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Abstract 
A modelling in which the crack is incorporated in the shape functions of 
the finite element formulation is used in this paper. The crack is represent­
ed by a discontinuous function of the displacement gradients, which acts as 
an additional localized mode with a length scale parameter that is indepen­
dent of the element size. A predefinition of the direction of the crack is not 
necessary and the failure zone can be described with a relatively small 
number of finite elements. This embedded crack/discontinuity model is 
compared with the widely used fracture energy model. 
Keywords: Embedded discontinuity concept, fixed/rotating models. 

1 Introduction 

For large scale and three-dimensional (3D) computations of fracture a mod­
elling of the failure zone with embedded discontinuities can be highly ef­
fective. The crack is regarded as a jump in the displacements (Ortiz et al., 
1987; Simo et al., 1993; Armero and Garikipati, 1995; Larsson et al., 1995; 
Lotfi and Shing, 1995) or the displacement gradients (Belytschko et al., 
1988; Sluys and Berends, 1998). These jump functions are so-called addi­
tional localization modes which can be added to the standard shape func­
tions of the finite element. The discontinuous modelling limits the number 
of finite elements that is needed to describe the crack in comparison with 
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higher-order continua such as gradient models (Aifantis, 1984; de Borst et 
al., 1992) and nonlocal models (Pijaudier-Cabot and Bafant, 1987), which 
is extremely important for large scale and 3D calculations of crack propa­
gation. 

The model with a discontinuity in the strain field will be explained for 
ID, 2D and 3D stress situations. Simple elements are used, namely for lD 
a linear truss, for 2D a constant strain triangle and for 3D a 4-noded tetra­
hedral element. These are the underlying elements to which the localized 
modes are added. In the discontinuity element a length scale parameter is 
introduced which is a material parameter and can be related to the size of 
the fracture process zone. This solves the mesh-size dependence problem as 
present when a standard crack model is used. The amplitudes of the local­
ized mode are obtained from the traction continuity condition that must be 
satisfied over the discontinuity line and the assumption of compatibity of 
deformation (related to satisfaction of the patch test). The amplitudes are 
additional degrees-of-freedom that are solved at integration point level. A 
predefinition of the direction of the crack is not necessary and the failure 
zone can be described with a relatively small number of finite elements. 
The model can be combined with different sets of constitutive equations 
(cracking, damage, plasticity). 

lD, 2D and 3D examples of mode-I failure problems will be analyzed. 
Two important issues will be discussed in the paper. Firstly, the problem of 
mesh locking which appears in this discontinuity concept when the discon­
tinuity plane is fixed after initiation of the crack. Secondly, crack propaga­
tion in structured and unstructured meshes will be analyzed to assess the 
the performance of the model with respect to mesh-orientation sensitivity. 
Similarities and differences between the model presented here and the frac­
ture energy model are explained. 

2 Kinematics of discontinuous failure 

In the approach proposed in this paper a discontinuity of velocity gradient 
at the edges of the localization zone is assumed (see Figure 1). The dis­
placements and the velocities in the localized area are still continuous. For 
a jump in velocity gradient ui,j between cracked and non-cracked material 
we define 

[ui,j] = ii min j , (1) 

in which the vector n is the normal to the discontinuity plane, the vector m 
defines the nature of the discontinuity and ii is the jump coefficient. For a 
pure mode-I failure plane m is aligned with n and n Tm = 1, on the other 
hand for a pure mode-II failure mis perpendicular ton and nT m = 0. Fur-
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Fig. 1. Definition of localized band. 

thermore in Figure 1 the angle e determines the orientation of the disconti­
nuity plane and the parameter l plays the role of the localization band 
width. This parameter appears as an independent material parameter and is 
not set by the finite element size. From the jump of velocity gradient we 
can define the jump in strain rate according to 

(2) 

or 

[£]=aq. (3) 

At both edges of the localization band we distinguish jumps in the displace­
ment gradient. We define two jump coefficients ii 1 and a2 that determine 
the additional strain field of the localized mode. The jump a1 represents the 
decrease in strain in the elastic area and ii2 denotes the increase of strain in 
the inelastic area, both with respect to a formulation without additional 
jump functions. We can now derive expressions for the strain rate outside 
the band £1 and inside the band £2 according to 

