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Abstract 

The paper has a two-fold purpose: (1) to review the main recent re­
sults on the problems of size effect in tensile and compression fracture 
of concrete structures, and (2) to present some new developments. 
The review focuses on simple approximate size effect formulae suit­
able for design, as well as the computational modeling of fracture re­
quired for the assessment of size effect. One new form of the formula 
for size effect in failures occurring at crack initiation is presented in 
this context. The new results include analysis of scaling of quasibrit­
tle fracture through an extension of the J-integral and its use for the 
formulation of asymptotic size effect formula. 
Key Words: Concrete, fracture, tension, compression, size effect. 

1 Introduction 

The energetic size effect, along with the energetic effects of shape 
such as the slenderness effect, is from the design viewpoint the most 
important feature of fracture mechanics of quasibrittle structures, 
i.e., structures failing only after a large stable crack growth of de­
velopment of large cracking zones. Its understanding is essential for 
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efficient and safe design of concrete structures of large dimensions 
and structures made of high-strength concrete which are notorious 
for their brittleness. 

The problem of size effect is an old one, in fact older than the 
mechanics of materials itself. The effect of the length of ropes under 
strength was discussed by Leonardo da Vinci (1500s) and Galileo 
(1638). The idea of a statistical size effect due to randomness of 
material strength was ennunciated by Mariott (1686). However, the 
mathematical formulation of the statistical size effect had to await 
the formulation of appropriate probability concepts, which appeared 
during the 1920's with the formulation of the weakest link model and 
extreme value statistics (Peirce, 1926, Tippet, 1925, Frechet, 1927, 
Fisher and Tippett, 1928, von Mises, 1936) and the discovery of the 
proper probability distribution bearing the name of Weibull (1939), 
with which the basic concept of the statistical size effect became 
complete. Applications of Weibull theory and the weakest link model 
to various types of structures have been developed subsequently and 
until about 1980 it was generally assumed that if a size effect was 
observed in experiments it had to be of statistical type. Today we 
know that this is not the case. In quasibrittle structures, the size 
effect is caused by energy release associated with localization of strain 
softening damage into a sizable fracture pressure zone or a long crack, 
and appears not only for tension but also for compression. 
energetic size effect overwhelms the statistical size effect (Bazant and 
Planas, 1998). 

A suggestion that the size effect observed in concrete structures 
might be non-statistical appeared already in the work of Leicester 
(1969, 1973); see also Karihaloo (1995). Taking analogy with the size 
effect of _linear elastic fracture mechanics, well known from the in­
ception of this theory, Leicester suggested that the nominal strength 
of concrete structure (JN = canst./ D 5 where D is a characteristic di­
mension. of the structure and s is a constant between 0 and ! . Such 
s-values were inferred by assuming failure to be caused by notches of 
a finite engle, due to the fact that their stress singularity exponent is 
larger than -~. But such notches could not be an acceptable justifi­
cation of Leicester's formula, for two reasons: (1) notches of a finite 
angle cannot propagate (rather, a crack must emanate from the notch 
tip), (2) the singular stress field of such notches gives a zero flux of 
energy into the notch tip. Leicester's power law is in fact equivalent 
to Weibull theory, which also leads to a power law with an exponent 
larger than -~, and does not represent the quasibrittle energetic size 
effect. A power law can be true only for materials without a char­
acteristic length and structures without a characteristic dimension 
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(see Bazant and Chen, 1997, Eqs. 1-3), and thus fails to capture this 
salient feature of quasibrittle energetic size effect, causing the tran­
sition from no size effect (as in plastic limit analysis) to the LEFM 
size effect. Of course, this transition was not known to exist in 1969, 
being first detected in the experimental studies of Walsh (1972, 1976). 

Finite element fracture models for concrete structures based either 
on the cohesive (fictitious) crack model (Hillerborg et al. 1976, Pe­
tersson, 1981) or the smeared crack band model (Bafant, 1976, 1982, 
Bafant and Cedolin, 1979, and Bafant and Oh, 1983) demonstrated 
the characteristic transition of the size effect from that of plasticity of 
small structures to that of LEFM for large structures. These numer­
ical results as well as the experimental evaluations of Walsh then led 
to the formulation of the energetic theory of quasibrittle size effect 
and a simple formula for the size effect law (Bafant, 1983, 1984). 

