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Abstract 
This paper reports on the simulation of localized failure by means of 
the finite element method (FEM). The quality of results is controlled 
by estimating the error and adapting the mesh accordingly. An incre­
mental error measure applicable to elastoplastic problems is employed. 
It forms the basis for adaptive mesh refinement (AMR). For the gen­
eration of the mesh, the advancing front technique is employed. This 
technique is extended to permit an alignment of the mesh, which may 
be important in case of localization. Attempting to preserve the ob­
jectivity of the FE results for this case, the fictitious crack concept is 
employed. Its influence on the adaptive calculation scheme, including 
the restart of the computation at a certain load level, is discussed. The 
transfer of variables on the basis of the proposed calculation strategy 
is illustrated by means of two example problems. The impact of differ­
ent prescribed error thresholds on the ultimate load is discussed in the 
third example. 
Key words: localization, error estimation, concrete, adaptive FEM, 
transfer of variables 
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1 Introduction 

Local failure, such as cracking of concrete, is characterized by nar­
row regions at which further deformations tend to concentrate. For 
the numerical simulation of localization within the framework of the 
FEM, the question of the objectivity of the results is a topic of ongoing 
research. Several concepts were developed in the past to achieve objec­
tive FE simulations of localization in real-life structures. The fictitious 
crack concept has proved to be reasonably well suited for this kind of 
simulations. The influence of changing the size of the element on the 
FE results is considerably reduced. Nevertheless, the direction of the 
crack propagation and, consequently, the load-bearing capacity of the 
structure are not entirely independent of the discretization (see, e.g., 
(Huemer et al. 1998) )1

. 

Further improvement of the numerical results is accomplished by 
remeshing techniques in the context of AMR. It is controlled either by 
element enrichment criteria (see e.g. (Deb et al. 1996) ), aiming at a 
high mesh density in the localization area, or by error estimation. The 
latter form requires the definition of an error estimator. In view of the 
ill-posedness of the underlying mathematical problem, heuristic consid­
erations appear to be an acceptable basis for the choice of a suitable 
error extimator. The background of pertinent estimators are modified 
versions of the smoothening technique proposed by Zienkiewicz and 
Zhu (1987) for elastic problems, see, e.g., (Perie et al. 1994). 

In this paper an error estimator developed for elastoplastic mate­
rial behavior is extended to application to localization problems. For 
a detailed description of the employed smoothening technique and the 
design of the new mesh the reader is referred to (Lackner and Mang 
1998). The remainder of the paper is organized as follows: Chap­
ter 2 deals with the modelling of localization (in form of cracks) in 
the context of the FEM. The employed adaptive strategy, containing 
the definition of the error estimator, the calculation strategy and the 
transfer of state variables from the old to the new mesh, is described in 
Chapter 3. Chapter 4 contains numerical examples showing the impact 
of the transfer of state variables on the load-bearing behavior and the 
simulation of localized failure of a cylinder splitting test. Concluding 
remarks are made in Chapter 5. 

1This dependence should not be confused with the classical mesh dependence 
of FE results which, however, must lead to the correct result in the practically 
unattainable "limit of finite discretizations". 
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2 Modelling of cracks within the framework of the FEM 

2.1 Material model for plain concrete 
For the description of the material response of concrete, a multi-surface 
plasticity model is employed. It requires the definition of a space of ad­
missible stress states, given bylE={a:fk(a, ak)~O for k=l, .. N}, where 
N is the number of yield surfaces fk(u, ak), with a representing the 
stress tensor and ak standing for a strain-like internal variable asso­
ciated with the k-th yield surface. For the simulation of cracks the 
maximum principal stress (Rankine) criterion is used: 

where qnK is a stress-like internal variable, PnK is a projection matrix, 
PRK is a projection vector, and !tu denotes the uniaxial tensile strength. 
The ductile behavior of concrete subjected to compressive loading is 
described by the Drucker-Prager plasticity model, 

with f cy representing the uniaxial elastic limit. qDP, Pnp and PDP are 
analogous to qRK, PnK and PRK· For the definition of the employed 
projection matrices and vectors, see, e.g., (Feenstra 1993) for the Rank­
ine and (Lackner 1995) for the Drucker-Prager criterion. The respective 
evolutions of the yield strength during plastic loading are illustrated in 
Figure 1. They are derived on the basis of experimental observations 
(see (Van Vliet and Van Mier 1996), (Jansen and Shah 1997)). Both 
relations are calibrated according to the fictitious crack concept, which 
will be described in the following chapter. 