£1 =Lu - ii1 q (4) 

£2 =Lu+ ii2q , (5) 

in which Lis the differential operator matrix. In a finite element set-up we 
discretize the continuous displacement field u by 

il=Ha, (6) 

in which the matrix H contains the interpolation polynomials and a are the 
nodal velocities. If we substitute eq.(6) and introduce the strain-nodal dis­
placement matrix B = LH eqs.(4) and (5) become 
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£1 =Ba - a1q 

£2 =Ba+ a2q. 

(7) 

(8) 

For convenience we can rewrite eqs.(7) and (8) by multiplication of the ad­
ditional strain field by the scalar quantity q TBa and obtain 

£2 = B2a 

where 
- T B 1 = [I - a 1 qq ] B 
- T 
B1 =[I+ a2qq ] B 

(9) 

(10) 

(11) 

(12) 

with a1 = a 1qTBa and a2 = a 2qTBa. In the model the unknowns m and 
a 1 and a 2 need to be determined. 

3 Finite element discretization 

To enforce equilibrium we assume at the end of the time or loading step 

LT at+D.t = 0 . (13) 

The weak form of eq.(13) for an element with an elastic zone Q 1 and a lo­
calized zone Q2 (Q = Q1 + Q2 is the total area of an element) is as follows 

I 8u T[LT a-f+D.t] dQ1 + I 8u T[LT ai+Llt] dQ2 = 0 ' (14) 

n1 n2 

or invoking the divergence theorem 

I 8 i1 T a-i+M dQ1 + I 8 £2 T a~+D.t dQ2 - I 8u T pt+D.t dS = 0 ' (15) 

QI Q2 S 

in which p are the tractions at boundary S. For an incremental-iterative 
procedure the stress at time t + !1t in both elastic and localized part is de­
composed into the stress at time t and the stress increment 

t+b,.t t A 
0"1,2 =0-1,2 +ua-1,2' (16) 

which can be substituted into eq.(15) 

J 8£1TAo-1 dQ1 + J 8£/ Aa2 dQ2 = 
n, n2 

J 8iITpt+llt dS- J 8 i/ af dQ1 - J 8 £/a~ dQ2 . (17) 

S QI Q2 
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The constitutive equations in linearized format for the elastic part read 

.6..0"1 =De .6..e1 (18) 

with matrix De containing the elastic stiffness moduli, and for the localized 
part 

(19) 

with Di the matrix with the tangential stiffnes moduli. Substitution of 
eqs.(18) and (19) into eq.(17) results in 

J 8 £1 TDe ~£1 dQ1 + J 8 i2 TDi .6..e2 dQ2 = 
QI Q2 

I 8£1 T O"f dQ1 - f 8 £/ O"~ dQ2 . (20) 

Ql Q2 

Now for e1 and e2 the enhanced strain fields according to eqs.(9) and (10) 
can be substituted. Together with eq.(6) and the assumption that the equa­
tion must hold for any admissible field 8a transforms eq.(20) in 

KAa=fe -fi, 

in which 

K = J B1 TDeB1 dQ1 + f B2 TDiB2 dQ2 , 

QI Q2 

fe = I HT pt+Llt dS ' 
s 

f -Tt s-Tt fi = B 1 a 1 dQ1 + B2 u 2 dQ2 . 
Q, Q2 

(21) 

(22) 

(23) 

(24) 

The calculation of Q 1 and Q2 is of crucial importance for the success of the 
method. 

