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Abstract

In lattice-type models the material is discretized as a network of linear
elements. Fracture can be simulated by either removing the elements, or
through a step-wise reduction of the stiffness. For fracture this simple and
straightforward technique was re-introduced in theoretical physics in the late
1980s. Main aspects of such models are the discretization, i.e. the selection of
the type of linear elements and their connectivity, the incorporation of the
(statistical) information from the material structure and the selected fracture
criterion. An advantage of the lattice models is their inherent simplicity, and in
many cases, by omitting numerical iteration loops, a seemingly precise approx-
imation of pattern growth that matches well with experimental observations
can be obtained. The models can also be adapted for analyzing moisture flow,
breakdown of electrical networks, and also combinations of these.

Key words: Lattice model, network geometry, material structure, 3 level
approach, fracture law,

1 Intreduction

Fracture is a timely research topic. After the development of linear elastic and
plastic crack models in the past decades, many researchers are focusing on
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non-linear materials like concrete, rock, ceramics and other composites. Some
of these materials exhibit elastic-brittle behaviour at a local level (i.e. grain
level or meso-level), whereas at a global scale (macroscopically) a so-called
softening behaviour is observed. The development of the various models goes
often hand in hand with the development of new advanced testing techniques,
such as the emergence of closed-loop test methods, even for so-called class-II
materials that exhibit snap-back phenomena. By starting the analysis from the
structure of the material under consideration, crack growth processes can be
simulated in great detail. The disadvantage of such meso- (or sometimes even
micro-) scale approaches is the enormous computational effort needed, and,
moreover, the experimental determination of the local properties of the
materials is not always straightforward. Nevertheless, the meso-level models
seem a simple and promising tool for materials engineering, and interest has
increased over the years.

The first to develop a meso-level model for concrete were Roelfstra et
al. in 1985, rapidly followed by many others, e.g. Zubelewicz & Bazant
(1987), Stankowski (1990), Bazant, Tabbara, et al. (1990), Berg & Svensson
(1991), Vonk (1992), Schlangen & Van Mier (1992), Beranek & Hobbelman
(1994), Wang (1994) and many others. All these models have in common that
in some way the micro- or meso-structure of the material is incorporated in the
analysis. Underlying all these models are either the finite element method, the
finite difference method or molecular dynamics. Moreover, in any of these
models a local fracture criterion must be set, and differences are met there as
well. Some models are based on assumptions from the classical strength of
materials theory, plasticity theory, linear elastic fracture mechanics, non-linear
fracture mechanics, or any other energy concept.

Quite promising for micro- and meso-level analysis of material
behaviour is the lattice approach, or network approach. These models are
certainly not new, but with the development of powerful digital computers, the
technique has regained interest, and due to its flexibility in incorporating the
structure of the material under consideration makes it a very powerful tool
indeed, see Herrmann et al. (1989), Schorn & Rode (1989), Jirdsek & Bazant
(1995), Schlangen (1993) and Vervuurt (1997). Very important is also that the
model is based on simple linear elements from which the lattice is constructed.
These elements have very simple local behaviour laws, which makes the
model readily accessible for everyone. In particular the combination of lattice
modelling with experiments has proven to be very powerful, not in the least
place because realistic crack geometries are generated which can be compared
to experimental crack geometries (see Van Mier (1997)), but also because we
should prevent that a virtual fracture world develops. Note that geometry is
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one of the few experimental parameters that is not affected by theoretical
biases. In this overview the elements making up a lattice model are presented.
Some present day achievements and directions for the future will be discussed.
No explicit examples are shown, but then, ideas prevail above knowledge.

2 Constructing the lattice

Constructing a lattice or network starts from a grid of nodal points in a plane
(2D) or in space (3D). The grid points can be used directly to define the
mechanical (or any other physical) relationships between either neighbouring
or more distantly located points. The grid can be set up from simple geometric
rules, with no direct relationship between the geometry of the grid and the
material that is to be analyzed. Alternatively, one can try to incorporate the
structure of the material under consideration directly into the lattice. In the
present paper we will limit ourselves to 2D lattices. In principle the discussion
can be extended to three-dimensional cases, but this is subject of future study
and development.

(a) ®

© @

Fig.1. Basic geometrical grids with threefold (a), fourfold (b), fivefold (c); or
sixfold (d) symmetry.

2.1 Geometrical constructs in a plane

In Figure 1, four examples of basic plane grid patterns are plotted. The smallest
basic grid cell is a triangle (Figure 1a). Using equilateral triangles, a plane can
be filled completely, and no gaps exists. The same can be done with a grid
constructed from square cells (Figure 1b), or hexagonal cells (like a
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honeycomb, as shown in Figure 1d). Fivefold symmetry is more difficult, and
gaps between the basic grid cells will appear. In 1973 Penrose constructed a
plane tiling with fivefold symmetry (see for example in Penrose (1989)), that
was later found in nature as well (and which is now known as a quasi-crystal).
This so-called Penrose tiling is depicted in Figure 1c. Note that in this latter
example, a mixture of four-noded grid boxes is used.