2.2 Finite element representation; fictitious crack concept 
The FEM is based on the algebraic form of the weak formulation of 
the underlying boundary value problem. In the case of cracking, the 
diplacement field exhibits jumps, [u], in the analytical solution. To 
preserve the continuity of the displacement field in the FE formulation 
the discrete crack is simulated by plastic strains distributed over a finite 
width. Three different ways of distribution have been proposed in the 
literature: 

• a continuous distribution of plastic strains controlled by a nonlocal 
theory of plasticity (De Borst and Miihlhaus 1992), 

• an element-embedded representation of cracks by defining the zone of 
plastic evolution within the finite element (Sluys and Berends 1998), 
and 
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Fig. 1. Material model for concrete: hardening/ softening re­
lation for (a) compressive and (b) tensile loading. Both 
relations are calibrated according to the fictitious crack 
concept (Ge, Gf, c: material parameters, le: character­
istic element size, anP,u, O'.RK,u: calibration parameters) 

• the fictitious crack concept using the entire element domain for the 
representation of the discrete crack (Oliver 1989). 

Each of these approaches requires a length parameter for the definition 
of the plastic zone. It is computed according to the following condition: 

The released fracture energy of the FE representation, Gj =ft { fvcr aT €,P 

dV}dT, must be equal to the released fracture energy obtained from a 
discrete crack, G1=ft { fAcr aT[u]dA}dT. 

Defining the characteristic length le as the ratio of the crack volume 
in the representation, vcr' and the area of the discrete crack surface, 
Acr, i.e., as 

(3) 

the aforementioned condition yields 

(4) 

where Xn denotes the local coordinate normal to the crack. In Equa­
tion ( 4), le represents the width of the plastic zone employed for the 
simulation of the crack. For the case of the fictitious crack concept, le 
is related to the element size. There are several ways of computing the 
characteristic length le as a function of the element size. They may be 
divided into two main groups: 
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• constant le, 
• variable le, depending on the state of loading (e.g., on the direction 

of the relevant principal plastic strain). 

Results from a comparative study of altogether five different approaches 
of determination of le were reported in (H uemer et al. 1998). The topic 
of this inv~stigation was a bar under tensile loading. It was focussed on 
the artificial constraint of the deformation field caused by the FE rep­
resentation of the crack. It was concluded that the approach proposed 
by Oliver (1989), which employs a singular band of finite elements for 
the definition of the crack, leads to the smallest constraint of this type. 
This approach is used herein. 

The evaluation of the characteristic length le according to (Oliver 
1989) is based on the crack orientation. Jumps of le occur in case of 
cracks rotating over node points of the element. Figure 2 illustrates 
this fact for a given element shape with varied crack orientation. Such 
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Fig. 2. Characteristic length le according to (Oliver 1989): 
dependence on the angle {) for a rotating crack within 
a given element geometry 

discontinuities reduce the robustness of the implicit time-integration 
scheme. Hence, an explicit manner of defining the layout of the singular 
band is employed herein: le becomes a function of the plastic strains of 
the previous increment. 

The rotation of the cracks causes changes of the characteristic length. 
The respective update of the characteristic length at the beginning of 
the load increment n+l, i.e., at t=tn, results in changes in the softening 
relations. As shown in Figure 3, such a change yields a change in the 
material resistance q. In order to avoid jumps in q, a shift of the inter­
nal variable is performed. It is equal to an+l (tn)-an(tn)· As illustrated 
in Figure 3, the evolution of a contains jumps caused by the explicit 
update of le. Hence, an(tn)IL:r=I ilai(lc,i)· The right-hand side of 
this inequality must be taken into account when computing quantities 
depending on the evolution of a. 
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Fig. 3. Shift of the internal variable a in consequence of the 
variability of le 

3 Adaptive FEM 

This chapter contains a brief description of the proposed error esti­
mator and the solution strategy. Special attention will be paid to the 
transfer of variables from the old to the new mesh, which is required 
as a consequence of the employed solution strategy. 