For a long time engineers assumed that the use of fracture me­
chanics can be avoided by adopting the 'no-tension' design. However, 
the no-tension design is a plasticity approach, and so it exhibits no 
size effect, whereas fracture mechanics does. Therefore, in general, 
for a sufficiently large structure, fracture mechanics must predict a 
lower load capacity than the no-tension design. Detailed explana­
tion of such behavior and numerical examples relevant to the design 
of dams have recently been given (Bazant 1996). The 'no-tension' 
design nevertheless remains a valuable simple design tool, but does 
not guarantee the required safety margin. Evaluation of the safety 
of dams requires fracture analysis (which is already a requirement of 
the U.S. Corps of Engineers). 

Aside from the energetic quasibrittle size effect, suggestions have 
been made that the size effects observed in unnotched concrete struc­
tures might have a fractal origin, either in the invasive fractality of 
crack surfaces or the lacunar fractality of microcrack distributions 
(Carpinteri, 1994, 1995, Carpinteri et al. 1994, 1995). However, dur­
ing the six years since the emergence of this idea, the mathematical 
justification of this idea has not progressed beyond a strictly geo­
metrical argument, lacking mechanics. On the contrary, mechanical 
analysis showed inconsistencies indicating that fractality is not an 
acceptable explanation, whether invasive or lacunar (Bafant, 1996). 

The purpose of the present paper is to survey the main results on 
the size effect and fracture of concrete. However, since an extensive 
review has been published very recently (Bazant and Chen 1997), the 
present review will be very brief. Some new results on generalized size 
effect analysis by means of the J-integral, applicable to both tensile 
and compression fractures, will also be presented. 

1907 



2 Selective Survey of Basic Results 

The design of a structure is an inverse boundary value problem, in 
which the material characteristics must be determined from the de­
sired solution, such as the load carrying capacity, the ductility or the 
structure proportions. However, the inverse problem is far more dif­
ficult than the direct problem. The sophisticated computational ap­
proaches that exist today, such as the nonlocal finite element analysis, 
are difficult enough for solving the direct problem and are extremely 
cumbersome and ineffective for the inverse problem of design. One 
can of course play with the values of structure dimensions and ma­
terial parameters in a trial-and-error fashion until a desired solution 
is luckily obtained, however, the task is immensely complicated by 
the fact that the computational models do not provide a clear under­
standing of the influence of structure shape, dimensions and material 
parameters. Such understanding can be provided only by simple for­
mulae. They are of vital help to the designer, even if they are only 
approximate and sometimes very crude. 

There are two kinds of simple formulae in concrete design: those 
purely empirical, and those supported by some theory. The latter are 
preferable by far, because only they offer the possibility of extrapo­
lating beyond the range of the existing (statistically significant) test 
results and field experience. This is especially important for innova­
tive designs. 

2.1 Size and Shape Effects via Equivalent LEFM 

Since the size effect in concrete and other quasi brittle structures rep­
resents a transition between plastic limit analysis for small sizes and 
linear elastic fracture mechanics (LEFM) for large sizes, the best 
strategy to obtain simple formulae is to use some sort of intelli­
gent interpolation between these two extreme cases for which sim­
ple solutions exist. Such interpolation can be obtained by deducing 
asymptotic expansions of the size effect and then truncating them and 
matching them so as to obtain an approximation for the immediate 
range, which is of practical interest. 

The fracture analysis in this approach relies on the concept of 
equivalent LEFM, in which a structure with a crack and a large frac­
ture pressure zone is approximated by a structure with a sharp crack, 
and the effect of the sizable fracture pressure zone is approximated 
by certain finite extension of the actual traction-free crack. Applica­
tion of the equivalent LEFM yields for the nominal strength of the 
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structure expression 

(JN = 
Dg(ao+~)' 

1998) in 

ao 
O:'Q = 

material (asymptotic 
= structure size (characteristic , g = non-

'-.U.J..1.l.v.L . .HJJ.'J .... H...,l..LLlv\....I. energy release function characterizing structure 
(shape), a0 = notch length or traction-free 

length of pressure zone 
length). Expanding function g into a Taylor series, 

an asymptotic expansion with respect to 

[g (a o) + g' 

