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Abstract

A numerical model is used to analyze the relationship between radial stress
and radial opening at the surface of spliced reinforcing bars. Considering the
mechanisms of concrete fracture in front of ribs and the friction at the inter-
face between the concrete and rib face, the local bond-slip relationship is
derived and integrated to obtain splice strength. The results indicate that rib
shape greatly affects the strength of splices without stirrups when splice
length is short.
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1 Introduction

Bond of deformed bars depends mainly on mechanical interaction between
the ribs of the bars and the surrounding concrete. Numerous experiments
have been performed to investigate the effect of rib shape and splice length
on splice strength in reinforced concrete beams without stirrups. Those ex-
periments have indicated that when stirrups are not used, 1) larger splice
length reduces average bond strength; and 2) the effects of bar deformation
details are less significant. However, this information is empirical and, by
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itself, is not adequate for developing comprehensive lap splice models.

This paper uses an analytical approach which provides a bird’s eye
view on the effects of the rib shape and splice length on the strength of
splices and reasons for the experimental findings. The analysis consists of
three steps: 1) obtain the relationship between radial stress and radial open-
ing at the bar surface using a numerical model; 2) derive the local bond-slip
relationship considering the mechanisms of concrete fracture in front of ribs
and the friction at the interface between the concrete and rib face; and 3)
integrate the local bond-slip relationship to calculate the splice strength con-
sidering both the equilibrium between the bar axial stress and bond stress
resultants and the compatibility of strains and slip. The slip distribution
changes abruptly at the discrete locations along the splice where flexural
cracking occurs.

2 Radial stress versus radial opening at the bar surface

2.1 Rigid-body-spring network model of beam cross-section
The beam cross-section of Fujii et al. (1993) is partitioned into an assem-
blage of rigid bodies, or cells, interconnected along their boundaries through
flexible interfaces (Fig. 1a and 2). This type of rigid-body-spring network
was first introduced by Kawai (1978). Each rigid cell has two translatory
and one rotational degrees of freedom defined at some point within its inte-
rior. Normal, tangential, and rotational springs act at the midpoint of each
boundary segment; spring stiffnesses are set to approximate the elastic prop-
erties of the continuum (Kawai, 1978).

To reduce mesh bias on potential crack directions, and to automate the
meshing process, the network geometry is defined by a Voronoi diagram
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(a) domain discretization (b) crack patterns just after peak load
Fig. 1 Rigid-body-spring network modeling of beam cross-section

1302




based on randomly distributed nuclei. The aforementioned computational
degrees of freedom are assigned at the Voronoi cell nuclei. Material
nonlinearity is simulated by progressively degrading the elastic properties
of the intercell springs. Notably, tensile softening of the normal spring is
controlled so as to consume proper fracture energy, as shown by the stress-
strain diagram in Fig. 3 where f, is tensile strength, G.is fracture energy, and .
‘h is the distance (normal to the boundary segment) between contiguous nu-
clei. Bazant et al. (1990) used this approach for softening trusses within a
rigid particle modeling of cement composites.

Pressure loading is applied within stiff elastic rings (Fig. 1c), which
push radially against the concrete to simulate the opening actions of de-
formed bars. Tangential stiffness at the bar-concrete interface is released.
Young's Modulus and the tensile strength of the concrete are 2.5E+04 MPa
and 2.9 MPa, respectively. The latter value is based on 0.33\/7; , where ',
(=75.7MPa) is reported compressive. In the absence of experimental mea-
surements, fracture energy was assumed to be 0.05 N/mm, which is less
than the normal range used for macroscopic fracture analyses.

2.2 Numerical results

For each pressure level, the average opening of each ring is computed. Know-
ing the stiffness of the rings, the corresponding average radial pressures on
the concrete can be determined. Fig. 4 gives the numerical results for aver-
age radial pressure versus average radial opening determined from all six
bars. Fig. 1b shows the cracking pattern in the model just beyond peak
load, as indicated by point A on the pressure-opening curve. The peak load is
somewhat large due, in part, to unnatural restraint at the bar-concrete inter-
face. Changing fracture energy does not appreciably affect peak load, but
significantly affects post-peak behavior. ‘
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Fig. 3 Stress-strain curve for Fig. 4 Average radial pressure
concrete in uniaxial tension versus average radial opening
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Main Bar
(b) Pattern 2 (Friction at rib face) (b) Failure mode
Fig. 5. Failure patterns in front of ribs Fig. 6. Pullout test with steel pipe

3 Local bond-slip relationship

3.1 Assumptions
We assume that one of the following two patterns of failure causes incre-
mental slip AV .

Pattern 1: Direct shear of concrete, as shown in Fig. 5 (a). The angle of
the fracture plane, «, is determined so that the local bond stress 7 (shown in
Fig. 7) is minimized. This failure occurs when the shear stress at the poten-
tial failure plane reaches 7, which is given as a function of concrete strength:

T =L775% [MPa] @)}

This equation is based on the pullout tests of Akashi et al. (1991) shown in
Fig. 6 (a) , where the steel pipe is thick enough to be considered as rigid and
the bar is pulled out in direct shear mode as shown in Fig. 6 (b).