3.1 Error estimator for elastoplasticity 
error estimator used herein is obtained by integration of the rate 

of an error measure over the respective time interval. The rates of the 
absolute error e and of the quantity uh to which e is related are defined 
by: 

3 

(~2 ) =Iv-~ l(j7i - o-~jl [lif;* - ifjhl + lif;* - iftl] dV 
i,J=l 

(5) 

3 

(uh,2
) = 1 l(jtl [liftl + lif;hl] dV · 

v i,j=l 

(6) 

The quantities containing the superscript "h" are obtained from the 
calculation. The quantities containing the superscript "*" follow 

from post-processing based on a stress-smoothening technique proposed 
by Zienkiewicz and Zhu (1987), for details see (Lackner and Mang 
1998). The employed relative incremental global error for the (n+l)­
st increment, which is associated with the time interval [tn, tn+l], is 
determined as follows: 

2 ftt;:+I ( ~2)dt 
T/ = ftt;:+1 ( uh,2)dt . 

(7) 
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The mesh will only be refined after the error T/ exceeds a user-prescribed 
threshold value fJ. The design of the new mesh is based on the advancing 
front technique aiming at an equal distribution of the local (element) 
error. 

3.2 Solution strategy 
According to the definition of the proposed incremental error estimator 
(Equation (7)) recomputations are restricted to the increments in which 
the error criterion has failed and, hence, the mesh was refined. After 
such a recomputation the analysis is continued through continuation 
of the load history. This approach requires the evaluation of initial 
quantities (displacements, stresses, internal variables, etc.) for the new 
mesh. Therefore, a transfer scheme is employed which will be described 
in detail in the following subchapter. 

3.3 Transfer of variables 
The transfer of variables provides the initial condition for the restart 
of the computation after mesh refinement. The left part of Table 1 
contains the field variables associated with the old mesh. They were 
obtained from the FE analysis and from error estimation, respectively. 
The right part of Table 1 contains the required quantities associated 
with the new mesh. Whereas u and a have to be transferred (a are 

Table 1. List of known quantities for the old mesh and re­
quired initial quantities for the new mesh 

old mesh 

displacements U~zd 
stresses a~ld (or a;ld) 
plastic strains c:~ld 
internal variables O'.otd ) 

> 

new mesh 

{ 

displacements Unew 
plastic strains c~ew 
internal variables O'.new 

scaled internal variables related to a constant reference length le, see 
Section 3.3.3), only one of the two tensors a and c;P is required for the 
restart. The missing tensor is computed from the constitutive law, 

(A) transfer of c;P-+ G'new=C(c:(unew)-c:~ew), and 
(B) transfer of a-+ c~ew=e(Unew)-C- 1 anew for O'.new#O, else c;P=O. 

In general, the transferred pair of fields, ( Unew ,c~ew) Or ( Unew ,U new), 
does not yield an equilibrated state, i.e., F~~~ - F~~~ (a new) # 0, where 
Fext and Fint denote the vector of external and internal forces, respec­
tively. Hence, a global equilibrium iteration must be performed. The 
rate of convergence of this iteration is improved considerably if the 
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stress field is transferred (type (B) of transfer) because it is directly 
related to the vector of internal forces. The transfer of the two kine­
matic quantities u and gP, however, as it is the case with the transfer 
type (A), may lead to stress states which are far away from equilibrium. 
This results in a deterioration of the convergence behavior. In the fol­
lowing, the individual steps of transfer type (B), used in this work, will 
be discussed in detail. 

3.3.1 Transfer of stresses (a) 
In this work the recovered stresses u*, computed during error estima­
tion, are transferred to the new mesh. The stresses at the integration 
points of the new mesh are obtained by averaging the stresses from the 
old mesh over the proportionate areas of these points. The final values 
of the new stresses u new are obtained by an additional recovery of the 
transferred stresses within the new mesh. 

3.3.2 Transfer of displacements (u) 
The displacement field for the new mesh is obtained by interpolation 
using the element shape functions. The transferred displacements do 
not match the stresses obtained from the transfer from the old to the 
new mesh. In order to eliminate this deficiency, a zero load step is 
performed, assuming the plastic fl.ow to be frozen. The so-obtained 
displacements and stresses are referred to as ii and er, respectively. 

3.3.3 Transfer of internal variables (a) 
Two strategies were developed. The second is a consequence drawn 
from the deficiencies of the first one. 

3.3.3.l Original strategy 
To preserve the value of q during this transfer, the internal variable a is 
scaled to an arbitrary reference length le (see Figure 4) before perform­
ing the transfer. For the transfer of ak the same averaging technique 
as used for the transfer of stresses is employed. For an increase of the 
plastic zone this transfer yields a reduction of the value of the internal 
variable ak, resulting in an artificial increase of the elastic material do­
main (see (Huemer et al. 1998)). This deficiency was the motivation 
for an improvement of the original strategy. 

