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Abstract

The Multi Equivalent Series Phase Model is derived as a nonlocal
macroscopic constitutive law to describe the size effects due to fracture
localization in concrete. Fracture localization at the microscopic level is
modeled using a series phase consisting of fracture and unloading phases.
Based on a constant plastic fracture energy law, the stress-strain softening
relations of the series phase are converted into those of an equivalent series
phase taking into account the length of the series phase. As the load-carrying
mechanism of concrete, a number of equivalent series phases are assumed to
be distributed with various orientations in the concrete, and the strains in the
series phase are kinematically constrained by the macroscopic strain tensor.
The resulting incremental stiffness tensor yields an integral formula in terms
of orientations of equivalent series phases; this is very similar to that of the
Enhanced Microplane Concrete Model. It is shown that the model provides
good predictions of the experimentally obtained size effects on concrete
constitutive relations.
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1 Introduction

Mechanical models and constitutive laws for concrete materials must be able
to describe nonlocal softening behavior when we numerically simulate
softening fractures and damage localization, which relate to size effects and
size dependency. Constitutive laws for continuum mechanics in a narrow
sense are regarded as local, while constitutive laws able to describe size
effects and nonlocal properties of materials are regarded as nonlocal
constitutive laws. The crack band model for nonlinear fracture mechanics,
Bazant and Oh (1983), is considered a simple, nonlocal constitutive model
for tensile cracking (mode I fractures). However, it is not that easy to
establish a general nonlocal constitutive model for concrete with
applicability to multiaxial stress conditions including compression and shear
stresses (rotating principal direction). In this study the Multi Equivalent
Series Phase (MESP) Model, Hasegawa (1992, 1993), is derived as a
nonlocal constitutive law suitable for describing size effects due to fracture
localization in concrete under general multiaxial stress conditions.

2 Fracture localization at the microscopic level

Since the presence of coarse aggregate particles makes concrete a
heterogeneous material, fracture localization and strain softening occur at a
microscopic level in a relatively stable and distributed manner prior to
macroscopic softening fractures. Although these types of microscopic
behavior should be described by appropriate micromechanics models, we
assume a much simpler mechanical field as shown in Fig.1(a); distributed
microscopic fracture regions are modeled by independent fibers constrained
by certain conditions as a means to relate the microscopic and macroscopic
levels. When a softening fracture occurs in each fiber, the microscopic
fracture localizes into a fracture phase within the fiber while an elastic
unloading takes place in the remainder of the fiber (the unloading phase).
The result is a microscopic strain localization in which the unloading phase
supplies the released elastic energy to the fracture phase once the
nucroscoplc peak stress of the fiber is reached. We assume that the stresses
in each phase depend on the corresponding strains of the phase, and that
there are umque relations between them that we call phase—consututlve laws.
Because of series coupling, the stresses ¢© and 0' in the fracture and
unloadmg phases are equal. However the strain £Y of the unloading phase
is much smaller than the strain £ of the fracture phase. We define the series
phase as the series- coupled combination of the fracture and unloadlng
phases. The strain £” of the series phase is calculated from " and &V
which superscripts F, U, and L refer to the fracture, unloading, and senes
phases. The equilibrium and strain compatibility conditions of the series
phase are described by (1).
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Fig.1. Fracture, unloading, and series phases in a concrete volume element
O"L = O'F =g v (13.)
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in which I, 1Y, and I” are the lengths of the fracture, unloading, and series
phases, respectively. This series coupling model consisting of the fracture
and unloading phases is considered the basic load-carrying mechanism of
concrete at the microscopic level, and the series phase is converted to an
equivalent series phase using a simple homogenization method described
later. :

The MESP Model is a nonlocal macroscopic constitutive model derived
assuming that a number of equivalent series phases are distributed with
various orientations in the concrete. To derive the model for a concrete
volume element, the randomly oriented series phases in the element are
collected at the centroid of the element as shown in Fig.1(b). It is assumed
that the length [” of each series phase is represented by the distance between
the centroid and the element boundary, and differs among the series phases
(Fig.1(c)). On the other hand, the length I” of each fracture phase is the
same for all the series phases.

3 Equivalent series phase

The strain softening response of the series phase has to be composed from
the softening behavior of the fracture phase and the elastic unloading
behavior of the unloading phase according to the equilibrium and strain
compatibility conditions given by (1). This means that, in general, the
stress-strain softening relation for the series phase differs from one direction
to another since each series phase has an individual unloading phase length
in a concrete volume element. If a macroscopic constitutive model is
formulated by composing the softening behavior of the series phase from the
fracture and unloading phase responses, it is difficult to satisfy the
conditions (1) and the calculation becomes inefficient. This is because a
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kinematic constraint (not a static one) relates the series phase at the
microscopic level, rather than the fracture and unloading phases, to the
macroscopic level.