Pattern 2: Friction at rib face, as shown in Fig. 5 (b). B is the angle of
rib face; the friction coefficientt is assumed to be 0.5.

The failure pattern is decided so that the local bond stress 7 is mini-
mized. The failure pattern may change as the slip increases.

3.2 Compatibility and equilibrium local to bar rib
To evaluate local bond stress 7, force equilibrium at a rib is considered as
shown in Fig. 7 and

R 1=5(q,sino+g,cosar) )
R0, =5(q,cosa—g,sina) A3)
where g, and g, are the stresses normal and tangential to the failure plane,

respectively; R_is the length interval between the ribs; § is the length of the
failure plane, which is normally S = H, /sina, and o, is the radial pressure
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O Failure Plane
| R 1

(a) Nominal stresses (b) Stresses on failure plane (c) Equilibrium

Fig. 7. Stress on potential failure plane in front of a rib

given by the preceding analysis. For pattern 2, & should read f.

The tangential stress g, is given by one of the following equations de-
pending on the failure patterns in Fig. 5;

g, =T, (4) ( Direct shear )

q, =ug, (5) (Friction at rib face; m= 0.5)
Eliminating ¢, and g, from Eq. 2 using Egs. 3 through 5, we obtain 7 as a
function of o, which is determined so that T be minimized. Thus, 7 isa
function of o, Furthermore, o, is a function of V , whose increment is de-
termined from AV as follows.

AV, =AV tanc (6) (Direct shear )

AV, =AV tanf§ (7) (Friction at rib face; m = 0.5)
Thus, we can obtain the local bond-slip (7-V_) relationship since 7 is a
function of V_ , as just described.

3.3 Effect of rib shape on local bond-slip relationship

The beam specimens of Fujii et al. (1993) without stirrups are Analyzed.
The details of rib shape and the calculated relationship between the bond
stress T and the slip V_are shown in Fig. 8. The local bond stress-slip rela-
tionships are different because of the differences in rib shape. The Fujii speci-
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Fig. 8. Rib shape and local bond-slip relationship
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mens O-U, A-U and B-U have different rib heights and rib spacings (O-U:
-ordinary rib shape; A-U: high rib with narrow spacing; B-U: low rib with
wide spacing). The calculated local bond strength of the specimen A-U, which
has a higher rib height to spacing ratio (H /R =28.6%) is much larger than
those of the specimens O-U and B-U with lower rib height to spacing ratios
(H,/R =7.4% and 3.7%). The softening of A-U is also larger than the other
two, which affects the splice strength as will appear later. The failure pattern
of specimens A-U and O-U corresponded to friction at rib face at every slip
level; the larger rib face angle of A-U resulted in larger strength and rapid
softening. The failure pattern of the specimen B-U was predominantly di-
rect shear with a failure plane angle of about 30 deg. because of the small H,

/R ratio. This resulted in the ductile behavior after the peak strength.

4 Distribution of stress, strain and slip

4.1 Assumptions

The following assumptions are used for analysis.

(a) There are three flexural cracks as shown in Fig. 9. One crack is at the
center of splice and the other two are at the ends of splice.

(b) Concrete strain between flexural cracks is negligibly small.

We should note that the bond-slip relationship derived in the preceding
section is based on the assumption that the radial displacement at each spliced
bar increases at the same rate. Thus, we implicitly assumed that the slips of
the spliced bars also increase at the same rate. Due to the preceding assump-
tion (a), however, the slip of the bar extending from the left, V ,, may differ
from that of the right bar, V ;. Thus, we add the following assumptions.

(c) The average of the bond stresses of the spliced bars, 7, and 7, is a
function of the average of the slip of the bars as follows, Where 7 indicates
the bond-slip functional relation given in the previous section.

el () ®)

(d) The ratio of the bond stresses of the spliced bars is proportional to the

B

dx i

Flexual cracks Fig. 10. Equilibrium of bar
Fig. 9. Assumed flexural cracks stress within elemental length
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ratio of the slips so that the bar with larger slip has larger bond stress.
T _Vy
L - oL 9
Tn Vi ©

4.2 The definition of slip and the basic equation

The displacements of the bar and the concrete in the longitudinal direction
are defined as v_and v, respectively. We define the slip of the bar V_as
follows.