At the atomic level, these grids can be used immediately, viz. atoms are
often found at regularly spaced intervals. When modelling materials at higher
dimensional levels, for example the micro- or macro-level, additional steps
must be taken as will be explained in section 3.

Next to the above sketched regular grids, iregular grids can be
constructed. One of the methods is based on a Voronoi construction, and was
developed by Mourkazel & Herrmann (1992). Starting from a regular grid, for
example a regular square grid, a point is selected at random in each of the grid
cells. Next, the three points that are closest to one another are connected. Or
stated differently, dependency relations are prescribed for the nodes that are
most closely spaced. In Figure 2, the principle of constructing a network with
random interval length is depicted. Because in the mechanical analysis, the
interval length should not be too close to zero, a node can be selected in a sub-
box which is defined inside a grid cell. By varying the size of the sub-box, one
can change the randomness, see for example in Vervuurt (1997) and Chiaia et
al. (1997).

!

sub-box

Fig. 2 Construction of a triangular lattice with random interval length.

In the above networks, always a node is connected to all its closest neighbours.
A different option is not to limit the connectivity to the closest nodes, but to
specify that » connections are made to more distant nodes in the grid as well.
Examples of such networks can be found in literature, e.g. Burt & Dougill
(1977) and Berg & Svensson (1991).
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2.2 Dependency relations

In the following, the discussion is limited to mechanical analysis. In describing
the dependency relations in a lattice, one can consider the grid points as
lumped material points, or, as an alternative, one might consider the linear
elements as rigid (non-deformable) elements. According to the first point of
view, which is shown schematically in Figure 4a, the deformations « and v, as
well as the in-plane rotation ¢ between two grid points i and j, must be related
to forces and bending moments. In the most general case we must consider the
relation between normal force N and normal displacements u; and u;, between
the shear force D and the shear displacements v; and v; as well as the nodal
rotations @; and @;, and the relation between bending moments and the shear
displacements and nodal rotations, as explained earlier by, among others,
Herrmann et al. (1989), and Schlangen & Garboczi (1997). They are all well
known relations from linear elasticity, and the main parameters are the cross-
sectional area A of the element connecting two grid points, and the moment of
inertia /. Next to that the grid spacing [ is of importance as it defines the length
of the elements. Not necessarily all these relations are incorporated in the
model. If only the normal force-normal displacement relation is used, a so-
called central force lattice is constructed. Force and displacement are coupled
through a spring constant K = EA/I, where E is the Young's modulus of the
material. In fact, the lattice resembles a truss, where rotations in the nodes can
occur freely. Such models are known for a long time indeed. Hrennikoff
(1941) used them to estimate stresses in problems in elasticity.

@ : (®)

Fig. 3 Lattice analysis based on relations between nodes (a) and an alternative
where the relation between the linear elements is considered (b).

The disadvantage of such models is that the Poisson's ratio is constant and
equal to 1/3. When shear forces and/or bending moments are incorporated in
the formulation, a Poisson's ratio smaller than 1/3 is obtained, depending on the
cross-section area, the shape and the length of the linear elements (beams in
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this case). For further information, the reader is referred to Schlangen &
Garboczi (1997) and Vervuurt (1997).

In the above view (Figure 3a), the relation between the grid points is
established through linear elasticity. One might also assume that the connecting
elements are rigid, and that all processes take place in the grid points, as was
done by Heyden (1996). Heyden looked to the structure of cellulose fibre
materials. However, one might consider calcium silicate hydrates at a micro-
scale, or SIFCON (Slurry Infiltrated Fibre Concrete) at a larger scale, as well.
Fibre interactions occur at the locations where the fibres meet. These are not
necessarily the outer ends of the fibres. Instead, one or more spring-type
connections might exists between two fibres at any location along its length as
depicted in Figure 3b. The spring connection may consist of a two-dimensional
spring in combination with a rotational spring, at least when the model is
limited to two dimensions.