The problem is circumvented by introducing an equivalent series phase
which is a homogenized phase consisting of the fracture and unloading
phases taking the conditions (1) into account in a different form. The means
of satisfying the equilibrium and strain compatibility conditions of the series
phase are to adopt a constant plastic fracture energy law (the first law of
thermodynamics) for determining the stress-strain softening relations of the
equivalent series phase and to utilize relations similar to those describing the
fracture phase for the equivalent series phase.

The stress-strain softening relations (Fig.2) for the fracture, unloading, and
equivalent series phases are assumed as follows.

For 0 < ef < g, (pre-peak):

e’ Co€o/00
o’ =0, 1—(1———) (2a)
&

for ¢, < €7 (post-peak):

o’ =0, exp[~(8p€; %o H (2b)

Oy
in which ¢? and €’ are the stress and strain of phase p; & = m{C ; and
P 0

_ _Y 9 .
g =r"g, “"ECT". Superscripts p= F, U, and E refer to the fracture,

unloading, and equivalent series phases, but (2b) is not necessary for the
unloading phase. In(2), C, is the initial modulus, & is the peak stress of the
curve, { is a parameter controlling the peak strain &y, and y” is a ductility
parameter that controls €. At the strain €7 =g, + €7, the stress ¢”
decreases to 0, /e in the softening region, i.e., the ductility in the softening
region depends on the strain £” or the ductility parameter y”. The stress-
strain relations in the pre-peak reglon are the same for all phases, but i in the
post-peak region the equivalent senes phase takes a different value 7% of
ductility parameter from the value y” for the fracture phase. On the other
hand, the unloading phase follows an elastic unloading path with the initial
modulus C, after the peak stress.
The constant plastic fracture energy law is written as (3).

VE(IE)g® = V(i )g" + vV (1¥)wY (3a)
SE:.OQ 8F=oo
Ef{;E E E _ ;F(;F F F
vE(I )LE=O o’ def =vF(i )LF=0 o” de
+VU(10) JEU:EOGU de? - %0 (3b)
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in which VF(IF), VU(ZU), and VE(IE) are volumes of the fracture,

unloading, and equivalent series phases depending on the length of each; g*
and g° are the plastic fracture energy densities of the fracture and equivalent
series phases; and wV is the plastic energy density of the unloading phase.
When parameters C, and { for the pre-peak region, the ductility parameter
y* for the fracture phase, and the volume of each phase are given, the
ductility parameter y* for the equivalent series phase can be determined by
solving (2) and (3). Furthermore, if the volume of the equivalent series
phase is assumed to be the same as the volume of the series phase consisting
of the fracture and unloading phases, i.e., (4), then the solution for yE is
given by (5).

VE(E) = vH(Ir) = vE(iF)+ v (1Y) “
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The volume ratio V*(1")/V*(1*) in (5) is estimated using (6), and d =1 is
assumed in this study.

ve(er) Y ©
e i)
in which d is a parameter depending on the shape of the series phase; and
d =1 or 3 if the series phase is treated as a cylinder with a uniform circular
section or as a cone with various circular sections.

In Fig.3 calculated softening responses of equivalent series phases are
compared with those of series phases composed from the behavior of the
fracture and unloading phases. These results show that the strain softening
response of the equivalent series phase is almost identical to that of the
series phase. However, for a snapback as in the case of 17/I* =0.03, the
equivalent series phase model is not applicable since a kinematic constraint
is adopted in the model, as described later.

4 Multi equivalent series phase model

To derive a nonlocal macroscopic constitutive model, i.e., the MESP Model,
for the concrete volume element shown in Fig.4(a), every series phase with
its own length I* between the centroid of the element and the element
boundary is replaced with an eqmvalent series phase. The stress- stram
softening relation of each equivalent series phase depends on the length /*
of the series phase, and is determined using (5).

In each equivalent series phase a normal stram £ in the direction n of the
fiber and two shear strains &5, and €5, in the directions of the unit
coordinate vectors k and m are considered. The unit coordinate vectors n,
k, and m are normal to one another (Fig.4(a)). As in the Enhanced
Microplane Concrete (EMPC) Model, Hasegawa (1995, 1997), a tensorial
kmematlc constraint is hypothes1zed to relate the macroscopic strain tensor

; to the strams of the equwalent series phase, i.e., the normal strain £ and

shear strains €5, and &5, of the equivalent series phase are the resolved
components of the macroscopic strain tensor &;.

