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ABSTRACT: Discrete crack model offers realistic modelling of physical discontinuities and thus plays an 
important role, in verifying the rationality of certain codal provisions as used in the design of concrete structures. 
The present work aims at examination of minimum reinforcement requirement in concrete flexural members 
using cohesive crack approach. The quasi-brittle failure of reinforced concrete beam with minimum steel is 
modelled by adopting fracture mechanics model for concrete and an empirical model for interface bond. The 
initial finite element model does not contain any predefined contact regions. Exponential softening law is used 
to approximate tension-softening behaviour of concrete. The size dependent tensile strength of concrete is 
computed using Carpinteri's multifractal scaling law. The effects of concrete strength and member size on 
the minimum steel requirement are studied and compared with the provisions specified in various international 
design codes. 

INTRODUCTION 

The provision of steel reinforcement bars in the ten­
sile zone of flexural members is to off-set the inher­
ent weakness of concrete in tension and to enable the 
concrete in compression zone to develop its full ca­
pacity. The failure mode of reinforced concrete mem­
bers depend on structural geometry, material proper­
ties, load configuration and also on the amount, lo­
cation and orientation of reinforcing steel. Debond­
ing and slipping at the rebar-concrete interface influ­
ences the development of transverse cracks in con­
crete. Study of the behaviour of cracks in a structural 
member is of crucial importance to assess its reliable 
load carrying capacity. Current strength design of re­
inforced concrete beams is based on a strength-based 
failure criterion in conjunction with stress equilibri­
um, strain compatibility and constitutive laws of ma­
terials. In the conventional design methods, it is diffi­
cult to account for the debonding and slipping effects 
on the crack bridging action of the reinforcing steel. 
Hence empirical approaches are used to account for 
cracking. The complexity of the problem make it im­
perative to adopt robust computational procedures to 
accurately model the fracture mechanisms in concrete 
and at the bi-material inte1face. Discrete crack model­
s simulate the development of discontinuities in rein­
forced concrete (RC) members in a realistic manner. 
The present work aims at examination of minimum 
reinforcement requirement in concrete flexural mem­
bers by studying the crack bridging action of the re­
bars. 
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Minimum reinforcement requirements applies to 
flexural members, which for architectural or other 
reasons, are larger in cross-section than required for 
strength. This is required to prevent sudden failure of 
reinforced concrete member subsequent to concrete 
cracldng. With minimum tensile reinforcement, the 
computed moment strength of a cracked RC section 
should be greater than that of the corresponding un­
reinforced concrete section computed from its mod­
ulus of rupture. The current codal provisions related 
to the minimum steel in concrete beams are essential­
ly empirical in nature without regard to the fracture 
processes involved. Fracture mechanics approaches 
based on a single crack have been reported to study 
the minimum tensile steel. The minimum reinforce­
ment requirement for concrete flexural members was 
examined using principles of linear elastic fracture 
mechanics (Baluch et al. 1990). Bosco & Carpinteri 
(1992) proposed a minimum reinforcement ratio for 
concrete beams. An empirical transitional brittleness 
number was suggested to represent ductile to brittle 
failure modes. Hawkins & Hjorteset (1992) proposed 
minimum reinforcement ratio based on finite element 
studies using the fictitious crack model. A new pa­
rameter called fracture strength was defined which is 
a function of material fracture parameters and the size 
of the beams. Gerstle et al. (1992) proposed a mini­
mum reinforcement ratio which is independent of the 
yield strength of steel. 

In the present study, the quasi-brittle failure of re­
inforced concrete beam with minimum steel is mod­
elled by adopting Hillerborg's fictitious crack mod-



el for concrete and an empirical model to describe 
debonding and slipping at the bi-material interface. 
The effects of concrete strength and member size on 
the minimum steel requirement are studied and com­
pared with the provisions specified in various interna­
tional design codes. The codal provisions are exam­
ined from the fracture mechanics perspective by per­
forming numerical experiments on a three point bend 
concrete beam using CoMICS program. First a plain 
concrete three point bend beam is analyzed by using 
exponential softening law for concrete fracture. Then 
the beam is modelled with the minimum reinforce­
ment Ast,min and the load capacity of the RC beam 
is compared with that of the unreinforced concrete 
beam. 