~ Bff 
JI+ (D/Do) 

g' ( o:o) 
c1--, 
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element analysis of notched or unnotched structures of various ge­
ometries; (2) calculations by the cohesive (fictitious) crack model of 
Hillerborg type; and (3) various lattice models, random particle mod-

or discrete element models of heterogeneous microstructure. 
It must be emphasized that Eq. (2) is valid only for notched 

specimens or for structures that obtain the maximum load after a 
large stable crack growth, which is typical of most reinforced concrete 
structures. For failures at crack initiation, (an undesirable type of 
failure which is however inevitable in many unreinforced concrete 
structures), a different law for the size effect ensues from Eq. (1). In 
this case, o:0 = 0, and because the energy release rate for a zero crack 
length is zero, g(O) = 0, the first term of the series expansion in (2) 
vanishes and one must truncate the series no earlier than after the 
third, quadratic term. This yields the expansion 

(JN = lim 
o:o-+0 Dg(ao + ]5-) 

g'(O)c1 + ~g"(O)c}D- 1 + ~g'"(O)cJD-2 + ... 
froo 

jl - (qi/ D) + (q2f D) 2 - (q3/ D)3 + ... 

(4) 

(5) 

which froo = jEG1/c1g'(O), q1 = -c1g''(0)/2!g'(O), and qi = 
c}g'"(0)/3!g'(O), .... Denoting x = (qifD) (q2/D)2+ (q3/D) 3 - ... , 

using the binomial series expansions 1/ VT-=-x = 1 - (1/2).r + 
(3/8)x2 

- (5/16)x3 + ... and 1/(1 - x) 1 + x + x2 + x 3 + ... , the 
last expression can be converted to two different kinds of expansions 

of which are exact and equal to each other if the number of 
terms approaches infinity): 

CTN = f,.oo [1 +~I~+ (3~i -~) ~2 + ( .. ) ~3 + ···] 

~ /,.oo ( 1 + -i) (6) 

or CTN f/oo [ 1 +qi~ + (qf - qi) ~2 + ( .. ) ~3 + ···l 

~ R (7) 

Db= -c1g''(0)/4g'(O) (Db> 0 has the meaning of the thickness 
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of boundary layer of cracking, and 

approximate size effect formulae (6) and (7) are asymptoti-
cally equivalent up to terms of the order of 1 / D, i.e. derivatives 

/d(l/ D) at 1/ D ---+ 0 are equal. These formulae have 
tained by truncating the two different series v.J">..IJUJLl.L.)J. 

second term. Eq. ( 6) has been validated by numerous test re­
sults for the size effect on the modulus of rupture (bending 
of beams) and appears to agree with the data better (7). 

was recently proposed and used to describe some size effect 
Carpinteri (1994, 1995) and Carpinteri et (1995) 

name 'multifractal' scaling law (this name, however, is 
because, according to Bafant ( 1996), the analysis 

of lacunar fractal microcracks leads to a of 
which is different from Eq. (8)). 

The foregoing simple formulae for size 
be applicable to various types of brittle concrete 

structures, however, the precise manner of application still needs to 
clarified for many cases. The difficulty is to determine 

LEFM model that describes the extrapolation to sizes 
those feasible in practice, in particular, 

crack causing failure, its shape and length, the 
the fracture process zone, the value the transitional size, 
some cases possible branching of the main crack (as recently 

Jirasek for the case of a curved dipping a concrete 
. For this reason, parameters of Eq. (2), and 

to be for the time being many situations 
men ts. 

term 'compression fracture' still occasionally 
ment since compression is normally not imagined cause an 
crack. This is of course literally true, hmvever, the failure 
rittle materials in compression exhibits all the basic 

fracture mechanics, except when confining 
sure is extremely high. fact that material 
damage means that there is a localization of damage 
compression fracture band, accompanied by stress 
flanks of the band, which turn causes energy release. 
energy release must be to the rate of energy ~~·,L~,ALLL 
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dissipation at the front of a propagating compression fracture band. 
Because of the localization, a strength criterion would be unobjec­
tive in describing the propagation of the band. It must be either 
an energy criterion, or a relation between the stress across the band 
and the relative displacement between the flanks. Thus, all the basic 
attributes of fracture mechanics need to be used to describe compres­
sion fracture. 