8,5 =mn g (7a)
(7b)

in which n,, k;, and m; are components of the unit coordinate vectors n, k,
and m. In this paper, indicial notation is used for tensors and the Latin
lower-case subscripts refer to Cartesian coordinates x;, i=1,2,3 (x, y, 2).

e _ 1 . oE 1
Epp = —i(k,-n j Hkn )«Sij s Emy = ’Z“(mi”j * mjn,-)eij
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Normal stress &'y, and shear stresses Oy and Opy of the equ1valent senes
phase mainly depend on the normal strain £}, and shear strains £, and ek,
respectively. The incremental forms of the phase-constitutive relations for
the equivalent series phase are written separately for the normal component
and the shear components in the K and M directions:

normal component: do’ = CEdeE -do® = f,ﬁ(sﬁ,ef,sf) (8a)
K-shear component: doy, = Chder, - dof = fT";(EfK,S e ) (8b)
M-shear component: dos, = Ch,des, -dor, = fr (8fM,S f,) (8c)

in which Cy, Cf, and Cj, = incremental elastic stiffnesses for the
equivalent series phase; dof , dof, , and doj, = inelastic stress

increments for the equivalent series phase; f, (8 o ef ,SE ) = normal stress
mcrement do ; expressed in terms of normal strain £y, the resolved lateral

strain &; of the macroscopic strain tensor g;, and the resolved lateral stress

SE of the macroscopic stress tensor 0, onto the phase; and fE (st,S ,15) =
shear stress increment do, expressed in terms of shear strain £, and the

resolved normal stress Sy, of the macroscopic stress tensor o, onto the
phase (7's =TK,TM).

Since a uniform state of macroscopic stress and strain is assumed in the
concrete volume element, and microscopic softening localization is
homogenized using the equivalent series phase, with the length of the series
phase taken into account, we can use an arbitrary inner volume within the
element to relate the responses of the equivalent senes phases to the
macroscopic behavior. Here a sphere, with a radius I*, formed by the
equivalent series phases is considered (Fig.4(a)). Usmg the principle of
virtual work (i.e., the equality of virtual works SW" of the macroscopic
stress tensor and 5W of the stresses in the equivalent series phases within
the sphere of radlus 1%), we can write

sw¥ = (9a)
6=2n
j _[ dO'ij5£,-j r’singde d6 dr = %n(zEfda,,.aeij (9b)

6= 27c
J J dof, v +dok e, +dcTEM5£fM) f(n)
¢=0

3 (IE) singd¢de c)

in which 6 and ¢ = the spherical angular coordinates (Flg 4); and &g, ek,
Sy, and 8, = small variations of the strain tensor and of the phase
strains. The function f(m) is a weight function for the fiber directions n,
which in general can be used to introduce anisotropy of the material in its
initial state. We willuse f(n)= 1, which means isotropy. In this study, two
series phases with opposite orientations in the upper (0 < ¢ < 7/2) and lower
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(7/2 < ¢ < ) hemispheres are replaced, for simplicity, by a single series
phase which is the average of their lengths. Then (9) is reduced to a
directional integration over the upper hemisphere.

4 E 0=21 p¢= 7:/2 £
a(l )d 0€;= l J J- (doxsey; +dofSery

+do~TM(SefM )f(n)singdpde (10)

Expressing 8¢y, 8€r, and &g, by (7), and substituting them into (10)
along with the phase-constitutive relations (8), we obtain an incremental
form of the macroscopic stress-strain relation

do, =C, de, _dc'.'. (11a)

ijrs

0=21 @o=m/2 1
Cpe = J' J n nnnCE+ 4(kinj + ke, (ko + kg, )C

ijttrtts

i(m n; +mn )(mrns +msn,)CfM}f(n) singd¢ do (11b)

0=27 ph= 7:/2 W 1 .
do; "nJ J‘ nnde'f, +5(kinj+kjni)d0'f,<
+2 mn; +m;n, )dO'fM”:If(n) singd¢ do (11c)

in which n=n%; and n* =1/27.

The EMPC Model is a local constitutive model derived by treating
microscopic fracture regions as planes (microplanes) of various orientations.
The constitutive equation for the EMPC Model results in a surface integral
over a unit hemisphere with a surface consisting of microplanes, and is
obtained in the form of (11) with n= nM = 3/2m by replacing Cf; , CfK,
Cpy, doy , dofy ,and doy,, with the corresponding variables for the
microplanes. In the study of the EMPC Model, analytical expressions for the
initial normal and shear moduli Caf and C¥ of a microplane are obtained
by substituting C o and C% for the incremental elastic stiffnesses in (1 lb)
con31demng 1n1tlal 1sotroplc elasticity. Initial normal and shear moduli C, NO
and Cr, of the equivalent series phase can be obtained for the MESP Model
using a similar method. These initial moduli for both models are

v E 1 g w  (1-4v)E, 1 g

Cro (1-2v,) 3 Cxo; Cro (1-2v,)(1+v,) 3 C1o (12
in which E; and v, are Young’s modulus and Poisson’s ratio. If we redefine
the initial moduli of the equivalent series phase as Cy, = Cpy, and
Cf, =CH, and set n=n" =3/27 in (11), the microconstitutive models for
microplanes in the EMPC Model can be utilized as phase-constitutive
models for the fracture phases in the MESP Model, which is a very attractive
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analysis

approach since the EMPC Model has succeeded in describing the local
constitutive relations of concrete under multiaxial stress conditions with
accuracy. We do this in the present study.