Crack modelling is a key point in the present study. 
In RC members, one cannot predict the behaviour up 
to ultimate state only by modelling of cracks. For the 
predictions to be realistic, bond behaviour between 
concrete and reinforcement, and non-linearity in com­
pression stress state of concrete must be considered 
and suitably be modelled. The stress paths for the ma­
terials are considered to be proportional and the scope 
of the analysis is therefore limited to study response 
of the member within elastic range. 

This paper is organized in the following way: Sec­
tion 2 outlines the fictitious crack model for analyz­
ing concrete fracture. Attention is focussed on iden­
tification of material parameters associated with this 
non-linear fracture model. Section 3 gives a brief de­
scription of the finite element program CoMICS used 
for the numerical simulations. Section 4 outlines the 
minimum steel provisions of various codes that are s­
tudied. Section 5 presents the details of the specimens 
studied and the results of FE simulations. A summary 
of the conclusions closes the paper. 

2 FICTITIOUS CRACK MODEL 

Hillerborg et al. (1976) proposed fictitious crack mod­
el (FCM) for progressive fracture in concrete. The 
essence of this model is the description of non­
linearity by means of a relationship between cohesive 
stresses and crack openings. Figure 1 shows the ter­
minology and concepts associated with the fictitious 
crack model. The stress state in the fracture process 
zone is presumed to depend upon a post-peak ten­
sile stress-separation relationship in tension (Figure 
2). Exponential tension-softening approximation (E­
quation 1) is used in the present study. 

CJ= ft exp(-~~ w) (1) 

Although this non-linear fracture mechanics model 
is physically very appealing, there are however nu­
merous difficulties associated with identification of 
material parameters. Proper description of the mate-
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Figure 2. Tension-softening model 
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rial parameters is essential for obtaining valid predic­
tions with cohesive crack models. 

2.1 Material properties 

The material parameters required for numerical anal­
ysis with cohesive crack model are the modulus of e­
lasticity E, the tensile strength of material ft, the frac­
ture energy G F, and the shape of the tension-softening 
diagram. The direct tensile test is the only test which 
gives these parameters. In view of the difficulties in­
volved in conducting stable tensile tests in laborato­
ries, these are usually obtained by conducting stable 
bending tests. 

2.1.1 Fracture energy 

According to the cohesive crack model, the fracture 
energy is the energy required to produce a unit area of 
traction free crack. RILEM Technical Committee 50-
FMC had recommended the work-of-fracture method 
proposed for concrete by Hillerborg (1985a) to deter­
mine the fracture energy G F. In the absence of test 
data, G F may be computed from the following empir­
ical relation given by the CEB-FIP Code (1990). 

(2) 

where fc is the mean compressive strength in Jvl Pa 
and K d is an empirical coefficient that depends on the 
maximum size of the aggregate. 
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Hillerborg (1985b) had reported the results of an 
extensive round-robin series of tests on nearly 700 
three-point bend beams. The fracture parameter G F 

was observed to be structure size dependent. The 
round-robin series test data are useful in providing the 
G F required for the numerical computation. 

2.1.2 Tensile strength 
Tensile strength of concrete is quoted according to 
the method used for determination. It can be deter­
mined either from direct tensile test or from Brazilian 
cylinder splitting test. It is generally agreed that ma­
terial tensile strength ft is geometry dependent. For 
flexural applications the modulus of rupture measured 
for beams is an experimentally convenient measure 
of strength owing to the relative simplicity of the test 
procedure. The strong size dependence of the rupture 
modulus has been detected earlier in several experi­
mental investigations. Scaling laws were proposed by 
Ba:lant (Bafant 1984) and Carpinteri et al. (Carpinteri 
et al. 1997) to arrive at the nominal strength for prac­
tical range of specimen sizes. In the present study, the 
following approximations are made in arriving at the 
nominal strength for the particular specimen geome­
try under study. 

The direct tensile strength is the most appropriate 
measure from the point of crack initiation and growth. 
The asymptotic uniaxial tensile strength for a large 
size specimen, 1: is approximated to be ten percent of 
the uniaxial compressive strength fe of the material. 
Thus: 

(3) 

Then the multifractal scaling law (MFSL) proposed 
by Carpinteri et al. (1997) is used to arrive at the nom­
inal strength for the particular specimen geometry un­
der study. 

