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Abstract 
In the analysis of structures subjected to blasting or impacts, concrete 
experiences compaction, a decrease of porosity, plastic strains 
compression and also cracking in tension. The objective of this study is to 
develop a constitutive model for concrete which covers this entire range 
of material nonlinearity. Hence a coupled damage and plasticity 
constitutive model for concrete under fast dynamic loading is developed. 
This model is based on mechanics of porous materials, damage 
plasticity. The constitutive relations are presented and compared with 
experimental results. The computational implementation has been carried 
out in the Lagrangian finite element code DYNA3D. In order to show 
influence of compaction, simulations of a split Hopkinson test performed 
on confined concrete and a concrete slab subjected to an impact have been 
carried out. Comparisons between simulations with a classical plasticity 
model and the present model are discussed in order to exhibit 
influence of concrete compaction. 
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1 Introduction 

In a concrete structure subjected to a shock or to an impact, the material 
experiences severe hydrostatic stresses and compaction. Then, 
propagation and reflection of waves produce eventually tensile cracking 
and spalling. Tensile cracking is, however, controlled by the compressive 
response of the material and ·it is important to describe the compressive 
phase of the material response as accurate as possible in order to predict 
failure. A phenomenological model based on continuum damage 
mechanics combined with plasticity is presented for this purpose. 

In tension, the proposed model is based on a classical scalar damage 
model. In the case of compaction of concrete, it is important to take into 
account both the growth in plastic strains and the decrease in porosity 
which results in an increase in the elastic stiffness of the material. In order 
to describe this type of material response, the plasticity model coupled 
with the damage model is implemented. We have used a modified 
Gurson' s yield function for this purpose with associated flow rules 
(Gurson 1977, Needleman and Tvergaard 1984). The evolution of the 
volume fraction of voids is directly related to the irreversible variation of 
volume fraction of material. When it decreases, it produces an increase in 
the material stiffness and therefore a decrease in damage which is not 
common in the conventional damage models. 

Experimental results have shown that it is not possible to separate the 
deviatoric and hydrostatic responses of the material as in usual models for 
impact problems (Burlion, 1997). This phenomenon is well captured by 
the model. Numerical simulations which exhibit the influence of 
compaction and comparisons with an elastic plastic model are presented 
on an impact problem. 

2 Compaction of concrete : a coupled damage and plasticity model 

Let us first recall the constitutive relations in the tensile regime: we use 
here a scalar damage model. Within the classical framework of (small 
strain) elasto-plasticity, we use the basic assumption of additive strain 
decomposition: 

d rev d irr 
dey(x ,t)= ~ (x ,t)+ £ij (x,t) (2.1) 

where cij ( x, t) are the total strain components, e:r (x,t) are the irreversible 

strain components and cfT ( x, t) are the reversible strain components. 
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The stress-strain relation is, in the absence of plastic strain growth: 

(2.2) 

where A and µ are the Lame coefficients. d is the scalar damage variable. 
In the tensile regime, and as we will see further more generally in the 
absence of plastic strain growth, we use the evolution laws for damage 
proposed by Mazars (1986). 

Hydrostatic compression produces a collapse of the microstructure and 
a decrease in porosity. In these situations, concrete exhibits elastic-plastic 
behaviour with an increase of the elastic stiffness upon unloading. 
order to take into account this phenomenon in the model, we have chosen 
to describe the compressive regime with a plasticity model where the 
damage variation is also coupled to the plastic strains in order to capture 
the material elastic stiffening. 

Micromechanical modelling of the effect of micro-voids on the plastic 
behaviour has been done by Gurson for elastic perfectly-plastic alloys 
containing spherical voids (Gurson, 1977). A modified version of this 
model is chosen here for the plastic part (Needleman and Tvergaard, 
1984). The yield function is defined by: 

where 4 is the first stress tensor invariant and J 2 is the second invariant of 
the deviatoric stress tensor. 