3 Incorporating information of the material structure

As mentioned, the geometrical constructs of section 2.1 resemble real material
structures only at the atomic level. The atoms are located in the grid points
(nodes), and the direct connections are established through stress-separation
relationships, see for example Kelly & MacMillan (1986). It is common
practice to simplify the force-separation relation to a sine function, for

example,

o :Gmax-Sin[l;(x'lo}]zJ"YI—E"Sin[%(x'lO)] ¢5)
0

where 7 is the surface energy, and x is the coordinate defining the separation
between the two nodes. [y is the atomic spacing where the system is in
equilibrium. When the spacing / (which is equal to the lattice spacing) becomes
too small, repulsion occurs, whereas under extension, after an increase of the
bond stress, softening behaviour is observed. This softening behaviour must
not be confused with softening of concrete at the macro-level. The stress-
separation law is depicted in Figure 4. Eq. (1) forms a fracture law at the
atomic level, but for concrete, rock and many other materials we are interested
in modelling the fracture behaviour at a larger scale. The geometrical
constructs must then be transformed in order to take into account the structure
of the material at the level of observation.
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Fig. 4 Stress-separation law for atomic bond.

‘When the relationship between the rigid linear elements in a lattice is described
at their contact points, the elements are the fibres and through springs the bond
between the fibres and some type of matrix material is described. At a very
small level, for example the fibrous structure of CSH in hardened cement
paste, one might assume that Van der Waals forces act at the cross-points
between the fibres. As the distance between the fibres is regulated by the
amount of water in the material, the RH might be the controlling factor in the
attraction force between the fibres.

Now let us return to the structure of the material when the model with
bending beams, bars or springs is used. The effect of the material structure can
be incorporated in a number of ways. First of all, one can prescribe random
material properties (i.e. Young's modulus E or breaking threshold f; (or local
strength) of the lattice elements, or simply in the presence of bonds). For
example, a Gaussian or Weibull distribution can be used for the breaking
threshold, see Van Mier et al. (1997). The second approach could be called
element distortion method. Starting from a regular grid (Figure 1), elements are
distorted according to some geometrical rule. This method was for example
applied by Vonk (1993) and Argyris et al. (1994). In both cases, hexagons
were distorted to resemble irregularly shaped grains in the material. The third
option is to identify preferential stress flow directions in a real material, for
example dominant grain contacts. The lattice elements are then placed along
these lines. This was done, for instance, by Beranek & Hobbelman (1994), for
modelling clay fired bricks and concrete as an assemblage of spheres. The
fourth manner is to map a computer generated structure of the material on top
of the lattice, and to identify different material properties for lattice elements
falling in the distinct phases. Computer generated assemblages of spheres were
for example made by Stroeven & Stroeven (1996) and Schlangen & Van Mier
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(1992). Finally, one might map a digital image of a real material structure on
the lattice. This was done by Schlangen (1995). After the mapping, again
different properties are assigned to elements falling in different phases of the
material. Some researchers claim that the two last mentioned methods do not
include the real load-carrying mechanisms in particle composites like concrete,
e.g. see the criticism by Beranek & Hobbelman (1994). They claim that, at
least in two-dimensional computations, the idea of rigid particles 'swimming' in
a soup of matrix material is not realistic as direct particle contacts are omitted
from such models. For compression, this point certainly makes sense, for
tension however, this seems of lesser importance as will be addressed in the
next section. The essential information of the lattice beams is reduced to the
Young's modulus and a breaking threshold for all the different phases in the
material. Porosity can simply be modelled by randomly omitting lattice
elements as was done, among others, by Arslan (1995). The fineness of the
lattice, i.e. the grid length, then determines the minimum pore size.

4 Fracture laws

After the lattice has been constructed, and the different material phases have
been incorporated in the model, a law for fracturing the elements must be
defined. At the atomic level, a stress-separation law must be implemented, as
was already touched upon in section 3. At the micro- and meso-level different
models must be specified. One might decide to compute the behaviour laws at
these levels from atomic level simulations, but in view of the complex
microstructures, the many unknowns and the capacity of curmrent day digital
computers this seems an impossible task. Therefore one must necessarily rely
on phenomenological laws. A number of possibilities exist; most of them are
related to existing macroscopic fracture laws such as the Rankine, Von Mises,
Mohr-Coulomb criterion or other. The simplest case is to use a central force
lattice with free rotations in the beams, and to specify a brittle breaking
threshold under tension. In that case the criterion resembles the well known
Rankine criterion. Thus fracture is governed by normal stress only

N
G = 7" < f @
where A is the cross-sectional area of the lattice element, and f£; is the tensile
strength of the material. This tensile strength is for the material phase in which
the particular lattice element is located. The easiest way to include this simple

brittle breaking law in the computation is to remove the element from the mesh
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as soon as the breaking threshold is exceeded. Crack growth is then simulated
as the result of subsequent removals. The advantage is that the stress
redistributions due to crack growth occur in a very controlled manner. Note,
however, that the results obtained in this manner depend on the size of the
mesh, a problem that remains to be solved.