In the FCM, the characteristic length Zeh is a mea­
sure of the length of the fracture process zone. It is 
defined as 

EGF 
lch = --

J/ 
(4) 

According to the MFSL, the nominal tensile strength 
ft is related to the member size D: 

[ 
l l 1/2 

ft = 1: 1 + ;; (5) 

The characteristic length Zeh makes the transition be­
tween a range of sizes (usually coincident with the 
laboratory-testing sizes) where the scaling effect is 
pronounced and the larger sizes, where the scaling can 
be neglected and a constant value of strength J: can 
be defined. Since leh is a function of ft. Equation 5 is 
to be solved iteratively. 

3 COMPUTER PROGRAM - CoMICS 

CoMICS (Computational Model for Investigation of 
Cracks in Structural concrete) is a special purpose 
program with interactive graphics facilities (Prasad 
2000) developed duly addressing the following main 
issues related to discrete crack models in the finite el­
ement analysis of concrete members: 

1. An efficient mesh discretization technique, 

2. an accurate criterion for nodal release, 

3. realistic models for contact between uniform me­
dia and non-uniform media, 

4. automatic remeshing scheme to model advanc­
ing crack and bond-front, and 

5. a reliable solution algorithm. 

An iterative procedure based on verification of e­
quilibrium condition and congruence condition has 
been formulated to solve the non-linear problem. 
Concrete is modelled with four-nodded bilinear 
quadrilateral elements with selective-reduced inte­
gration technique to improve bending behavior. Sin­
gular elements are not used at the fictitious crack 
tip following the assumption of singularity cancel­
lation inherent in the cohesive crack model. In the 
present study the convergence is verified by means 
of the congruence condition that compares the cal­
culated reaction at the crack tip to the closing force 
in the crack line. The non-linear problem is solved 
by incremental-iterative procedure, based on Newton­
Raphson scheme. The crack propagates along the 
inter-element boundaries. The analysis determines a 
load factor associated with the incremental length of 
the crack. 

Interface elements are used for implementation 
of constitutive equations for concrete in tension­
softening and also to model bond-slip relations at the 
steel-concrete interface. Theoretically, bond cracking 
is fracture and so the energy required to form the 
interface cracks should also be taken into account. 
For this the energy characterizing the complete stress­
separation curve at the bi-material interface must be 
available. However, due to scarcity of test data, no en­
ergy dissipation mechanism is considered at the steel 
concrete interface. A simpler and less general empiri­
cal formulation is adopted in this study. 

3.1 Mesh generation scheme 

In solving complex engineering analysis problems 
by finite element method, considerable effort is re­
quired in preparing data for a problem. This is par­
ticularly true in RC problems. To enhance the useful­
ness and efficiency of the FEM for RC application­
s, there is a need to develop exclusive mesh genera­
tion schemes that guarantee sufficiently refined mesh-
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es. A mesh generation module is developed by pro­
viding the option for two materials in the existing 
quadrilateral meshing algorithm(MSD), proposed by 
Krishnamoorthy et al. (1995). The adaptive strategy is 
based on the node patch based superconvergent error­
estimation technique proposed by Zienkiewicz and 
Zhu (1992) and integrated into an environment for 
automated mesh design for RC planar members. The 
mesh density distribution in concrete regions is gov­
erned by the node spacing requirements as obtained 
from the estimated eITor in the elastic strain energy 
in the uncracked member. For steel elements the el­
ement aspect ratio considerations provide convenient 
bounds on the size of the elements. 

In complex analysis of cohesive crack growth in 
concrete members, the uncertainty in the fracture 
mechanisms and the resulting approximations in the 
contact boundary conditions applied to the FE model 
can significantly outweigh the possible accuracy due 
to mesh refinement. The meshing strategy implement­
ed in CoMICS is a first step to provide a viable plat­
form to study crack growth in RC members. 

3.2 Bond-slip model 

Displacements are initially continuous at the material 
interface. At the onset of cracldng a localized slip oc­
curs at the bar-to-concrete interface. This is account­
ed in a direct way by gradual loss of bond through 
the provision of contact elements for bond. The bond 
stress Vs. slip relationship is one of the basic constitu­
tive property required in the non-linear finite element 
analysis of reinforced concrete structures. The bond­
slip relationship in CoMICS is based on the material 
constitutive law adopted by the CEB-FIP model code 
(1990). The average bond strength tangential to the 
bi-material interface is assumed to be 

Tbtu = 1.75~ (6) 

where f ck is the cube compressive strength of con­
crete. Bond stress-slip relationship for monotonic 
loading for average bond conditions is shown in Fig­
ure 3. It may be of interest to compare the bond-slip 
model with the tension-softening model for concrete 
(Figure 2) dissipating a finite quantity of energy G F 

during the progressive failure process. Though these 
two types of constitutive relations are quite similar as 
far as the failure process is concerned, no account has 
been made for the energy dissipation in the bond fail­
ure. 