5 Verification of multi equivalent series phase model

The developed MESP Model is verified by comparing the calculated results
it yields with experimentally obtained size effects on the constitutive
relations of concrete as reported in the literature. In each calculation, the size
of a concrete volume element (Fig.4(a)) in the MESP Model is assumed to be
the same as the concrete specimen in the corresponding experiment.

In Fig.5 the calculated result of the size effect on uniaxial compressive
softening are compared with tests by Van Mier (1984) using concrete prism
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specimens of the identical section (100 X 100 mm) but different heights h
(50, 100, and 200 mm). The axial stress-strain relations are normalized by
the peak axial stress g7°** of each specimen, and the axial strain £7°**
corresponding to the peak axial stress of the specimen with # =50 mm. In
the analysis, the length [” of the fracture phase is assumed to be 2IF =
50 mm =34, =48 mm, in which d,_,, is the maximum aggregate size.
The MESP Model can capture the decrease in ductility with increasing
specimen height. Fig.6 shows the normal, K-shear, and M-shear responses
of equivalent series phases (integration points) 2, 3, and 14 (Fig.4) in the
analysis. The increase in specimen height causes more brittle softening
responses of the equivalent series phases, and this results in brittle
macroscopic behavior.

Fig.7 shows the results of triaxial compression analysis along the
compressive meridian in comparison with experiments by Kosaka et al.
(1985). In these experiments concrete prism specimens of the identical
section (100 x 100 mm) but different heights & (100, and 200 mm) were
tested under confinement pressures o, of 0, -3, and 6 kgf/cm?. The
length [” of the fracture phase is taken to be 2/° =100 mm =6.6d,,, in this
analysis. Although the analysis underestimates the lateral strain in the
softening regime during uniaxial compression as compared with the
experimental results, the model roughly predicts the size effects on triaxial
compressive softening.

To examine applicability of the model under shear stress with a rotating
principal direction, the biaxial tension-shear analysis of Rots (1988) is
simulated. In this analysis, uniaxial tension up to the uniaxial tensile
strength f, is first applied to a concrete volume element in the x-direction.
The element is then immediately subjected to combined biaxial tension and
shear according to Ae,, : 4e  : Ay, =0.5:0.75:1. Two sizes of square
element (10x10mm and 20x20 mm) with thickness 10 mm are
considered, and the length [* of the fracture phase is assumed to be 21" =
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10 mm in the MESP Model. In Fig.8, the results of uniaxial tension analysis
using the MESP Model prior to the biaxial tension-shear analysis are shown
along with the uniaxial tensile relation assumed in the analysis by Rots, who
used the rotating crack model and the multi-directional fixed crack model, in
which g, is the axial strain corresponding to f,.

In Fig.9, the shear responses obtained in the biaxial tension-shear analysis
using the MESP Model are compared with the results calculated by Rots
using the rotating crack model and the multi-directional fixed crack model
(o = threshold angle). It is worth noting that the MESP Model predictions
of the flexible shear responses for both element sizes are similar to the result
achieved with the rotating crack model, which has been shown capable of
simulating shear-tension failures of concrete, while the multi-directional
fixed crack model, with larger values of «, results in much stiffer shear
behavior. The MESP Model can simulate the size effects on shear strength
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and softening as shown in Fig.9.

The rotation angles 8, and 6, of principal stress and strain are shown in
Fig.10 for the element 10x10 x 10 mm in comparison with the results
obtained by the rotating crack model and the multi-directional fixed crack
model. The axes of principal stress and strain coincide in the present
analysis, as with the rotating crack model. This means that the MESP Model
incorporates the capabilities of the rotating crack model, which has
previously been shown effective in its application to fracture mechanics.

6 Conclusion

Fracture localization in concrete at the microscopic level is modeled using a
series phase consisting of the fracture and unloading phases, and the
softening constitutive relations of this series phase are converted into those
of an equivalent series phase using a simple homogenization method. The
Multi Equivalent Series Phase Model is derived as a nonlocal macroscopic
constitutive model assuming that a number of equivalent series phases are
distributed with various orientations in the concrete. It has been shown that
this model provides good predictions of the experimentally obtained size
effects on concrete constitutive relations.
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