Compression fracture can have a greater variety of forms and is 
a richer phenomenon than tensile fracture. There are many micro­
scopic fracture mechanisms that can produce a zone of axial splitting 
microcracks in the direction of the principle compressive stress of 
the greatest magnitude (Ashby and Hallam 1986, Kemeny and Cook 
1987, 1991, Ingraffea 1977, Nesetova and Lajtai 1973, Kachanov 1982, 
Lehner and Kachanov 1996, Batto and Schulson 1993). They include 
cracks emanating from voids, cracks near inclusions, wedging actions 
in groups of inclusions and the so-called wing tip cracks. For global 
fracture analysis, these axial splitting microcracks must be treated in 
a smeared manner, as a continuum with damage. 

Although the global fracture can take many forms, there are ba­
sically two: (1) the axial propagation of a band of splitting microc­
racks, and (2) the lateral propagation (either octagonal or inclined) 
of a band of splitting microcracks. As shown previously, the former 
mechanism cannot engender any size effect because it does not in­
duce energy release from the entire structure, only from the damaged 
band. The latter mechanism, on the other hand, does engender a 
size effect, similar to that of tensile fracture, because the energy re­
lease zones grow faster than linearly with the length of the fracture 
band. Because axial propagation is locally easier, the splitting frac­
ture should dominate for small enough structures, while the lateral 
propagation of a damaged band should dominate for large enough 
structures. The structure shape and boundary conditions, of course, 
have a large influence as well. 

The principal difference from tensile fracture is that there is a 
residual compressive stress across the fracture band, o-y. In the sim­
plest analysis (sometimes probably too crude), o-y can be assumed to 
be constant, i.e., uniformly distributed along the fracture band. An 
asymptotic analysis of the energy release that leads to the following 
formulae (Bazant and Chen, 1997, Bazant and Planas, 1998): for the 
case when a long fracture band develops before the maximum load 

JEGt + o-y/y'(ao)cJ + 1(ao)D 
0-N = ~~~--================-~~ 

Jg' ( o:o)cJ + g( o:a)D 
(9) 

and for the case when the maximum load occurs at the initiation of 
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compression fracture (as soon as fracture pressure zone, 
negligible size, formed): 

g is the same non-dimensionalized energy release 
the given applied load, as already introduced for tensile 
2), and! is an analogous non-dimensionalized energy 

a uniform traction applied at of the band, 
crack. This function can be easily determined 
element analysis. Another difference tensile 
of fracture energy the band, which may 
Cb = Cf h/ s where h is the width of band, s is a 
the axial splitting cracks of the band, Cf is the 
the axial splitting cracks. Cb is much larger than 
energy, typically by one or two orders of magnitude. 

Although experimental for 
still very limited, existence of 
cases is already clear. Size effect was 
scale tests of tied square reinforced concrete 

slendernesses, carried out at 
Kwon, 1993), and in similar 

made from normal concrete Barr 
Cardiff. These results have 
Xiang ( 1997). 

University 
larger scale test 
~ener at 

analytically 

An analogous fracture analysis to the 
rock under high compression indicates also size 

ified tests of Carter et al. ( 1992), and 
others. A special type of compression fracture 
maximum load in the diagram of shear failure of 
beams with or without stirrups, for which the existence 

already been clearly established. Much more r.oc' 0 '=' 1·,.-.n 

to be to master the size 

Design 

formulae designing against 
types of structures should 
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(3 = D /Do = brittleness number (geometry independent), 
value (3, and CJ No, CJ Nl = positive constants. The 

CJNo can obtained by plastic limit analysis based on the 
steel or the residual stress in compression fracture 

, practical prediction of the values of these parameters 
for various types of failure. Of course, the values of 

can be calibrated by experimental results. 
for which extensive studies of the size effect and 

mechanism have already been made is the diagonal shear fail­
concrete beams without or with stirrup. Recently, a 

of analysis of this type of failure has been proposed (Bafant 
a modification of the classical truss model (strut-and-tie 

1899, Marsch 1902, Collins 1978, Vecchio and Collins 
.._,,_,, . .._ ... ._., ... '""' ...... et 1987, Thiirlimann 1976). In this model it is rec-

~ALA~~~ that the failure of the idealized truss cannot be simultaneous 
must be progressive. It is logical to assume that, at maximum 
it consists of propagation of a compression fracture band across 

compression strut of concrete, the band being localized within a 
of the length of the truss and having a thickness essen­

LLLLAL~~ by the heterogeneity of the material. In contrast to 
classical plastic limit analysis, the analysis is conducted on the 

basis energy release, which captures the progressive nature of 
result of the analysis is the formula which is basically 

of Eq. 1) (Bazan t, 1998). In a separate paper in these 
~ ~,J~~.AAA,~~ (Bafant and Becq-Giraudon), the formula resulting from 

energetic fracturing stress model is compared to extensive exper­
results and its parameters are calibrated . 