(2.4) 

cr M is the equivalent yield stress the matrix, f' is the volume fraction 

of voids. f* increases with void development in tension, and decreases 
with void closure in triaxial compression. q1,q2 , andq3 are model 
parameters. 

The evolution of the modified Gurson' s yield surface with the decrease 
in porosity is presented in Fig. 1. Note that the yield surface is only 
plotted in a quarter quadrant of the (1

1 
I <JM ,p, I <JM) space. The yield 

surface grows due to the closure of the material porosity (or decrease in 
the volume fraction of voids). Finally, it must be underlined that when the 
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Fig. 1. Modified Gurson yield function : evolution with the decrease of 
porosity ( q1 = q2 = q3 1 ). 

volume fraction of voids is equal to zero the loading function reduces to 
the classical Von Mises expression. 

A dissipated energy equivalence defines equivalent strain (EM) and 
stress ( aM) in the matrix: 

d irr J * d irr (2 5) Cf;j£ij=(l- )O"MfM • 

The relation between EM and CTM is defined through a simple elastic-plastic 
model with non-linear hardening. 

The volume fraction evolution is assumed to be controlled by the 
irreversible strain increment: 

df = (1-f*)f*dc~; (2.6) 

The plastic flow is associated and the normality rule gives the following 
expressions for the irreversible strain increments: 

rd irr = d 1 JFfil 
I £.. /I,; a 

I) a .. 
~ I) 

ldf~ = -dA JF NT 

dO'M 

(2.7) 

where e}:/ is the irreversible strain in the matrix associated with cr M , and 
the plastic multiplier d:l is defined according to the consistency condition. 

damage due to both tensile cracking and compaction is written in 
an additive fashion: 

d= g(.S)+ !* (2.8) 
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where g(£) is the evolution of damage in the model by Mazars in the 
absence of compression. 

3 Numerical implementation 

The present constitutive relation has been implemented in the commercial 
finite element code DYNA3D. It is a vectorised explicit three­
dimensional finite element code for analysing the large deformation 
dynamic response of inelastic solids. In this code the equations of motion 
are integrated in a time domain with the explicit central difference 
method. 

The implementation of the model consists in computing the stress 
vector at each time step. Because of the explicit time integration of the 
equations of motion, we are going to derive the explicit form of the stress 
increment as a function of the total strain increment under the assumption 
that damage and plastic strains evolve simultaneously. Within a predictor­
corrector scheme, the loading function of damage is tested first assuming 
that there is no plastic strain. Then, the loading function for the plastic 
part is tested according to the predictor and a plastic correction is 
computed. Tensile damage is tested first because if there is no plasticity, 
the tensile strains will be in most cases the largest possible ones. 
Nevertheless, the damage loading function is rechecked when the elastic 
strains have been determined according to the plastic model. Eq. (2.3) 
gives by differentiation: 

(3.1) 

(3.2) 

These partial derivatives are known at each time step and it is possible to 
write Eq. (3.1) explicitly as follows: 
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The evolution of porosity is given by : 

(3.4) 

and the constitutive relation between the stress and strain increments in 
the matrix is: 

(3.5) 

The dissipated energy equivalence (2.5) gives: 

(3.6) 

Hence, the equivalent stress evolution is: 

(3.7) 

and Eq. (3.3) becomes: 

(3.8) 
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The increment of the plastic multiplier evolution is derived from the 
previous equation as a direct function of the stress increment: 

dA. = fct(daiJ) (3.9) 

The constitutive relation in elasticity is: 

(3.10) 

with the help of the evolution law for damage Eq. (2.8), we obtain: 

- d 'l JFNT dcr .. -(1-d)Ck/ E .. -dA-)-
11 1) I} aaij 

cag c~ ) at (df .. -dA. aF;.r) 
J£ JE;/ev 1J a aiJ (3.11) 

* * q* rev 

+ dA( 1 - f ) f d a CJ .. 8 iJ )CiJklE kl 

I} 

Eq. (3.11) combined with Eq. (3.9) provides an explicit expression of the 
stress increment as a function of the strain increment and under the 
assumption that both damage due to the tensile reversible strains and 
plastic strain evolve. 