The elastic brittle fracture law is depicted in Figure 5a. The important
material parameters are the Young's modulus and the breaking threshold. As
an alternative, one might consider to include plasticity (Figure 5b) or even
softening at the level of the lattice elements (Figure 5c). Then of course an
iterative approach is needed, although a step-wise reduction of the stiffness
with constant breaking threshold in the case of plasticity, or a decreasing
breaking threshold in the case of softening, may preserve the attractiveness of
the step-wise approach. These latter simplifications are depicted as dashed
lines in Figure 5b and Sc.

stress stress

(@)

B,
>

strain strain

Fig. 5 Different type of material behaviour that can be assumed at the level of
the lattice elements: (a) elastic-purely brittle; (b) elasto-plastic; and (c)
elastic-softening.

A more complex failure law can be used when beam elements are applied. In
that case, one might consider a Tresca/Von Mises or Mohr-Coulomb type of
fracture law. The first case was considered by Herrmann et al. (1989), and
subsequently used by Schlangen & Van Mier (1992), Schlangen (1993) and
Vervuurt (1997). An effective beam stress is computed with contributions from
the normal load and bending moments following

o (Ml M mas

t e g ®)

i
A W

Cef =
where W is the section modulus, and M; and M; the bending moments in the

nodes [ and j respectively. For situations where the tensile component
dominates, this criterion seems to work quite well. However, for compressive
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failure problems are met. In that case a Mohr-Coulomb type failure law seems
to make more sense, as was demonstrated first by Beranek & Hobbelman
(1994), and was later confirmed by Van Mier & Van Vliet (1996). In that case

the failure law is

Dt act 2
1+ 1+4(D/N, )] @

(D/ Naa)?

1
Ferie = ‘Z“Fr[

where F; is the maximum tensile load which can be carried by the lattice
element. Using the failure law of eq. (4), the biaxial failure contour of concrete
can be computed. A closed envelope in the compression-compression regime
is found, whereas an open ended envelope is computed in the compression-
compression regime when the failure law of eq. (3) is used. From macro-
scopic finite element analysis it is well known that the Mohr-Coulomb criterion
is quite suitable for concrete and many types of rocks.

5 Trends and future developments

The advantage of the lattice type models, as well as continuum based models
where the structure of the material is included in the model (i.e. numerical
concrete), is the capability to compute (or simulate) macroscopic material
laws. In particular for fracture problems, an important size and boundary
condition dependency exists (see for example in Van Mier (1997)), which can
be simulated by simply taking into account the experi-mental conditions of the
experiments that are compared to the outcome from the simulations. These
experimental conditions include loading platens, hinges, actuators, guiding
devices and other elements normally considered as part of the testing
environment.

The question is now whether the above mentioned lattice models are a
sufficient tool to capture all aspects of material behaviour. Less is true of
course. Problems where a hydrostatic compressive stress occurs, or when
frictional effects may be expected, are more difficult to capture, as was the
experience over the past few years. Moreover, many of the models have
focused on particle composites, whereas important developments in material
technology include fibrous materials and laminates as well. In principle the
model can be used for such materials as well, provided of course that the
essential additions, such as a frictional slip element, are included in the lattice
model. Important seems to preserve the step-wise approach where in each step
of the analysis a single element is removed, or a certain parameter in a lattice
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element is changed (for example the aforementioned step-wise reduction of the
Young's modulus of a lattice element).

Another important development is to include three-dimensional effects.
To date most models were limited to two-dimensions. It is obvious that the
fracture process in concrete and many types of rock is a complex three-
dimensional growth process. Many details of the fracture process are missed
when one limits the simulations to plane-stress. In the end, for problems such
as anchor pull-out, a fully three-dimensional analysis is needed.

The other open questions concern dynamic, fatigue (including crack
closure effects) and creep behaviour, as well as coupled problems like a
combination of drying shrinkage and mechanical behaviour, or temperature
effects (for instance from hydration in young hardening concrete) in
combination with a mechanical analysis. Including such effects may eventually
lead to a more complete description (or as some researchers would claim,
prediction) of laboratory scale experiments. In this respect it should be
mentioned that a rational procedure for estimating the properties of the lattice
elements is an essential step in the development of this class of numerical
fracture models.

So where would we find applications for the lattice type fracture models
7 Several possibilities have been sketched in the past, namely, as tool for
designing laboratory scale fracture experiments, as a tool to design new
composite materials, as a pre-processor to determine the effective material
models for macroscopic non-linear finite element analysis of full-scale
reinforced concrete structures, or as a direct application for the analysis of
structural details such as the anchor pull-out problem. From experiments new
information is needed to tune the models, namely information on the complex
crack growth process and crack patterns is needed. The fractal character of
such patterns may be a tool in assessing the material parameters in lattice type
models. This approach seems to prevail because a direct evaluation of
geometrical patterns is needed only. As was argued before, (euclidian)
geometry seems the only direct measurable quantity without theoretical bias.
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