3.3 Bond-split model 
CEB-FIP model code (1990) relates the bond split­
ting strength to the characteristic cube compressive 
strength of the concrete f ck. The splitting strength at 
the bi-material interface is assumed to be 

(7) 

BOND STRESS 'tbt (MPa) 

'tbtu S 1 = 3.0 mm 

S 2 =Rib Spacing (mm) 

'tf = 0.40 *'tbtu 

_L ______ _ 
I 

'tf -----

S2 
SLIPS (mm) 

Figure 3. Bond-slip model 

The bond-split model is included in CoMICS to pro­
vide generality in the finite element program. Split­
ting bond failure is not critical for the problem under 
study. 

3.4 Crack modelling 
Following difficulties arise in the use of the estimated 
nodal stress to model discrete crack propagation by 
nodal release technique: 

1. In the displacement based finite element method 
equilibrium is only satisfied in a "weak" sense by 
equivalent nodal forces and evaluation of stress 
fields is prone to eITor. 

2. Strength criterion based on maximum tensile 
principal stress is valid to initiate fracture at a 
point. But in finite element discretization, the 
point contact is represented by line contact with 
finite dimension. 

3. In case of contact between dissimilar media (eg. 
steel-concrete interface) the stress field is discon­
tinuous as a result of the abrupt change of mate­
rial property. 

4. Inadequate nodal release criterion leads to severe 
convergence problem in the non-linear analysis 
of contact problems and thus seriously limits the 
applicability of discrete crack model in analy~­
ing multiple cracks in reinforced concrete appli­
cations. 

In CoMICS the element internal forces are used to 
derive physically meaningful criterion for nodal re-

y 
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(a) Line contact (b) Contact element 

Figure 4. Line contact in FE discretization 
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lease in conjunction with the cohesive crack model­
s used to model fracture. The criterion followed is 
based on FE nodal force F and the admissible trac­
tions on the element boundaries. The closing force C 
at the cohesive crack tip, P (Figure 4) is, 

Cn = f
1 

Tn (6un) JNdr + j 0 

Tn (6un) JN+ldr (8) lo -1 

For no slip (6un = 6ut = 0) condition r repre­
sents the material strength parameters. The force cri­
terion to describe cohesive mode I fracture in con­
crete is Fn = Cn. The crack propagation angle is 
assumed to be perpendicular to the direction of maxi­
mum principal stress. To implement this criterion, an 
inter-element boundary at the crack tip node should 
be available in the crack propagation direction. 

On similar lines, the force criterion to describe 
bond-slip at rebar inte1face can be written as Ft = 
Ct. At dissimilar contact the debonding front is con­
strained to develop along the interface. In such case, 
the coexisting orthogonal stress is reduced linearly in 
the subsequent analyses. The contact models are im­
plemented in CoMICS together with efficient finite el­
ement meshing/remeshing strategies. 

4 MINIMUM STEEL - CODAL PROVISIONS 

The comparison is provided for the following con­
crete frame design codes: 

• U.S. (ACI318-1999) 

• British (BS8110-1997) 

• Indian (IS456-2000) 

• New Zealand (NZS3101-1995) 

ACI building code (ACI3 l 8 1999) specification for 
the minimum flexural reinforcement requirement is a 
function of concrete strength f~ (psi), yield stress of 
steel fy (psi) and member dimensions (in). The mini­
mum steel (Ast,min, in2

) to prevent sudden failure of 
flexural members, shall not be less than that given by 

{3/fc } Ast,min = T b d and 200 b d/fy (10) 

The 1997 British standard code provision (BS8110 
1997) for minimum reinforcement (Ast,min, mm2

) in 
flexural members is 

Ast,min = 0.0013Ac (11) 

where Ac is the total concrete area in mm2
. Yield 

stress of steel fy = 460M Pa. 

Btireau of Indian standard code (IS456 2000) pro­
vision for minimum reinforcement in flexural mem­
bers (Ast,min, mm2

) is independent of concrete mate­
rial properties: 

Ast, min 
0.85 b d 

fy 
(12) 

where f y is the yield stress of steel in MP a, b and d 
(mm) are member breadth and effective depth respec­
tively. 