. (10)
Differentiating Eq.(10) with respect to x, the distance from the center
of the splice and assuming that the concrete strain is negligibly small

dv, _
—&;—EX (11)

where €_is the axial strain of the bar. Equilibrium between bar axial stress
and bond stress shown in Fig. 10 for an elemental length dx of the bar gives

2

where d, is the bar diameter. If the spliced bar remains elastic and E is elastic
modulus of steel, then
LA (13)
dx Ed,
Differentiating Eq.(11) and substituting the result into Eq.(13) we ob-
tain the basic equation for analysis, that is
v, _ 4 (14)
dx’  Ed,
Integrating this equation numerically, we have the distribution of slip and
bond stress along the splice length.

4.3 Effect of rib shape on splice strength

The specimens of Fujii et al. (1993) are analyzed. The rib details of the
specimens, the calculated results and experimental results for bond strength
are shown in Table 1.

From Table 1 we can see the analytical results overestimate the experi-
mental results. However, the analytical strength of A-U is about 1.2 times of
those of O-U and B-U as was in the experiments. Note that the local bond
strength of A-U is about 2 times of the other two (Fig. 8).

The calculated slip distributions of the bars extending to the right are
shown in Fig. 11. The slip of the bars extending to the left has an inverse
pattern around center of the splice with an opposite sign. The discontinuity
of the slip at x = 228 indicates the crack width at the center of the splice. The
slip at the right end plus some pullout from the right concrete ( not calcu-
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Table 1. Specimens data and analytical results

Specimen| A, | 4, | T4 | Te | TalTg
Fujii O-UJ 457 [35.8{7.77 5.00/ 1.55
Fujii A-U| 457 |35.8/9.87|5.95 1.66
Fujii B-U|457|35.8/8.10{5.00{ 1.62

Where A;: splice lerigth (mm)
7,: analytical average bond strength (MPa)
and 7, experimental average bond strength (MPa)

lated in the analysis) gives the crack width at the ends of the splice. The
crack width at the center is smaller than those at the ends, as was observed in
the experiment.

The calculated bond stress distributions are shown in Fig. 12. While
the bond stress distributions are different, the average bond strengths are
similar as shown in Table 1. In other words, the high peak strength of A-U
does not significantly affect the average bond strength.

The calculated bar strain distributions are shown in Fig. 13. The strains
increase monotonically in the left side of the splice, whereas in the right
side, the strains once decrease due to the negative bond stresses shown in
Fig. 12, and then increase until reaching about twice the strains at the center.

4.4 Effect of splice length on splice strength

To provide a bird’s eye view on the effect of the splice length, we simulate
specimens with the same rib shapes as Fujii’s but different splice lengths
(ranging from 6.4 to 25.5 times the bar diameter). The calculated results are
shown in Fig. 14. The results provided by the equations of Orangun et al.
(1977) and Darwin et al. (1996) are also given, where the effect of the rib
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Fig. 11. Slip distribution Fig. 12. Bond stress distribution
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shape is ignored. The experimental results are indicated by the solid circles.
The analytical results of the O-U series shows a tendency similar to Orangun’s
and Darwin’s. On the other hand, the effect of splice length is larger in the
case of the A-U series and is smaller in the case of the B-U series. Noting
that the splice length is normally larger than 20 times of bar diameter, we
may conclude that the effect of rib shape on average bond strength is small
in normal situations.

‘ The calculated bond stress distributions of the simulated specimens with
the splice length of 6.4 times of bar diameter are shown in Fig. 15. This
explains the higher average bond strength of the A-U specimen with very
short splice length.
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Fig. 14. The effect of splice length  Fig. 15. Distribution of bond stress
on bond strength of simulated specimens
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5 Conclusions

The effects of rib shape and splice length observed through the analysis
agreed with those obtained by the experiments and the empirical equations,
though the analysis overestimated the splice strengths. If the assumptions of
this study are correct, the following conclusions are obtained.

(1) Rib shape greatly affects the local bond-slip relationship. Splice with
higher ratio of rib height and rib spacing (H,/R_ ) has larger local bond
strength but softens more rapidly after peak.

(2) The effects of rib shape on splice strength may be remarkable when splice
length is very short, but the effect may be small when splice length is large.
(3) The effects of splice length on splice strength are significant when the
ratio of rib height and rib spacing (H,/R_ ) is large. For the analyses given
here, doubling the splice length with ordinary rib shape from 10.d, to 20.d,
resulted in a 30% decrease in average bond strength, whereas in the case of
higher ribs the decrease was 45%.
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