4 Numerical simulation 

Two types of computations are going to be presented in the following. 
The first one is a simulation of the split Hopkinson test aimed at 
demonstrating the influence of the variation of porosity and inherent 
stiffening on wave propagation. 

In the split Hopkinson test, the input bar is impacted by a striker with 
an initial velocity which is an experimental parameter. In the input bar a 
stress wave is developed. This wave arrives at the specimen and becomes 
the specimen loading. In the output bar, new waves are developed (Fig. 
2). 

Confined Concrete Specimen 
u1putbar 

Fig. 2. Split Hopkinson test. 
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The experimental data are obtained by measuring the strains in the input 
and output bars. With these strains, we can obtain the experimental 
velocities and forces (along the cylinder axis) applied on the two faces of 
the concrete specimen contact with bars. In order to show the influence 
of confinement, a special specimen has been designed, made of a concrete 
cylinder embedded in a metal jacket. The metal jacket controls the radial 
deformation of the specimen and therefore applies a confinement stress to 
concrete which avoids splitting. The friction between the concrete sample 
and the metal jacket has been neglected because, experimentally, the 
contact surface is coated with Teflon. 

In order to show the influence of compaction, numerical simulations of 
a split Hopkinson test with different evolutions of the porosity were 
performed. Fig. 3 shows the different hydrostatic stress versus volumetric 
variation curves for the evolution of the porosity which were chosen for 
the computations. 

In these simulations the input and output bars are not represented in the 
finite element model. Only the concrete specimen is described with 
special boundary conditions which account for wave transmission and 
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Fig. 4. Input and output forces for different porosity evolutions. 
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reflection. In the simulations, the input and output experimental velocities 
are prescribed to the confined concrete specimen and numerical results of 
the input and output forces are compared in Fig. 4. Axial velocities at the 
boundaries are prescribed by mean of rigid surfaces. These boundary 
conditions have in fact little influence on the computed forces (Gatuingt 
1997). Radial boundary conditions are unknown in the experiment and, 
the simulation, the external radial displacements of the specimen (steel 
jacket) are free. The computed forces increase when the porosity of the 
material decreases. Hence the transmitted forces which might produce 
cracking in a structure are expected to increase with this model compared 
to situations where compaction is neglected 

In order to better show the influence of compaction, an impact problem 
is presented with two different material models for the slab. Figure 5 
shows the mesh used for the simulation. Displacements are prevented on 
the external surface of the mesh. The impactor has a short length in order 
to produce a short impulsion in the slab. 

The velocity of the impactor is 500 mis which produces a stress which 
is sufficient to induce compaction. Figure 6 shows the velocity versus 
time evolution for two points placed under the impactor. 

Impactor 

Fig. 5. 3D finite element mesh in the impact problem. 
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With the elastic-plastic model, we can notice that we have two very 
distinct waves (the elastic and the plastic one). The plastic wave for the 
first point has the same velocity than the impactor (there is no 
dissipation). For the compaction model the elastic wave is the same as for 
the elastic plastic model, but the second wave is faster than the plastic 
wave and the amplitude of this wave is lower (the dissipation is more 
important in this case). This computation shows that compaction has a 
significant influence on wave transmission. It might possibly influence 
spalling, or the output speed of the impactor in case of perforation of the 
slab which is quite often overestimated with plasticity models. 

5 Conclusion 

A damage plasticity model has been presented. For the sake of simplicity 
and computational efficiency, an explicit time integration of the 
constitutive relations was used for the implementation. 

The chosen dynamic tests in which the concrete specimen is not 
submitted to extensions but essentially to plasticity in compression shows 
that the presented model gives correct trends. 
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