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ABSTRACT: Modelling of fluid-flow and the resulting effects on shrinkage and microcracking by means of a 
combination of two lattice models are presented. For the moisture transport, a Lattice Gas Automaton (LGA) 
is adopted since it can effectively model moisture loss, whereas for cracking simulation a Lattice Fracture 
Model (LFM) is used. The resultant moisture gradients are translated into strains by means of a shrinkage co­
efficient. Strains yield shrinkage stresses, which are applied as pre-stresses on the sample in order to invoke 
cracking. The principle of the coupling of two lattice models is explained. Some examples of preliminary 
analyses on a homogenous lattice and a lattice containing a single large aggregate are presented. Problems and 
advantages to the approach are debated, and existing gaps in knowledge are indicated. 

1 INTRODUCTION 

Cement-based materials such as concrete have a 
very complex structure over many length scales. Ac­
cording to Wittmann (1983), concrete can be mod­
eled at three different length scales: macro, meso 
and micro. Concrete is a random composite at each 
scale. At the macro-level, the material is considered 
as an isotropic continuum (meter scale). At this level 
full-scale structures are considered. The meso-level 
operates at the millimeter scale and deals with ag­
gregates, pores, cracks and interfaces, while the mi­
cro-level presents the structure of the hardened ce­
ment in µm. 

Although the "three-level numerical concrete" is 
widely accepted, it is hardly possible to draw a line 
among the scales in concrete where to look for the 
causes of cracks. One of the proposed mechanisms is 
weakening of the concrete due to differential drying 
in the early stage of concrete hydration when mois­
ture gradients develop, long before any load is ap­
plied. Non-uniform drying causes drying shrinkage, 
which induces tensile stresses that could be much 
higher than the low concrete tensile strength and 
eventually cause cracking (Bisschop & Van Mier 
2001). 

The drying shrinkage behavior in concrete occurs 
at different scales: in the sample of 1 m3 (macro­
level) but also at or below the nanometer scale (cap­
illary condensation), which occurs in the "gel" phase 
of the cement paste (Bentz et al. 1995). Scales are 
simply incorporated into each other. A.t the mi­
crometer level, unhydrated cement particles, gel, 
crystalline hydration and porosity are observed 
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while at the millimeter scale, cement paste, aggre­
gates, and air voids are seen. Only recently drying 
shrinkage investigations have turned to the micro­
scale and microstructure of the concrete (Xi & 
Jennings 1992). 

The problem starts with the determination of the 
location of crack initiation. Weakening of the con­
crete due to differential drying is extreme in highly 
porous areas such as the porous interface transition 
zone (ITZ) around the aggregates. The size of the 
zone is extremely small (10 - 50 µm) and its micro­
structure has different properties than the rest of the 
bulk cement paste. Although very small in size, the 
ITZ is considered to be the weakest part of concrete, 
where cracking originates. The porosity in the ITZ is 
large compared to the cement paste (Mindess 1989) 
which causes low strength in this zone. This con­
firms that observations should be carried out at very 
small level (scales), which is rather complicated. 
Therefore numerical tools may be helpful to eluci­
date certain phenomena such as structure formation, 
crack growth and moisture transport (Sadouki & 
Van Mier 1997). 

The aim of the present study is to model fluid 
(moisture) flow in the interface zone. The problem is 
highly complex and three-dimensional (3D). At this 
stage a 2D approach is already quite challenging not 
in the last place due to computational limitations. 
Fluid-flow at macro-level is commonly modeled by 
means of the Navier-Stokes equations under the as­
sumption of continuity. The analytical solution of 
this equation exists only for very simple geometry. 
It certainly does not apply to heterogeneous and 
complex concrete microstructure (Rothman 1988). A 



numerical solution is needed, and it was applied 
through a statistical model for fluid-flow, Lattice 
Gas Automaton (LGA). In principle, it is possible to 
include complex microstructure into LOA although 
more research will be needed before this is accom­
plished. 

The moisture distribution calculated with the 
LOA serves as a "load" in the subsequent shrinkage 
analysis and crack growth simulations with the ex­
isting lattice fracture model. Differential moisture 
distributions lead to differential shrinkage, which in 
tum leads to differential strains and cracking. The 
problem to be resolved is to develop a realistic cou­
pling among the LOA model for moisture flow, ma­
terial structure, shrinkage and a mechanical model 
for crack growth. 

