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Abstract 
The idea that the diagonal shear failure of reinforced concrete beams 
without or with stirrups exhibits a strong non-statistical size effect 
has been generally accepted in the fracture research community since 
the 1980's and during the last few years is gaining ground among 
design engineers as new evidence from properly scaled tests of large 
beams is emerging. Several competing theories to explain this size 
effect have been advanced. After mentioning the problems with some 
theories, the paper reviews the energetic theory of size effect and 
its recent application to the classical truss model (or strut-and-tie 
model). The formulae previously derived by energy analysis of the 
fracturing truss model are compared with numerous test data avail
able in the literature~ and a good agreement is demonstrated. 
Key Words: RC beam, shear, failure, fracture, size effect, design. 

1 Introduction and Overview of Current Status 

The diagonal shear is a quintessential type of brittle failure of rein
forced concrete beams, which has been extensively tested over the last 
fifty years in several hundred laboratories around the world (Bafant 
and Kim 1984, Bafant and Sun 1987), with a total expenditure that 
must have exceeded five hundred million in current dollars. Great 
advances of understanding have been achieved and incorporated in 
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the design codes. 
However, one salient feature-the size effect-received relatively 

little attention in this experimental research, perhaps because of over
confidence in plastic limit state theory which implies no size effect, 
and because the conviction (today known erroneous) that any size 
effect must be statistical in nature. Among about five hundred data 
sets available in the literature, only about twenty explored the size 
effect and, unfortunately, strict geometric scaling has not been fol
lowed until very recently, making separation of the size effect from 
other influences ambiguous. Thus it is not surprising that the size 
effect is still either ignored in the code specifications (as in ACI) or 
is dealt with a questionable manner (as in CEB and JSCE). 

has nevertheless been a major positive change in attitude 
in regard to size effect during the last several years. Not only the re
search community in concrete fracture but also many engineers in the 
code-making committees world-wide came to agree that a significant 
(non-statistical) size effect does exist, that there is credible and ex
tensive experimental evidence for it. Currently a wide-spread feeling 
that the size effect ought to be somehow reflected in code specifica
tions has emerged. The question no longer is if, but how. But in that 
respect there is, unfortunately, little agreement. 

The code specification in Japan, calibrated by the largest-scale 
tests ever made (Shioya et al. 1989), follow the most classical theory 
of size effect-the statistical theory of strength randomness originated 
by Mariotte (1686) and theoretically completed by Weibull (1939). 
However, whereas this theory has been very successful for fatigue
embrittled metals, its assumptions are not valid for reinforced con
crete, for several reasons (the fact that the structure fails only after 
a stable growth, the fact that concrete is a material pos-
sessmg a length', etc.; Bafant and Chen 1997, Ba.Zant and 
Planas 1998). 

current CEB specification use a formula identical the so-called 
'multifractal' scaling law proposed by Carpinteri on the basis of his 
idea that the effects observed in experiments should be explained 
by the fractal nature of crack surface roughness and of microcrack dis
tribution. However, this original and revolutionizing idea has been 
supported by vague arguments which have been solely geometric 
in nature, while recent mechanical analysis of Bafant (1997b) reveals 
inconsistencies, leading to the conclusion that the hypothesis of frac

as a source of size effect cannot be valid. 
__ AA.~-A.,...., several other proposals, one that is being advocated for 

ACI code specifications is that of Collins et al. (1996), which at
tempts to explain the size effect by a dependence of the width of 
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diagonal cracks on the beam size. Yet this theory, too, runs into 
serious problems (Baiant 1997a). 

The objectives of the present are (1) to 
theory that explains the size effect diagonal shear 
release into a localized and propagating failure zone and 
1984, Bazant and Sun 1987, Bazant 1997a), and (2) to present exper
imental evidence for this theory. This energetic theory quasibrittle 
size effect, initiated by Baiant (1976, 1984) and based on a consistent 
theoretical framework, has had considerable success many types 
of quasibrittle failures, not only for concrete also rocks, com-
posites, ice and ceramics, and so far not into any unanswerable 
fundamental theoretical pro bl ems (Bazant and Planas 1998). 

Although generalization would be easy, attention restricted 
to rectangular cross sections because only for those 
experimental evidence. The nominal shear strength the beam is 
defined as Vu = Vu/bd where Vu is the shear force at ultimate load, 
b and d are the beam width and depth (from top to centroid of 
longitudinal steel bars). The study deals with a simply supported 
beam with two symmetric concentrated loads P, for the shear 
span a is defined as the distance between the load and the support 
reaction. 