3.3.3.2 Improved strategy 
This strategy is based on computing the internal variable from the 
respective yield condition, i.e., from fk(ir, ak)=O. In regions where 
unloading was encountered, characterized by fk<O, iik is determined 
as described in Subsection 3.3.3.l. 
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Fig. 4. Transfer of internal variables: introduction of a scaled 
~nternal variable a related to a constant reference length 
le 

4 Numerical examples 

a 

The performance of the presented adaptive strategy is illustrated by 
means of three numerical examples. The emphasis of the first (bar 
under tension) and the second (L-shaped domain) example lies on the 
transfer of state variables from the old to the new mesh. For these 
examples the refinement is initiated after a constant time interval. The 
influence of restarting the computation at a certain point of time is in­
vestigated on the basis ·of the load-displacement diagram. Both strate­
gies for the transfer of internal variables will be used. The third example 
(cylinder splitting test) illustrates the performance of adaptive analy­
sis for different values of the user-prescribed error threshold, fj. Their 
influence on the ultimate load will be discussed. 

4.1 Bar under tension 
The academic example of a bar under tensile loading is chosen to il­
lustrate the influence of the transfer scheme for the internal variable 
a on the load-bearing behavior. The geometric dimensions and the 
material properties are given in Figure 5. The stress-strain diagram in 
the softening regime is assumed as bilinear. It is calibrated according 
to the fictitious crack concept. The simulation is carried out under 
displacement control. The mesh is adapted after equal intervals of the 
prescribed displacement (6.u=0.0005 mm). No error estimation is per­
formed for this example. The chosen meshes and their sequence of 
application are illustrated in Figure 6. The purpose of this sequence 
is to simulate the change of the size of the plastic zone. The onset 
of localization is triggered by the tensile strength !tu in the elements 
containing the center of the bar (dark-shaded elements Figure 6). 

Figure 6 contains the load-displacement curves for the two transfer 
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material properties: 

E=lOOOO N/mm2 

v=O.l 

ftu=l N/mm2 

G1=0.00l Nmm/mm2 

Fig. 5. Bar under tension: geometric dimensions and mate­
rial properties 

strategies. For the original transfer strategy the spreading of the plastic 
zone in the context of coarsening of the mesh leads to a stiffening of 
the structural response. The improved strategy gives the correct load­
displacement relation. 
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Fig. 6. Bar under tension: load-displacement diagram (with 
the respective FE meshes) for (a) the original strategy 
and (b) the improved strategy for the transfer of vari­
ables (change of mesh after Llu=0.0005 mm) 

4.2 L-shaped domain 
In contrast to the first example, the crack initiation is determined by 
the shape of the plate. Hence, no triggering of the onset of localization 
is required. The dimensions of the plate and the material properties are 
given in Figure 7. The hardening/ softening relation is chosen according 
to Subchapter 2.1. The mesh is refined at displacement intervals of 
Ll u=O. 2 mm. Meshing is controlled by the local (element) error aimed 
at a constant number of elements, me=250. In addition to the adaptive 
calculation (referred to as multi-mesh calculation) the entire analysis is 
repeated with each one of the five meshes used in the adaptive analysis. 
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Figure 8 contains the obtained load-displacement curves. Again, 
artificial stiffening of the response in the softening regime is observed 
in case of the original strategy for the transfer of the internal variables 
(see Figure 8(a)). As regards the improved strategy for this transfer, 
this deficiency is almost eliminated (see Figure 8(b)). The relatively 
large differences between the curves obtained from single-mesh calcu­
lations indicate the limits of the fictitious crack concept and emphasize 
the relevance of adaptive analysis. These differences reflect the design 

500 mm u 
;;.I 

material properties: 

E=lOOOO N/mm2 

v=0.2 

ftu=l N/mm2 

G1=0.l Nmm/mm2 

Fig. 7. L-shaped domain: geometric dimensions and material 
properties 

of the meshes at different loading stages. These meshes are character­
ized by a refinement in the immediate vicinity of the crack tip and a 
coarsening of the mesh along the remaining part of the crack line. 

4.3 Cylinder splitting test 
The dimensions of the concrete cylinder and of the loading platens are 
shown in Figure 9 (ASCE/ ACI Committee 447 1994). The material 
properties are given by: E=26200 N/mm2

, v=0.2, fcu=30.3 N/mm2 , 

ftu=3.0 N/mm2
, G1=0.l Nmm/mm2 and Gc=5.25 Nmm/mm2 for the 

concrete specimen, and E=11030 N/mm2 and v=0.2 for the loading 
platens made of plywood. 