2 LATTICE MODELS 

2.1 Lattice Gas Automaton 

A Lattice Gas FHP model, named after the authors 
Frisch, Hasslacher & Pomeau (Frisch et al. 1986, 
1987) is applied for "numerical" moisture flow since 
the microscopic behavior of this lattice is very close 
to the Navier-Stokes equations for incompressible 
fluids at the macroscopic scale. LOA has been se­
lected for its application to single and multiphase 
flows in irregular geometries with accompanying 
chemical reactions i.e. exactly what processes in the 
ITZ (Rothman 1988). 

A cellular automaton is basically a computer al­
gorithm that is discrete in space and time and oper­
ates on a lattice of sites. The class of cellular auto­
mata that can model hydrodynamics is called Lattice 
Gas Automaton. Lattice gas cellular automata are 
special kind of gas with discrete velocity, in discrete 
time and space in which identical particles move on 
the lattice from one site to the other. Although with 
some drawbacks such as statistical noise and expo­
nential complexity, these are the mathematical mod­
els for systems in which many simple components 
act together and produce complicated behavior pat­
terns. Instead of solving Navier-Stokes equations di­
rectly, lattice gas cellular automata are introduced as 
polynomial approximation. 

The connection between the macro and micro 
world is through density (p) and momentum (pu). 
They can be replaced by the average number of par­
ticles per node p = J;N; (N; = d/7, O~ i ~ 6) and mo­
mentum pu = J;N;c; where c; is a velocity per node 
(c; = cos[l/3ni], sin[l/31d]). The density affects the 
flow of the fluid. Due to the difference in the densi­
ties between the nodes, particles propagate and col­
lide (Frisch et al. 1986) following, 

Vu= 0 (1) 

au 
Pat= -p(u * V)u- Vp + µV 2u (2) 

where u = the velocity; p = density; p = pressure; 
andµ= viscosity. 

2.2 Numerical modeling by LGA 

LOA is a simple, regular, triangular (hexagonal) 
mesh (Fig. la) where particles propagate and collide 
with each other according to a certain collision rule 
(Frisch et al. 1987). The collision rules depend on 
the type of lattice gas model. 

In the present case, a 7-bit FHP model (FHP III) 
is used with collision rule FHP5. The most important 
characteristic of this model is the maximum of seven 
fluid particles that rests at each lattice node. Six can 
move in any of six directions (Fig. lb) with a unit 
speed while the seventh is always at rest having zero 
velocity. Beside these so-called fluid particles, solid 
particles are present as well. They can be randomly 
distributed in the lattice in a certain percentage or 
concentrated at a certain area in the lattice. Their lo­
cation does not coincide with the location of the 
fluid particles. 

The collision rules will be different for the colli­
sion of two or three fluid particles or if one fluid 
particle collides with a particle at rest. Collision 
between a fluid and a solid particle or solid boun­
dary will be considered as a boundary condition. The 
size of the lattice is given by Xsize and Ysize. This 
is adopted as the size of the imaginary sample. The 
considered problem is drying of the sample. The 
LOA model has been adopted from previous satura­
tion model (Ktintz et al. 2001) which was modified 
for drying simulations. 
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Figure 1. (a) Lattice Gas Automaton, FHP model, (b) move­
ment of the particles with velocities (c;) in six directions. 

In the LOA program, the modifications also in­
cluded the presence of the aggregate (single or more 



aggregates inside the sample). The initial density is 
equal to 0.9. Drying is applied by assigning a density 
0.2 on the left side as presented in Figure 2. 

Boundary conditions are periodic (by default) 
along the top and bottom, considering that particles 
exit on one side and enter on the other. Periodic 
boundaries help to eliminate artificial edge effects 
typically present in a small-scale model (Bentz et al. 
1993). Periodicity is broken on the left side, intro­
ducing a barrier. The boundary condition, which is a 
specific collision rule, exists among fluid and solid 
surface. It is possible to recognize two extreme colli­
sion rules: specular or bounce-back reflection, de­
pending on the surface. Specular is a. reflection on a 
perfectly smooth surface while bounce-back is a re­
flection on a rough surface (Lavallee et al. 1991). 
The present boundary condition is expressed with 
the ratio r = specular/bounce-back (r = 1 for specular 
and r= 0 for bounce-back reflection). 

Two main numerical analyses will be presented 
here. One deals with the homogeneous material only 
and in the other a single aggregate is present in the 
middle to simulate an obstacle in the flow. 