4 lD element 

For the one-dimensional case the normal to the crack plane n is aligned 
with vector m, i.e. n T = m T = ( 1, 0) T. Hence, after the addition of the lo­
calized mode the incremental strains outside and inside the localization 
zone according to eqs.(7) and (8) reduce to 

~E 1 = (1 - a 1) B.6..a (25) 

and 

(26) 

with B = (1/d)[-1, 1] for a two-noded truss element and with a 1 and a2 the 
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Fig. 2. Linear truss element with additional localized mode. 

amplitudes of the localized mode as given in Figure 2. The length of the 
truss element is d and l is the localization band width as explained in sec­
tion 2. The amplitudes a 1 and a 2 can be determined from the assumptions 
of compatibility of deformation and traction continuity over the discontinu­
ity lines (see also Belytschko et al. (1988)). The addition of the localized 
mode to the standard shape functions may not lead to additional nodal dis­
placements. For the two-noded truss element this condition results in 

d B/1a = ( d - /)tic 1 + ltic2 . (27) 

which after use of eqs.(25) and (26) leads to 

a1 =(a~ z)a2 · 
The assumption of traction continuity reads 

tio-1 = l!J.0-2 • 

For the elastic part we have 

tio-1 = Etic1 ' 

(28) 

(29) 

(30) 

with Ethe Young's modulus, and for the localized part of the finite element 
the incremental stress has an elastic component 11£2 and an inelastic, crack 
component tic~ so that 

tic2 = tic2 + tic~ . 

For the elastic part we define 

tia-2 = El1c2 , 

and for the cracked part it is assumed that 
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Fig. 3. Tension bar with truss elements. 

(33) 

with h the softening modulus taken here as a constant equal to h = - f/Eu, 

with ft the tensile strength and Eu the ultimate strain. If we substitute 
eq.(32) and (33) into (31) we obtain 

hE 
/j,.(j2 = -- !1.£2 . (34) 

h+E 
The expressions (30) and (34) can be used in eq.(29) which yields 

E!:J..£1 = (E - _£_)!1.£2 . (35) 
E+h 

Combination of eq.(35) with (25), (26) and (28) gives an explicit expres­
sion for the amplitudes 

(l/(d - l))E 

ai = h + (E + h)(ll(d - l)) C
36

) 

and 

E 

a2 = h + (E + h)(ll(d - l)) 
(37) 

So, a 1 and a2 are functions of softening modulus h. If we have nonlinear 
softening the mode amplitudes changes during local iterations for an accu­
rate stress update. For the truss element the areas Q 1 = (d - l)A and 
Q2 = l A in eqs.(22) and (24) with A the cross-section of the truss. 

A tension bar modelled with truss elements (Figure 3) is analyzed with 
and without the inclusion of localized modes. Two different meshes have 
been used with 20 and 40 truss elements, respectively. The length of the 
bar L = 100 mm and the cross-section A = 1 mm2

. The material parameter 
set is as follows : the Young's modulus E = 10.000 N/mm2

, the tensile 
strength fr = 1 N/mm2 and the ultimate strain Eu = 0.01. One element at 
the left boundary is given a small material imperfection. With standard ele­
ments without the additional mode (Figure 4-top-left) the results are mesh 
dependent. More elements produce a more brittle response. If we use a 
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Fig. 4. Top-left: standard model. Top-right: fracture energy model. 
Bottom-left: embedded discontinuity model. Bottom-right: variation of l. 

fracture energy model results can be made mesh independent (Figure 4-top­
right). For this model the softening modulus is made a function of the ele­
ment size (here fA., with A the area of a finite element) by taking Eu = 0.01 
for 20 elements mesh and Eu = 0.02 for the 40 elements mesh. Use of 
the embedded discontinuity elements with the localization band width l = 2 
mm for the two analyses also solves the problem (Figure 4-bottom-left). 
Variation of l shows that the response is more brittle with l = 1 mm (verti­
cal drop in load at peak load) and more ductile with l = 5 mm (Figure 
4-bottom-right). In section 7 a comparison of the embedded crack model 
and the fracture energy model will be made. 

5 2D element 

For 2D analyses we use a constant strain triangular element to which the lo­
calized mode is added (see Figure 5). The jump in velocity gradient for the 
plane stress situation is (cf. eq.(2)) 
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[

[t xx]] [ mx cos e l 
[tyy] = ii my sine = iiq' 

[y .xy] l11x sine+ my cos e 
(38) 

in which (nx, ny)T =(cos e, sin e)T. Similar to the lD element a dual set of 
stresses a 1 and a 2 and strains £ 1 and £ 2 exist in the single integration point. 
For the elastic part we have 

(39) 

and for the localized part we again assume a decomposition of total strain 
rate into elastic strain rate £e and the crack strain rate ii 

(40) 

To describe fracture the embedded discontinuity concept can be combined 
with the standard constitutive relations for fracture (fixed/rotating crack 
model) or plasticity (Rankine model). 