2 Energetic Size Effect in Fracturing Truss Model 

The latest version of the energetic theory of size diagonal 
shear represents an extension of the classical truss (also called 
the strut-and-tie model). The diagonal shear failure begins by for
mation of inclined tensile cracks in concrete. These cracks, however, 
develop before the maximum load and do not control the value 
maximum load (i.e. do not control failure, or loss, under 
dead load). It is assumed that the diagonal shear crack at maxi
mum load have the principal stress direction, 
tensile stresses (cohesive stresses) bridging the U...J.U,~VJL.J.U..J. 
at maximum load are negligible compared to 
cipal stresses parallel to cracks carried by the so-called 'compression 
struts'. 

Assuming the reinforcement to be designed strong enough, 
truss can fail only in the compression strut. So the failure 
starts as a compression failure (although, during ""·_,,,-,,,. .. ,,.. ..... 
tions, it may evolve into what looks the end as a 
The classical plastic limit analysis could only if compres
sion strut failed simultaneously everywhere (and if the load-deflection 
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Fig. 1 Energy release zone in similar beams of various sizes. 

diagram exhibited a horizontal yield plateau). But this is not the 
case. 

Owing to the strain-softening character of concrete, the material 
failure must concentrate into a small zone within the strut (e.g., zone 
12341 in Fig. 1) and must propagate across the cross section of the 
strut. At maximum load the failure zone crosses only a part (of 
length c) of the compression strut width. Such a kind of propagating 
(progressive) failure necessitates energy analysis, which calls for the 
use of fracture mechanics. 

The necessity of an energetic size effect can be made clear by Fig. 
1 even without any calculations. Compression of the strut produces 
axial splitting cracks (with material buckling) with zone 12341 whose 
depth h' is essentially a material property governed by the maximum 
aggregate size (that the zone is pictured at the top of the strut and 
that it propagates horizontally is unimportant; if it were located else
where and propagated vertically or in an inclined direction, the con
clusions would be similar). Formation of this failure zone reduces 
the stress in the blank strip 12561 extending (because of preexisting 
diagonal cracks) over the whole length of the strut. When the beam 
is scaled, the width of this strip is scaled in the same proportion, and 
since the energy release is proportional to area 12561 of the strip, it is 
proportional to the beam size squared, or to v~d2 . On the other hand, 
the energy consumed by the formation of the axial splitting cracks 
in the compression failure zone is proportional to the area h' d of this 
zone (zone 12341), which is proportional to d rather than d2 . The 
mismatch---the energy release increasing with the size as d2 and the 
energy consumed increasing as d-must obviously cause size effect. 

Even if the other competing theories of size effect have some merit 
(which they might), they cannot ignore this energetic source of size 
effect, which operates inevitably. They would have to be regarded as 
a secondary source of size effect, additional to the energetic one. 

It is important to realize that there is no limit state (Bazant and 
Kim 1984), i.e., a state at which the material strength would be mobi-
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lized simultaneously along the entire failure surface corresponding to 
a strictly kinematic failure mechanism, which is the central hypothe
sis of plastic limit analysis underlying the current code specifications. 
A kinematic failure mechanism, seen at the end of laboratory tests, 
develops only in the post-peak softening regime, after the load has 
been reduced to a small value. 

Since the failure band width is roughly size independent, it be
comes more localized relatively to the beam size if the beam is larger, 
and less localized if it is smaller. For very small sizes, the failure zone 
in the compression strut occupies nearly the beam depth, and in that 
case the material strength is mobilized almost simultaneously over the 
entire failure surface. That is why the test results for small beams 
seem to follow plastic limit analysis relatively well and do not reveal 
appreciable size effect. 

3 Size Effect in Reinforced Beams Without Stir
rups 

The energy analysis of the truss model (Fig. 2) has led to the formula 
(Eqs. 9-11 in Bafant 1997): 

where 

( 
d)-1/2 

Vu= Vp 1 +do 

d 
do= wo-; 

c 

2ho c/d 
Cp = k ----

WoSc a/d 

(1) 

(2) 

(3) 

Here c = length of the compression failure band at maximum load, 
which may be considered to be roughly proportional to the beam 
depth; G f, Kc, E = fracture energy, fracture toughness and Young's 
modulus of concrete; ho = maximum failure band width (or length 
of compression splitting cracks), Sc = typical spacing of the splitting 
cracks; and wo == positive constant. Eq. (1) coincides with that 
proposed without recourse to the truss model by Bazant and Kim 
( 1984) and has the usual form of the size effect law. 

Eq. (1) has been fj.tted to the test data of Leonhardt and Walther 
(1962), Rusch et al. (1962), Karri (1967), Bahl (1968), Taylor (1972), 
Chana (1981), Bafant and Kazemi (1991), Shioya et al. (1989), 
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Walraven (1978), and Walraven and Lehwalter (1994), and Kim and 
Park's data (1994). The values of parameters do and Vp were opti
mized for each of these data by optimum fitting in the plot of log Vu 

versus log d. This has been done by means of he standard library sub
routine for Levenberg-Marquardt nonlinear optimization algorithm. 