2.3 LGA results 

The first analysis simulates drying of a homogene­
ous sample. Two boundary conditions were applied, 
r = 1 and r = 0. The initial wet stage is the same for 
both cases (Fig. 3a). After a certain number of itera­
tions or time steps in the program (90,000) drying of 
the sample is visible (Figs 3b, c). Different boundary 
conditions have an effect on the drying process (Fig. 
4). In the second analysis a solid obstacle in the form 
of an aggregate was placed in the middle. Since the 
solid particles are mostly concentrated in the middle 
forming an aggregate, the moisture is lost more 
quickly (the number of "fluid" particles rapidly de­
creases). The result is that the sample is dried out 
after 15,000 steps. 

p 

P2 = 0.9 

Pt =0.2 

Xsize 

Figure 2. Schematic presentation of LGA model with the dis­
tribution of densities at the initial stage. 
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Figure 3. (a) Initial wet stage, (b) dried sample after 90,000 it­
erations (r = 1), (c) dried sample after 90,000 iterations (r = 0). 

Different boundary conditions were applied: r = 0 
and r = 1 (Fig. 6). 

2.4 Drying profiles 

The drying process can be followed from the drying 
profiles. The calculation was made along the Xsize 
of the lattice taking into account the average density 
value of every point along the height of the sample. 
The two profiles in Figure 4 present the analysis 
with r = 1 and r = 0 boundary condition. Drying pro­
files with specular-reflection (r = 1) show great rate 
of the particle loss after first 5000 steps. As the 
number of iteration increases, the moisture gradient 
decreases and leads to the dried sample with equally 
distributed moisture content of 0.2. Bounce-back 
boundary condition showed a larger moisture gradi­
ent after first 5000 steps. This means that the shrink­
age cracking is dangerous only in the first stage. 
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Later on the moisture loss is slower, and the 
complete dried stage has not been reached after 
90,000 steps. Drying profiles for the "single aggre­
gate" sample gave a rather irregular picture which 
could be interpreted as an insufficient size of the 
LOA. The real comparison of the numerical results 
should be made with the experimental results (Fig. 
5). The moisture losses are related to time (t). This is 
presented in Figure 5a. The results :from the LOA 
show similar relation as in the experiments (Fig. 5b) 
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Figure 4. Density profiles due to drying at different time steps 
for (a) r = 1, (b) r = 0. 

but the comparisons could not be made completely. 
The size and time scale of the lattice gas "sample" 
are still unknown and consequently could not be 
compared to the size of the sample and the time in 
the experiments. 

2.5 Lattice Fracture Model (LFM) 

The existing Lattice Fracture Model (Schlangen & 
Van Mier 1992) has been used for the fracture 
analysis. For the "drying" analysis, certain modifi­
cations have been done as explained in this section. 
The lattice fracture model was chosen because of its 
good capabilities to simulate crack-patterns due to 
tensile mechanical loading. An equivalent beam 
(Fig. 7) of the lattice frame replaces the continuum. 

In the DIANA version of the lattice, two types of 
elements need to be defined in order to run fracture 
analyses: beam and continuum elements. Beam ele­
ments are only applied in the area where the cracks 
are expected. The lattice fracture model has the same 
geometry as the FHP lattice gas since they are both 
presented by a regular triangular mesh. In the lattice 
fracture model, triangles are constructed from beam 
elements. Heterogeneity can be modeled through an 

appropriate statistical distribution of strength and 
stiffness values assigned to the beam elements or by 
superimposing a particle structure of concrete and 
assuming properties according to the material phase 
in which they are located. A linear-elastic, purely 
brittle fracture law is adopted in the model. When a 
beam "cracks", it is instantaneously removed from 
the mesh. 

3 COUPLING THE TWO LATTICE MODELS 

3.1 Background 

The main reason for the coupling analysis is to allow 
for crack growth in concrete interface zone due to 
moisture flow and using the mesh similarities of 
both models. Shrinkage and crack growth are con­
sidered before the application of any mechanical 
load. 
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3.2 Comparison of the two lattice models 