• , ... L.,_nnt•LL.I. Approaches to Validating 

case of sensitive or innovative structural designs, it is necessary 
the design computationally, for example, by finite element 

damage evolution and fracture. This is a subject that has 
intensely studied for almost two decades and extensive knowl-
has acquired. The methods that are available, with various 

degrees of sophistication and pliysical justification, can be classified 
111 SIX types: 

1. cohesive (fictitious) crack model pioneered for concrete 
et al. (1976). 

2. crack band model (Bafant, 1976, 1982, Bazant and 
Cedolin, 1979, Bazant and Oh, 1983). 
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3. Nonlocal integral type models, which average the 
age over a zone characterized by a certain material 

4. Gradient models, which can be regarded as 
the nonlocal models Taylor series 
integration kernel. 

5. Nonlocal model based on interactions (Bafant, 
and Oz bolt, 1996). 

6. Generalization (by Jirasek) of the element-free 
method (pioneered by N ayrolles, and Belytchko and 
to cohesive fracture or smeared b!tnd cracking, which 
moving least-square estimates to extract from nodal 
only the stress intensity factor but also1urther nonlinear 

characteristics. 

simplest form of the smeared crack model involves "-'-'-".._ ...... uus. 

over the entire finite element. A more precise description 
with not too small elements is by introducing 
discontinuities, pioneered by et (1987) and 

(1988). Many models with discontinuities of 
ment have been developed the last several years. 
study of these models has been contributed by Jirasek 
who presented a systematic approach to various types 
enhancement and the formulation of the stress 

distinguished statically optimal symmetric formulations, H.J.J.J.\.AJ.HkU 

ically optimal symmetric formulations and mixed formulations, 
last leading to a non-symmetric stiffness matrix of element. 
extended the formulation of the elements with discontinuity 
ducing a with the smeared crack model 
with the concept of rotating crack, can correct initially erroneous 
ture directions in the finite in the initial stage 

discontinuity is introduced only later, after a 
smeared cracking. The smeared should 

a nonlocal form. Jirasek showed that his new 
tially insensitive to the layout mesh 
with stress locking. 

Among the gradient those employing 
(which correspond to the continuum of Cosserat or 
are ineffective for tensile fracture of concrete. The current 
cus generally on the second gradient models. Such models can 
looked at as of the nonlocal 
Taylor series expansion of the kernel, which is how the second 
ent model was originally obtained by Bafant ( 1984b). 
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aspect of the gradient models is their neglect of long range interac­
tions, due to the truncation of the Taylor series expansion of the 
kernel. According to the nonlocal model based on crack interactions 
(Bafant, 1994), such long range interactions are not negligible be­
cause the crack interactions decay rather weakly with the distance 
between cracks. 

A large amount of studies have dealt with the constitutive rela­
tions for strain softening cracking materials, which are more prop­
erly characterized as the constitutive relations for the fracture pres­
sure zone. The classical approaches consist of various adaptations of 
phenomenological plasticity or continuum damage mechanics mod­
els expressed in terms of tensorial invariants. Recently, due to large 
increase of computational power, the microplane model is gaining 
ground and has been successfully used in a hydrocode for the mod­
eling of impact involving several hundred thousand finite elements, 
and an explicit integration procedure. Improved versions of the mi­
croplane model for concrete are emerging, capable of a general de­
scription of fracture phenomena. It is a particular advantage of the 
microplane model that it can be realistically applied not only to ten­
sile fracture, but also to compression fracture (failure with localiza­
tion of compressive strain softening into a band); Bafant et al. 1996. 