New Zealand code (NZS3101 1995) provision 
for minimum reinforcement in flexural members 
(Ast,min, mm2

) is dependent on concrete material 
properties: 

/Tc 
Ast,min = 4 fy b d (13) 

where f y is the yield stress of steel in MP a, b and d 
(mm) are member breadth and effective depth respec­
tively. 

5 ASSESSMENT BASED ON DISCRETE 
CRACK MODEL 

The finite element mesh for the three point bend beam 
specimen considered for this numerical experiment is 
shown in Figure 5. The details of the geometry and 
the material properties are given in the Table 1. The 
yield stress fv adopted for the analysis of specimen 
with BS code specified steel is 460 MPa. The size de­
pendent tensile strength of concrete is computed using 
Carpinteri's multifractal scaling law. G F is computed 
using the empirical relation given in Equation 2 with 
Kd = 10. The minimum reinforcement according to 
the various codes for the beam specimen under study 
are given in Table 2. The plain concrete beam (PCB) 
has a load carrying capacity of 15.64 kN with expo­
nential softening model. The corresponding moment 
capacity of this three point bend beam is 4.184 kN­
m. Self weight of the beam is not considered in the 
analysis. 

A beam with reinforcement less than the minimum 
fails due to the propagation of a single crack that de­
velops at the section of maximum bending momen­
t. Initially there are no contact elements at rebar­
concrete inte1face in the FE mesh. They are insert­
ed into the model when the criterion for initiation or 

Figure 5. FE mesh to verify minimum steel 

1045 



Table 1. Details of the RC beam 

Length of beam 
Clear span 
Depth of the beam 
Effective beam depth 
Span to depth ratio 
Beam thickness 
Concrete 

Young's modulus 
Poisson's ratio 
Tensile strength 
Compressive strength 
Cube strength 
Mode I fracture energy 

Steel 
Young's modulus 
Poisson ratio 
Yield strength 

Tangential bond strength 
Splitting bond strength 
Rib spacing (assumed) 

L 1220 mm 
l 1070 mm 
D 200 mm 
d 175 mm 
l/d 6.11 
b 125 mm 

Ee 29270 MP a 
Ve 0.195 
ft 4.10 MP a 
Jc 30.0 MP a 
fck 37.5 MP a 
Gp 100 Nim 

Es 200 000 MP a 
Vs 0.30 
fy 415 MP a 
lbtu 10.72 MP a 
tbnu 6.12 MP a 
S2 7.5 mm 

Steel elements 
connected to contact 
elements 

Figure 6. Discrete crack growth and debonding 

propagation is exceeded. The reinforcement will de­
form when it is stressed. The geometry of the spec­
imen is updated at the end of each analysis which 
means that the last configuration of the structure is 
assumed to be the reference configuration for the new 
mesh obtained following remeshing. 

In the analysis four debonding fronts and one crack 
are initiated and propagated as shown in Figure 6. 
The reinforcement for this specimen correspond to 
the minimum requirement specified by the ACI code. 
For the sake of clarity only part of the beam is shown 
and the displacements are magnified 100 times. The 
analysis is terminated when the stress in the rebar at 
the notch location reached eighty percent of the yield 

Table 2. Comparision of moment capacities 

Code Ast,min r lO~:st 2 Load Moment 
mm2 % kN kN-m 
0.00 0.000 15.64 4.184 

ACI 72.9 0.332 16.03 4.288 
BS 32.5 0.149 9.39 2.512 
IS 44.8 0.205 11.75 3.143 
NZS 72.2 0.330 15.80 4.227 

stress. At this stage, the steel stresses are subjected to 
a rapid increase with a small increment in load. Con­
verged equilibrium states are obtained till the termi­
nation of the analysis. 

It is of interest to compare the predicted momen­
t capacity of the specimen with service moment ob­
tained from the strength of materials approach: 

Met = ft G b D
2

) (14) 

l'Ylet computed with the size dependent tensile strength 
is 3.417 kN-m. The corresponding load on the mem­
beris 12.77 kN. 

For the specimen studied, the minimum steel spec­
ified by the ACI & NZS codes is found to be rea­
sonable whereas the BS & IS code requirements for 
the same is on lower side. The moment capacities ob­
tained with the BS & IS code minimum steels are 
less than the ultimate moment capacity of the mem­
ber obtained with exponential tension-softening mod­
el. They are also less than the service moment capac­
ity Met computed from Equation 14. The prediction­
s are sensitive to the tensile strength parameter and a 
rational value for ft based on Carpinteri's multifractal 
scaling law, is used in the present analysis. Modulus 
of rupture specified by the IS code for this concrete 
specimen is 4.287 MPa. 