The two lattice models can be combined due to their 
similarities, such as the same mesh geometry (Figs 
1, 9) and the same load application (at the nodes) . 
Having the same triangular shape, the function of 
lattice connections between each two nodes is dif­
ferent for each model. In the case of LGA, lattice 
connections are there just to provide a path for the 
particles to move. The propagation is done with ima-
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Figure 5. Moisture loss as a function time, (a) numerical analy­
sis, (b) experimental results (Bisschop & Van Mier 2001). 
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Figure 6. Example with single aggregate in the middle (a) wet 
stage after 400 iterations (r = 0). Drying simulation (b) after 
3000 iterations (r = 1), and (c) after 3000 iterations (r = 0). 
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Figure 7. (a) Regular triangular lattice of beam elements, (b) 
external forces and deformations of a beam (after Schlangen, 
1993). 
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Figure 8. Applied prestress load to a beam element. 

ginary ticks of a clock from one node to the other 
(on a unit-length path). Particles move with a unit 
speed such that momentum and mass are conserved. 
In the Lattice Fracture Model nodes are connected 
by beam elements with specified properties. 

Changes in these properties can influence the calcu­
lated stress and strain, and accordingly the fracture 
process. Both models are two-dimensional with the 
specified boundary conditions but in principle, ex­
tension to 3D is possible. 

3.3 Coupling 

The LGA analysis is performed on a relatively fine 
lattice. However, to reduce computational effort, the 
moisture content was calculated for every block of 8 
x 8 nodes in the LGA. Subsequently the fracture lat­
tice was projected such that the nodes coincided 
with the centers of these blocks. 

The computation proceeds as follows. First the 
moisture content (density h) is calculated with the 
LGA at each node. The density values at these 
points were used for the determination of the density 
gradients between each two nodes (L1h). After the 
calculation of L1h, the shrinkage strain Esh was cal­
culated as well as shrinkage stress O'sh following: 
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Esh =<Xs,,l:l.h (3) 

(4) 

where ash= drying shrinkage coefficient (0.003); Esh 

= shrinkage strain; E = Young's modulus (25,000 
MPa); O'sh = shrinkage stress (MPa). The same equa­
tions for shrinkage strain and stress as well as the 
element properties (ash. E) were used by Sadouki & 
Van Mier (1997) in a continuum-based approach. 

In LFM the load must be specified for each ele­
ment as force (F) and moment (M). Consequently a 
simple axial force (Eq. 5 & 6) derived from the 
shrinkage stress is applied to each beam (Fig. 8) on 
both nodes (i, j) as follows: 

M=O 

(5) 

(6) 

where A = cross-sectional beam area. As a subrou­
tine in the LGA, the nodal densities are used to cal­
culate nodal forces and moments, which serve as in­
put for the LFM. 

In the fracture lattice, the meso-structure of con­
crete is included. Three material phases are normally 
distinguished with aggregate, matrix and bond 
beams. In the first analysis, meso-structure has been 
omitted and a lattice with homogeneous elastic 
properties is considered (Fig. 9a). Continuum ele­
ments are placed on the top and bottom for the 
symmetry. The cracks are expected only in the area 
of the beam elements. The whole specimen was sup­
ported in y direction with the exception of the nodes 
at the right end which were supported in both x and 
y direction. Heterogeneity is simulated in the second 
example with a single aggregate model (Fig. 9b). 



(a) 

(b) 

Figure 9. Lattice Fracture Model: mesh with the supports (con­
tinuum elements supported on top/bottom), (a) homogeneous 
structure (b) with single aggregate in the middle. 

4 RESULTS AND DISCUSSION 

4.1 First example: homogeneous lattice 

A small percentage of solid particles (3%) was pres­
ent in the LGA. The solid particles were scattered 
randomly in the sample. LGA analysis was made 
with 90,000 steps (iterations), which was sufficient 
to follow the changes of the moisture flow in the 
specimen. Two limit boundary cases were taken into 
consideration: r = 0 and r = 1. 

In the present example, the lattice fracture model 
was considered to be homogeneous (all beams are 
given the same properties). For an applied load, only 
a single step was made in the fracture analysis. The 
size of the LFM mesh was 125 x 12, which was de­
creased for the computational reasons from 1000 x 
100 in the LGA. 

In Figure 10, the crack pattern is shown. The way 
that cracks will develop depends on the fracture law 
that is implemented in Lattice Fracture Model. At 
this moment the fracture law is convenient for me­
chanical loading in tension where realistic crack 
patterns are simulated. Under mechanical loading, 
the analysis runs always with a unit load and the 
stress in each element is calculated. The critical ele­
ment i.e. the element that has the highest stress, 
relative to its strength (Schlangen & Van Mier 1992) 
is removed at each step. 