An alternative way to fit the data and optimize the values of pa
rameters d0 and vP is to convert Eq. (1) to a linear regression equation 
Y = AX + C in which 

X = l/d, Y = l/v~, A= C/d0 , C = l/v; (4) 

The linear regression with uniform data weights, however, implies 
a different weighting of the data than the nonlinear optimization in 
the aforementioned doubly logarithmic plot. The weighting of the 
latter is more realistic, for good reasons (see Sec. 6.3.6 in Bazant and 
Planas 1998). 

On the other hand, linear regression plots are most suitable for 
visual evaluation, and are therefore used for presenting the optimum 
fits of the data in Figs. 2 and 3. However, the optimum values of do 
and vP shown in each figure have been obtained by nonlinear regres
sion in the doubly logarithmic plot. The agreement with the energetic 
theory of size effect seen in the plots is quite satisfactory, especially 
for the data of Leonhardt and Walther, Bafant and Kazemi, Shioya 
et al., Walraven, Walraven and Lehwalter. 

Fig. 4 shows all the data sets put together in a doubly logarith
mic size effect plot in relative coordinates, taken as the relative shear 
stress at ultimate load ( vv.f Vp) versus the relative depth of the beam 
d/ d0 , where vp and do have. the values obtained by nonlinear opti
mization of the each data set separately. If there were no scatter and 
the energetic theory were perfect, all the data points would have to 
lie in this plot on one curve, and so the deviation from the size effect 
curve shows the errors. The plot in Fig. 4 shows the overall scatter 
under the assumption that the correct parameter values are know, 
i.e., it shows how good is the form of the formula but not how good 
are its parameter values. But it cannot be regarded as a validation of 
the size effect theory because the different data sets were put together 
by using the theory. The validation depends on the aggregate of all 
individual data fits (Figs. 2 and 3). 

The problem of prediction of parameters do and Vp from the strength, 
composition, maximum aggregate size, fracture energy (or tough
ness), effective fracture process zone length, characteristic length of 
concrete, etc., is theoretically formidable. Empirical rules will have 
to be developed. 

Eq. (1) was derived by Bafant (1997a) under the assumption that 
the stress transmitted across the compression failure band is vanish-

2068 



,,-...__ 
ro 
~ 

~ 
~ ·-:::l 

> 
'-' 

N ,,-...__ 
:::l 

> --........ 
'-' 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 

Leonhardt 
& Walther (1962) 

0 0 

0 
0 

0 0 
0 

dmax = 606 mm 

d0 = 255 mm 

v = 1.92 MPa 

0 200 400 600 

Bafant & Kazemi (1991) 
· (Unanchored bars) 

0 

dmax = 163 mm 

d
0 
= 202 mm. 

v = 4.18 MPa 

4 

3 

2 

0 

0.7 

o~ 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 

Bahl (1968) 

0 
d =1200 mm max 
d0 =251 mm 

vp = 1.4 MPa 

0 500 1000 

Bafant & Kazemi ( 1991) 
(Anchored bars) 

dmax = 330 mm 

d0 = 8.78 mm 

vp = 10.21 MPa 

1500 

0 50 100 150 200 0 l 00 200 300 400 

12 

10 
Shioya & al. (1989) 1.2 

1.0 
0 Kim & Park ( 1994) 

0 

8 0 0.8 
0 

6 0 0.6 
0 

4 0.4 

2 0 0.2 

dmax = 3000 mm 

d0 =557 mm 

vp = 0.77 MPa 
0 -1--~~~~-.--~--r~ 0.0 

drnax = 915 mm 

d0 =400 mm 

vp = 1.99 MPa 

0 1000 '2000 

0.30 

0.25 

0.20 

0.15 

0.10 

0.05 

0.00 
0 

3000 0 

Walraven & 
Lehwalter (1994) 0 

200 400 600 800 1000 

0 

d = 930 mm max 
0 do= 128 mm 

v = 5.76 MPa 

200 400 600 800 1000 

d (mm)-
Fig. 2 Beams without stirrups: linear regression fits of test 
data by various investigators. 

2069 



~ 
~ 

~ 
~ 

•M 

:::s 
;.> 
~ 

N ,..-.... 
:::s 

< 
~ 

~ 

0.8 ~-------~ 
Rusch (1962) 

0.6 

0.4 
d =262mm max 

0.2 d 0 = 144mm 

Vp = 1.95 MPa 
0.0 -1-----.....------------1 

2·° Kani (1967) 

d = 1097 mm 
1.5 max 

d0 =387 mm 

vp=2 MPa ~ 
1.0 

8 

0.5 

0 
ei 
0 
0 

0 

0 

0 100 200 300 0 200 400 600 80010001200 

1.4 -.----------

1.2 

1.0 

0.8 

0.6 

H.P. Taylor (1972) 