5.1 Fixed/rotating crack concept 
When incorporating crack stress - crack strain laws it is convenient to use 
the local n, t-coordinate system in a two-dimensional configuration, which 
is aligned with the discontinuity (see Figure 1). This necessitates a trans­
formation between the crack strain rate t~ in the global x, y, z-coordinates 
and the crack strain rate e~ in the local coordinates. The relation between 
local and global strain rates reads 

£~ = Ne~ with e~ = [ e!t '2e2t ]T ' (41) 

where e:t is the mode-I crack normal strain rate, i/r is the mode-II crack 
shear strain rate and N is the transformation matrix given by 

[ 

cos
2 

e - sin e cos e l 
N = sin2 e sine cos e , 

2 sine cos e cos2 e - sin2 e 
(42) 

with e the inclination angle of the normal of the crack n with the x-axis 
(see Figure 1). The angle is determined by the principal stress direction at 
the onset of cracking. An essential feature of the model is that N is fixed 
upon crack formation so that the concept belongs to the class of fixed crack 
concepts. If we let the discontinuity plane rotate with principal stresses a 
so-called rotating discontinuity model can be obtained. 

The relation between the stress rate in the global coordinate system and 
the local stress rate can be derived to be 

· NT· · h · ·nn ·nt ]T 12 = <Yz Wlt t2 = ( lz , lz , (43) 
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Fig. 5. Constant strain triangle with additional localized mode. 

in which i1n is the mode-I normal crack stress rate and i2,t is the mode-II 
shear crack stress rate. To complete the system of equations we need a 
constitutive model for the elastic contribution of the cracked material given 
by 

(44) 

and the relation between the local crack strain rate and the local crack stress 
rate 

i2 =Di~. 
with 

. [h DI= 
0 

(45) 

(46) 

in which his the mode-I softening modulus (h < 0). The shear stiffness in 
the crack is obtained by a multiplication of the elastic shear stiffness µ with 
a shear reduction factor fl. Coupling effects between the two modes are not 
considered. In this model fracture is assumed to be initiated in mode-I and 
mode-II effects enter upon rotation of the principal stresses. Combination 
of eqs.(39)-( 46) gives the total stress-strain relation. 

In the model the unknowns mx, my, a 1 and a 2 need to be determined. 
Again, the assumptions of compatibility of deformation and traction conti­
nuity over the discontinuity lines have been used. Compatibility of defor­
mation is assumed by means of 
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Fig. 6. Tension test on single-notched specimen. 
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Fig. 7. Stress locking - fixed versus rotating concept. 

f i dQ = f i1 dQ1 + f i2 dQ2 ' (47) 

Q QI Q2 

in which the total area of an element Q = Q 1 + Q 2 and i =Ba is the strain 
rate of the underlying element without additional modes. This condition 
coincides with a restriction that follows from the patch test, namely addi­
tional displacements due to extra nonconforming modes must vanish (Tay­
lor et al., 1986). Furthermore, we assume traction continuity in a direction 
perpendicular to the discontinuity. So, if we consider the local n, t­
coordinate system we assume that 

(
[illl1]) = 
[int] 0 . (48) 

A complete calculation of the mode amplitudes is given by Sluys and 
Berends (1998). 
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A 2D tension test on a single-notched specimen is analyzed with the 
embedded discontinuity model. The problem is sketched in Figure 6. The 
material parameter set is taken from Berends et al. (1997) with exponential 
softening: ann = f1exp(-ce~11J, with c = 8.0 and the localization band width 
l = 1.0 mm. A structured mesh is used with a single row of finite elements 
located verticallly under the notch. If we use the fixed concept we observe 
stress locking due to rotation of the stresses and a spurious build up of 
shear stress along the crack (dependent on the shear reduction factor /3). If 
we let the discontinuity rotate with the principal stresses this shear stress 
cannot occur and the crack fully opens at zero stress (see Figure 7). 