Theoretical investigations concerning cylinder splitting tests were 
reported in (Bonzel 1964a). The tensile splitting strength of concrete, 
ftsu, was determined from the formula 

2Pu 
ftsu = 1f d l , (8) 

where Pu is the ultimate load and d and l are the diameter and the 
length of the concrete cylinder. Setting ftsu= ftu/0.75 according to 
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Fig. 8. L-shaped domain: load-displacement diagrams (with 
respective FE meshes) from adaptive (multi-mesh) and 
single-mesh calculations: (a) original strategy and and 
(b) improved strategy for the transfer of the internal 
variables 

(Bonzel 1964b), the ultimate load for the considered specimen is es­
timated as 

~ = ftu 7rdl = 3.0 7f • 152.4 · 304.8 = 292 kN . 
1L 0.75 2 0.75 2 

(9) 

For the estimation of the error only the concrete specimen is con­
sidered. 

The transfer of the internal variables is performed on the basis of 
the improved strategy. 

Figure 10 shows error intervals in the form of grey-shaded columns. 
The upper bound of such an interval is the user-specified error tolerance, 
i]. The lower bound is the target error 7]* needed for the design of 
the new mesh. Herein it is chosen as 0.9i]. The ultimate load2 Pu 
and the corresponding error 77 are plotted for different prescribed error 
thresholds, i}, listed in the second column of the table in Figure 10. For 
almost all simulations the obtained value of the error lies within the 
desired error interval [ 17*, fJ]. Convergence of the ultimate load Pu for 
decreasing values of fJ is observed. 

2Because of symmetry of the system and the loading conditions, only one quarter 
of the cylinder was discretized. Hence, the obtained loads must be multiplied by 2 
to obtain the ultimate load of the specimen. 
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I E152.4~ I 

concrete 
cylinder 

Fig. 9. Cylinder splitting test: dimensions (in [mm]) of the 
concrete specimen and of the loading platens made of 
plywood 

The table in Figure 10 contains the values chosen for the error 
threshold and the target error, and the values obtained for the ulti­
mate load and for the corresponding error together with the number of 
meshes, nm, designed in the course of each simulation. 

155 

150 

145 

140 

135 

130 

Pu [kN] fj ry* Pu rJ 
{%] [%) [kN] [%] 

• 20.00 18.00 153.3 18.51 2 
Ill 17.50 15.75 154.1 15.62 2 
.A 15.00 13.50 145.4 14.55 2 
T 12.50 11.25 141.8 10.80 3 
0 10.00 9.00 137.5 8.12 4 
0 7.50 6.75 138.5 7.41 4 
A 5.00 4.50 131.9 4.98 5 
'i1 2.50 2.25 130.0 2.43 7 

ry* ... target error for 
mesh refinement 

0 5 10 15 20 (ry*=0.9fj) 

Fig. 10. Cylinder splitting test: ultimate load Pu and cor­
responding value of the error rJ for different values of 
fj. Number of meshes generated during the adaptive 
calculation: nm. 
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(a) (b) (c) 

Fig. 11. Cylinder splitting test: FE mesh used at the ulti­
mate load for (a) 1]=12.5% (67 elements), (b) 1]=7.5% 
(270 elements) and ( c) 1]=2.5% (2193 elements) 

Figure 11 shows the meshes used at the time instant corresponding 
to the ultimate load for three different values of the prescribed error 
tolerance. Obviously, the mesh density increases with decreasing values 
of i]. The discretization, designed on the basis of the employed error 
estimator, follows the failure mode at the vicinity of the loading platen. 

5 Concluding remarks 

This paper has dealt with the simulation of localized failure of plain 
concrete. For the purpose of controlling the error of the results, an 
adaptive calculation scheme was employed in the context of the FEM. 
The main items may be summarized as follows: 

• As for the simulation of cracks within the framework of the FEM, 
the fictitious crack concept was employed. The characteristic length 
was taken as variable, computed according to (Oliver 1989). 

• As for the error estimation, an incremental error measure applicable 
to elastoplastic material behavior was used. 

• With regards to the solution strategy, the calculation was restarted 
at the load level at which the mesh was adapted. The transfer of the 
history variables was performed with the help of the constitutive rela­
tions, respectively, using the transferred stresses and displacements. 

• The application of the proposed calculation strategy to the simulation 
of a cylinder splitting test indicated the convergence of the results for 
decreasing values of the user-prescribed error tolerance. 
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