0 

0 

8 
0 

8 
0 

0 
0 

0 

0 

dmax = 930 mm 

d0 = 863 mm 

v = 1.28 MPa 0.4 -+---~ _ __,_ ___ ------1 

0 250 500 7 50 100 

2.5 ..,.-----------~ 
Walraven ( 1978) 

2.0 (series A) 

1.5 0 

1.0 
d = 720 mm max 

0.5 d0 = 153 mm 

vp = 1.66 MPa 
0 .0 -'r--------.!;----__J 

0.8 ..,...-----------. 
Chana (1981) 

0.6 

0.4 

0.2 

0 
0 

0 
0 0 

~ 
8 

0 0 
0 

8 

dmax = 356 mm 

d0 =196mm 

vp:: 2.06 MPa 
0.0 .+-----,-----'T'-----.---~ 

0 100 200 300 400 

4 ..,.....---------~ 
Walraven (1978) 

3 

2 

1 

(Series B) 

drnax = 720 mm 
d0 =31 mm 

v = 2.72 MPa 
0-r--------~---' 

0 200 400 600 800 0 200 400 600 800 

d_J111m) 
Fig. 3 Beams without stirrups: linear regression fits of further 
test data. 

2070 



N 
~ 

I-< 

> 
I 

;:::! 

> 
'-_./ 

............ 

...-I 

5 
0 Rusch (1962) 

8 6 Leonhardt (l 962) 

2.5 -
o Kani (1967) 
v Bahl (1968) 
o Taylor (l 972) 

8 ··· ... Q 

1 -r---.,.__T·_· _§:::_ __ ::.:il:;i····a:····g·::::::o,::•::::;·················o····· 

a ~·''~~···.B·············<. 

o Chana (1981) 

Shioya et al. (1989) 

0.5 -

0.1 

~ ~~~······· .... 
Bai.ant & Kazemi SI (1991) 
Bai.ant & Kazemi S2 (I 991) 

• Kim & Park (1994) 

A Walraven series A (1978) 
v Walraven series B (1978) 

v~ ···· .. ~ 
:~ + Walraven & Lehwalter (1994) 

I I I I 

0.1 0.5 1 5 10 50 

log(d I do) 

Fig. 4 Beams without stirrups: comparison of all test data 
sets with Bafant's size effect law. 

0.20 
Walraven & Lehwalter 

0.10 
Walraven & Lehwalter 

0.16 (Series V4) 0 0.08 (Series V3) 0 

Vu and vr 
0.12 inMPa 

0.06 0 

0 

0.08 0 0.04 
d =760m d max= 760 mm 

max 
0.04 do= 14 mm 0.02 do= 404mm 

0.00 
vp = 19 MPa 

0.00 
vp= 6.06MPa 

0 200 400 600 800 0 200 400 600 800 
d (mm) 

Fig. 5 Beams with stirrups: comparison of Kim and Park's 
data with Bafant's size effect law. 

2071 



ingly small. This assumption is on the safe side, however, a study 
of compression failure in general (Bafant and Xiang 1997) indicates 
that, at maximum load, this stress might have a significant value rJ,, 
even in absence of stirrups. In that case, an analysis of the type 
presented in Bazant (1997a) leads to an extended formula · 

( 
d)-1/2 

Vu = Vp 1 + do + Vr (5) 

in which Vr is a non-zero residual strength. The question whether rJ,, 
and thus also v.,., can have non-negligible values in a beam without 
stirrups needs to be settled in future research. 

4 Size Effect in Reinforced Beams With Stirrups 

We study only the usual case when the stirrups are uniformly and 
densely distributed. Because the stirrups help to confine concrete, 
it is now logical and safe to assume that the stress rJr transmitted 
across the compression failure band has a non-negligible value. The 
energy analysis of the failure of the compression strut in the truss 
model (Eq. 21-23 in Bazant 1997a) leads to the same formula as Eq. 
(5) but with different expressions for the coefficients: 

d 
do= wo

e 
(6) 

(7) 

e is angle of inclination of the compression strut from the hori
zontal, which may be determined from the strain compatibility con
dition of the classical truss model (Collins 1978). 

Unfortunately, only very few data showing size effect are available 
in the literature, for the case of beams with stirrup reinforcement. 
Only Walraven and Lehwalter's data (1994) are sufficiently relevant 
to the size effect. These data have been fitted using the Levenberg
Marquardt nonlinear optimization algorithm. Fig. 5 shows the linear 
regression plot of these data, with d as the coordinate and 1 / (Vu -v, )2 

as the ordinate. The optimum values of the parameters are given in 
the figure. 
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Conclusion 

The size effect formula obtained from the energetic fracturing truss 
model agrees quite well with the available test data for beams both 
without and with stirrups. For beams with stirrups, however, more 
extensive experimental validation is needed. 
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