5 .1 Parametric study 

The intent of the study is to predict the effects of con­
crete strength and the member size on minimum steel 
requirement so as to provide an understanding where­
by additional research could provide needed refine­
ments and improvements to the design provisions. 

Table 3. Details of parameters for varying f~ 

E 
Gp 
ft 

l/d 
ACI 
BS 
IS 
NZS 

Compressive strength f c (MP a) 
25 30 35 40 

MPa 29240 31072 32711 34200 
N/m 95 100 120 132 
MPa 3.60 4.10 4.70 5.31 

6.11 6.11 6.11 6.11 
mm2 72.9 72.9 77.9 83.3 
mm2 32.5 32.5 32.5 32.5 
mm2 44.8 44.8 44.8 44.8 
mm2 65.9 72.2 78.0 83.3 
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Figure 7. Effect of concrete strength (D = 200 mm) 

5.1.1 Concrete strength 

The material properties associated with the four nom­
inal concrete strengths used in this study are given in 
Table 3. Beam depth adopted for this specimen is 200 
mm. Figure 7 shows a comparison of predictions of R­
C beam load capacity for different concrete strengths 
with that of plain concrete beam (PCB) specimen. The 
service load for the specimen Pel is calculated based 
on Equation 14. The predicted loads for the beams 
with the BS & IS specified steels are less than the ser­
vice load Pel computed for the plain concrete beam 
specimen in the range of concrete strengths studied. 
The design provisions in these two codes need to con­
sider the concrete compressive strength in determin­
ing the minimum steel in flexural members. 

5.1.2 Member size 

Four beam specimens with different geometrical ra­
tios are studied here to predict the structure size-effect 
on minimum steel requirement. Compressive strength 
of concrete fc = 301\II Pa. The size dependent tensile 
strength ft, computed based on Carpinteri's multifrac­
~al scaling law for the different beam depths is given 
m the Table 4. The deformed mesh at the time of anal-

Table 4. Details of parameters for varying D 

E 
Gp 
ft 
l/d 
ACI 
BS 
IS 
NZS 

Member depth D (mm) 
100 150 200 250 

MPa 29270 29270 29270 29270 
N / m 100 100 100 100 
MPa 4.62 4.30 4.10 4.05 

mm2 

mm2 

mm2 

mm2 

12.6 7.9 6.1 4.8 
35.4 56.2 72.9 93.7 
16.3 24.4 32.5 40.6 
21.8 34.6 44.8 57.6 
35.1 55.7 72.5 92.8 

25 

20 

~ 15 

1 ACI 
2 NZS 
3 PCB 
4 Pel 
5 IS 
6 BS 

'"O ro 
0 

r-J 10 

5 

50 100 150 200 250 
Beam depth [mm] 

Figure 8. Effect of member size Cf c' = 30 MPa) 

ysis termination for all the specimens is typical to the 
one shown in Figure 6. Load versus member size plots 
for the four specimens studied are compared with the 
corresponding plain concrete members in Figure 8. 

6 CONCLUSIONS 

Minimum reinforcement in RC beams is studied from 
the fracture mechanics perspective by performing nu­
merical experiments on a three point bend concrete 
beam. The effects of concrete strength and member 
size on the minimum steel requirement are studied 
and compared with the provisions specified in vari­
ous international design codes. The following obser­
vations can be made from the present study. 

1. The quasi-brittle failure of reinforced concrete 
beam with minimum steel is realistically mod­
elled using the efficient meshing/remeshing s­
trategies available in the CoMICS program. 

2. For the specimen studied, the minimum steel 
specified by the ACI & NZS codes is found to be 
reasonable whereas the BS & IS code require­
ments for the same are on the lower side. Load 
capacity of beams with minimum steel specified 
by BS & IS codes is less than the service load 
capacity Pel of the plain concrete member. 

3. The design provisions in BS & IS codes need 
to consider the concrete compressive strength in 
determining the minimum steel in flexural mem­
bers. 

Presently work is in progress to extend the scope of 
the analysis to the range of non-proportional stress 
paths. Further studies using CoMICS are directed to 
achieve rationality with respect to the codal provision­
s for improved design of RC members. 
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