5.2 Rankine plasticity concept 
Similar I y a plasticity model can be used for the localized part of the ele­
ment. As in the crack models the stress-strain relation can be written as 

0-2 = De(t2 - t~) . 

For associative plasticity the plastic strain rate vector is defined as 

t~ =An, 

(49) 

(50) 

in which A is a non-negative scalar and ii a vector, representing the magni­
tude and the direction of the plastic flow, respectively. The vector ii is tak­
en as the normal to the yield surface f according to 

- df 
n = da2 . (51) 

The yield function f is a function of stress and the scalar-valued harden­
ing/softening parameter K. Rankine plasticity is defined as 

f(u2,K)=ai-hK,i=l,2 (52) 

where ai are the two principal stresses. For plastic behavior we define 

f(u2 , K) = 0 and j(a2 , K) = 0 (53) 

with the second condition known as the consistency condition. 
The angle e follows from the major principal stress directions. Again, if 

we fix the direction upon initiation of the crack we have a fixed discontinu­
ity model. On the other hand, if we let e rotate after initiation we have a ro­
tating discontinuity model. Again, the jump coefficients a1 and a2 in 
eqs.(7) and (8) are obtained from the compatibility condition and the as­
sumption of stress continuity over the discontinuity line. 

Now, the problem from Figure 6 is analyzed with the Rankine plasticity 
discontinuity model. The influence of the mesh configuration is studied. 
Three different unstructured meshes have been used with 147 (mesh 1), 301 
(mesh 2) and 748 (mesh 3) elements, respectively, to investigate crack 
propagation. The material parameter set is as follows : the Young's modu-
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Fig. 8. Deformed model at u = 0.05 mm and load-displacement diagram. 

lus E = 10000 N/mm2
, Poisson's ratio v = 0.2, the tensile strength ft = 1 

N/mm2
, the ultimate strain Eu = 0.015 (linear softening) and the localiza­

tion band width l = 2 mm. No stress locking occurs with the plasticity 
model combined with the fixed discontinuity concept. In the three unstruc­
tured meshes the proper crack path is found and the results are not depen­
dent on the mesh size as can be seen from the deformed models and load­
displacement curve in Figure 8. 

6 3D element 

For the 3D analyses 4-noded tetrahedron elements have been used. Again, 
a single integration point with a dual set of strains and stresses is assumed. 
Now we define the jump in strains with respect to the local n, t, s-basis. 
Eq.(2) then transforms in 

([enn], [eu], [e 55 ], [ent], [et5 ], [e 511 ]l = ii(m,1' 0, 0, mt, 0, ms?= iiq (54) 

with 

(55) 

The same derivation as for the 2D element is followed. For the fracture 
model the relation between the local crack strain rate ([ e211 

' e2t ' e25
]) and 

the local stress rate ([i2n , i21 
, i2s]) is given by 
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A = cross section 
Q 2 = localized volume 

Fig. 9. Discontinuity plane in 3D element. 

t2 = Die~ . (56) 

with Di = diag[h, f3 µ, f3 µ]. For Rankine plasticity we define 

f(0"2, K) = O'i - hK , i = 1 to 3 (57) 

where CYi are the three principal stresses. 
The compatibility assumption results in 

- - . Q2 
a 1 = ca2 with c = Q

1 
, (58) 

in which Q 1 and Q 2 are volumes set by the orientation of the plane in the 
tetrahedron and the length scale parameter (see Figure 9). With the traction 
continuity condition 

(
[fnn]J 
[int] 

[ins] 

0, (59) 

we complete the set of equations. 
The single-notched specimen is now analyzed in a full 3D set-up. The 

specimen has a thickness of 50 mm and all parameters are as described in 
section 5.2. Three structured meshes have been used with 210 (mesh 1), 
1100 (mesh 2) and 9800 (mesh 3) elements, respectively. The meshes con­
sist of cubes which are patches of 5 tetrahedrons. Only mesh 3 has two 
vertical rows of elements under the notch. For this mesh a small material 
imperfection in one cube (5 tetrahedrons) is applied to trigger crack initia­
tion at one side of the notch. The Rankine plasticity model is used with the 
fixed discontinuity concept. Figure 10 shows the nonuniform opening of 
the crack. Just after initiation of the crack a significant bending effect can 
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Fig. 10. Deformed models at u = 0.06 mm (mesh 1), u = 0.03 mm (mesh 
2) and u = 0.012 mm (mesh 3) and load-displacement diagram. 