The microplane models are limited by the assumption of kinematic 
constraint between the inelastic phenomena on the microscale and the 
macroscopic continuum. To relax this assumption, it seems advanta­
geous if the methods of formulation of equivalent elastic properties 
of composites could be transplanted to the analysis of a body with 
many cracks. This problem has been studied extensively, beginning 
with Budianski and O'Connell (1976), Hoenig (1979) and Kachanov 
(1992). However, these classical models, based on the self-consistent 
method for composites, predict only the stiffness of the material under 
the assumption that the crack sizes are fixed. In reality, cracks grow 
during loading, and the crack growth causes strain softening. An ex­
tension of the composite models for a material with many cracks that 
are allowed to gr'ow during loading has recently been developed by 
Bafant and Prat (1997). Such models for fracture pressure zone bear 
probably the greatest promise at present, but much work remains to 
be done .. 

3 Generalized Size Effect Analysis by J-Integral 

In connection with the present survey, some new results on the ap­
plication of Rice's J-integral to the analysis of size effect will now 
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1 

p 

of size effect 

approach provides the most general 
and lends itself naturally to a 

in which normal stresses are 

dimensionless cartesian 
dimensionless displacements (i = ui = 1, 

similarity, the elastic material compliances 
where Cijkl are constant. It , stresses 

CJNSij(e) where e = ~i, 
functions. However, 

influence stress 
analysis, influence 

must have form: 

(i are dimensionless functions. 
process zone advancing in 

J-integral: 
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r are geometrically scaled closed integration contours BCDE 
(Fig. 1) with length coordinate s, starting anq ending on the crack 
and passing outside the fracture process zone, r = chosen fixed con­
tour in dimensionless coordinates, with length coordinate s ( ds = 
Dds), ni = unit normal to the contour (which does not change with 
scaling), W = strain energy density; :1 ( 8) is the dimensionless J­
integral. This integral may be expanded in Taylor series, providing 

J(B) =Jo+ :118 + :1282 + ... (15) 

Jo fr[cijktSfjSZz/2 - njS?j(i~ 1 ]ds, (16) 

J1 fr[cijkt(SfjS2z,e + S2zS?j,e)/2- nj(Sfj(~1e + S?j,'e(i~1)]ds (17) 

Superscript 0 labels the values or fields evaluated for B = 0 (which 
is the case of LEFM). Substituting this into (13) and truncating the 
series after the second term, one gets again the formula of size effect 
law: 

O'N = 
2EG1 Bf't 

[Jo+ :11(cJ/D) + :12(c1/D)2 + ... ]D ~ J1 + (D/D0 ) 
(18) 

The foregoing derivation has been simplified in the sense that the 
length parameter influencing J has been considered as a known con­
stant. Although this seems a good approximation, one could more 
generally consider J to depend on c/ D instead of CJ/ D, where c is 
an unknown crack length. One could then also introduce a variable 
fracture resistance in the form· of an R-curve, and impose the maxi­
mum load condition as the condition of the tangency of the R-curve 
to the energy release curve, in the same manner as used in equivalent 
LEFM analysis by Bazant (1996). The size effect law ensuing from 
such refined analysis is the same. 

The foregoing derivation can be generalized to the case of fracture 
with a known residual crack-bridging stress (Jr applied on the crack 
faces, as. considered for compression fracture (Fig. 1). In that case 
the stress distributions for various sizes are written as 

(19) 

The J-integral must in this case be generealized by extending its path 
along the crack surfaces along which the work is non-zero (Fig. 1). 
As it transpires, the path must begin and end at points on the crack 
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surfaces lying at the boundary of the fractui'e process zone (points A 
and Bin Fig. 1), i.e., the integration path must be ABCDEF 

contribution from the path segments AB along 
surface is not zero. The subsequent procedure is analogous, 
again to equations of the form of (9) and (10). 

Closing 

the community of concrete fracture researchers, it has 
since the 1980 's that the design code formulae checking 
types of brittle failures of reinforced and plain concrete structures 
should include the · size effect due to energy release 
based on fracture mechanics rather than plastic 
ever, relatively progress has achieved so 
education of civil engineers in fracture mechanics concepts has 
one major obstacle, inducing a similar reluctance as 

plastic limit analysis concepts did half a century ago. 
scarcity of properly scaled and unambiguously 
full-size structures has been another major obstacle. 

educators in this field should strive to overcome both. 
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