem presented in the above section, the mathematical expressions 
of the crack extension resistance curve associated with cohesive force on the 
fictitious crack can be stated as follows: 

loading stage 1: CTOD =0, i.e. a= ao. 

K (f!J.a) = Kini 
R le (16) 

·"'-' .... ""· ... ·''I"-. stage 2: 0< CTOD :::; CTODc, i.e. ao < a :::; ac 

K (b.a) = Kini 
R le 

+-2 - ~{[CJ(CTOD)- ao f
1
]arccosa" + 1/,-<J(CTOD)~l-( a, l}(l 7) 

1- ao v; a a a 
a 
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c) loading stage 3: CTODc < CTOD s Wo, i.e. ac <as aWo 

K (&l)=Kini 
R le 

+ 
2 ~{[<5(CTOD)- a0 aJCTODc)J[arccosa0 -arccosas] 

i-ao1 as v;; as a a 

-a[O"J CTOD)-a(CTOD)]ul-(: )
2 

- ~J-(~)2 
]} 

(19) 

2 [ {[ as ·] as + - as(CTOD)-- f, arccos-
l-asla Jr a a 

+ [J, -a,( CTOD)~l - (: )2
} 

d) loading stage 4: CTOD > w0, i.e. a> aw
0 

KR(&l)=~;i 

+ 2ai CTOD) ~{lli[arcco~ -arcco~]-a[~l-(as/a)2 -~1-(lli I a)2 J} (20) 
as-lli v; a a 

+-
2

- ~{[a-/CTOIV- as fc]arcco~+[tc-aiCTOI{)°Wl-(asla)2} 
1-aJaV~ a a 

where the crack length is incrementally increased and cohesive force, stress 
intensity factor, and crack extension resistance can be computed. 

5 Conclusions 

The fictitious crack model has been applied to the mode I Griffith crack. 
Analytical expressions for the KR-curve during the complete fracture process 
have been derived which take account of the cohesive force along the ficti­
tous crack. The cohesive forces follow the stress-crack opening relation of a 
softening quasi-brittle material. The presented formulae are the basis for an 
iterative computation which is in progress. 
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