be observed (see mesh 3 at u = 0.012 mm). Then the crack forms over the 
height of the specimen (see mesh 2 at u = 0.03 mm) and finally the crack 
fully opens and the deformation pattern becomes symmetric (see mesh 1 at 
u = 0.06 mm). An indirect displacement control technique is used to calcu­
late the post-peak response. From the load-displacement curve it is clear 
that mesh 1 is far too coarse. Therefore a small locking effect in the elastic 
range (stiffness and limit load are too high) occurs. Mesh 2 and 3 are fine 
enough but it should be said that convergence problems avoid the calcula­
tion of the complete post-peak branch for the finest mesh. 

7 Comparison with fracture energy type model 

The embedded crack or embedded discontinuity model can be compared 
with the so-called fracture energy model or crack band model (Pietruszczak 
and Mroz, 1981; Ba.Zant and Oh, 1983; Rots, 1988). In this model the 
crack is smeared over the finite element and the softening modulus is made 
a function of the finite element size. It can be shown that the embedded 
crack model provides exactly the same set of discretized equations as for 
the fracture energy model in the one-dimensional case under a pure mode-I 
loading and with the length scale in the embedded crack model taken equal 
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Fig. 11. Tension bar with different height b (20 elements). 
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Fig. 12. Left: embedded crack model. Right: fracture energy model. 

to the element size (see Figure 4 top-right and Figure 4 bottom-left, with l 
= 5 mm the two pictures are identical). In general, the formulations are dif­
ferent and a first advantage of the embedded model is that the length scale 
parameter l acts as a material parameter and is not dependent on the finite 
elemtent size. Secondly, the orientation of the crack is taken into account 

the embedded crack model and not in the fracture energy model. This 
can be demonstrated by means of the example from Figure 11. A thickness 
increase in the direction of the crack should not affect the stress­
displacement curve. However, if we take the crack band width in the frac­
ture energy model w equal to {A with A the area of a finite element (for 20 
elements and height b = 0.2 mm: w = 1 mm -7 Eu= 0. 01 and for 20 ele­
ments and height b = 0.8 mm : w = 2 mm -7 Eu = 0. 005) we see a clear 
impact of the height increase on the stress-displacement curve (Figure 
12-right) which is not present for the embedded crack model with l = 2 mm 
(Figure 12-left). Thirdly, with the embedded crack model a secondary 
mesh-sensitivity effect of the shear component is solved. Namely, in the 
fracture energy model the shear reduction factor f3 is a constant and not a 
function of the element size (Note that the definition of f3 in Figure 13 is 
slightly different from the definition in eq.(46) and eq.(57), because it sets 
the total shear stress - shear strain relation). As a consequence, the use of a 
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Fig. 13. Tension bar under combined tension/shear. 
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Fig. 14. Left: embedded crack model. Right: fracture energy model. 

finer mesh leads to a smaller cracked area in which the shear stiffness is 
reduced and to mesh dependence. On the other hand, in the embedded 
crack model the area in which the shear stiffness is reduced is set by l and 
is not a function of the element size. In Figure 13 and 14 this mesh sensi­
tivity effect is demonstrated. In the example the bar is loaded in tension 
until a crack occurs in the imperfect element. Then a shear deformation is 
applied while all further horizontal displacements are prevented to exclude 
bending effects in the bar (and crack closure in the imperfect element). 
When f3 is increased the effect vanishes (if f3 = 1.0 there is no effect). This 
example explains why the use of the fracture energy model with very fine 
meshes shows more stress locking than with coarse meshes (when a fixed 
smeared crack concept is used). In the embedded discontinuity model 
stress locking still exists (see Figure 7), but it is not dependent on the ele­
ment size. 
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