With the moisture load from different LGA steps, 
the crack pattern (Fig. 10) will not be continuous 
since for every new LFM step, another moisture load 
is taken from LGA. As a consequence, elements will 
crack randomly in the area that dries out first. 
In the given example, the drying starts from the left 
side. The gray-scale of the sample changes from the 
left to the right symbolizing drying (lower RH) on 

the left side. If the same step from LGA would have 
been taken and used as input load for many fracture 
steps (not only once) then the crack pattern would be 
more continuous. Note that the LGA noise leads 
eventually to discontinuous cracking. In addition, 
the fracture law might affect the results. 

A number of additional remarks should be made 
on the LGA itself. The fracture results depend on the 
number of steps after which the results have been 
saved. If the step is bigger, more fluid particles will 
be "lost" in the drying process, which corresponds to 
faster drying. In the first example LGA moisture re­
sults are saved after every 5000 steps (Fig. lOa) and 
the results from every 5000 steps were used for one 
step in LFM. This means that at every new step in 
LFM, a new "moisture" load is taken. The important 
question is if a certain number of LGA steps could 
produce the most critical cracking pattern and what 
the number of these steps would be. The present 
model does not yield a solution. The cracks develop 
at random locations in the model, depending on the 

(a) 
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Figure 10. Deformations and cracks in LFM, (a) after 5000 
steps in LGA for r = 1, (b) after 90,000 steps in kGA, r.~= 1. 



moisture gradients. After 90,000 LGA time-steps, 
cracks were found spread over the complete sample 
(Fig. lOb). 

4.2 Second example: lattice containing a single 
obstacle in the middle 

Lattice gas simulations have been done with a single 
aggregate placed in the center of the LGA (Fig. 6). 
The percentage of the present solid particles was 
0.8% such that all-solid particles were concentrated 
in the middle, forming a big particle. The presence 
of the great concentration of solid particles and the 
adopted bounce-back boundary conditions (r = 0) 
accelerated the drying process, so there was no need 
to save LGA results every 5000 steps. Only 1000 
steps were sufficient. Figure 11 shows the moisture 
movement (by gradual changes in gray-scale) and 
the crack pattern. Three-phase material was used in 
the lattice fracture model by giving different strength 

Figure 11. Deformations and cracks in LFM, (a) after 1000 
steps in LGA, r = 0, (b) after 15,000 steps in LGA, r = 0. 

values for every phase with the lowest values in the 
interface zone around the aggregate. Only 15,000 
steps were sufficient to obtain a completely dried 
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specimen. Cracking started to develop randomly at 
the left side and then propagated in the ITZ, around 
the aggregate. 

5 CONCLUSION 

A cellular automata lattice gas FHP III model was 
used to analyze the moisture flow in porous media. 
It is a very simple method derived from statistical 
physics, which could give the complicated pattern of 
moisture behavior in porous concrete. 

The results show that it is possible to combine 
two different methods: lattice gas automaton (LGA) 
and fracture lattice analysis (LFM) taking into ac­
count their similarities and overcoming the differ­
ences. A number of drying simulations were carried 
out on homogeneous samples and samples contain­
ing a single large aggregate. The flow around the 
aggregate was clearly blocked, and future research 
should focus on the typical collision rule and/or 
boundary condition for flow around the aggregate. 

Different boundary conditions were used in LGA: 
specular reflection and bounce-back expressed as a 
ratio r = specular/bounce-back. They describe the 
behavior of the fluid particles after collision with the 
solid particles and the boundaries. In the first exam­
ple, the analysis with specular-reflection speeds up 
the drying process in comparison to the bounce-back 
boundary condition. On the other hand, the bounce­
back boundary condition gives higher moisture gra­
dients in the first steps and thus larger shrinkage 
strains, which causes more cracks at the left side. 

The cracking patterns in the LFM will depend on 
the applied boundaries. In the first example, with the 
homogeneous structure, cracks appear in the whole 
sample, starting from the driest part on the left. In 
the second example, cracldng is mostly concentrated 
around the aggregate. The obtained moisture loss vs. 
time curves compares well to the results obtained re­
cently in one-dimensional drying experiments. 
These experiments will be used in the future re­
search to scale the time in the simulations. 

The fracture process in the LFM has to be refor­
mulated. In particular addressing to the time-scales 
needed for the appearance of drying shrinkage 
cracks is considered essential. 
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