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Length Scales of Fiber Reinforced Cementitious Composites - a Review 
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Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 

Various models have been used by researchers to describe the tensile behavior of fiber reinforced cementitious 
composites, particularly the fiber-matrix interaction during loading. This paper examines some models using 
assorted mathematical methods including dimensional analysis and variational methods. The examination 
yields greater insight into the behavior of these materials, especially at the point of failure. Furthermore, 
length scales related to these materials are discussed, which show that high performance cementitious com­
posites (HP2C) are, from a mechanical point of view, a well designed match of two materials and their inter­
actions. 

1 INTRODUCTION 

It has long been recognized that the reinforcement of 
cementitious materials with fibers, whether steel, 
glass, or plastic, is an effective method for improv­
ing the intrinsic ductility of the matrix. Fibers im­
prove ductility by dissipative mechanisms in the vi­
cinity of the crack tip, which stabilizes crack 
activating growth (Rossi et al. 1986). Once the brit­
tle matrix has cracked, the overall composite behav­
ior is governed by debonding and frictional mecha­
nisms that develop along the fiber-matrix interface 
(see Figure 1). Along with these interface mecha­
nisms, fibers are pulled out of the matrix and/or 
yield (see, for instance, Gopalaratnam & Shah 1987). 
The energy that is dissipated by these plastic, frac­
ture, and frictional mechanisms increases the overall 
ductility of the composite material. The critical na­
ture of this micro-mechanical behavior on failure 
mode of fiber reinforced cementitious composites 
(FRCC) prompted intensive research activities 
aimed at optimizing the composite material behavior 
through mechanistic models of the fiber pullout be­
havior. A lot has been learned ever since Kelly iden­
tified a critical fiber length for an optimized matrix­
fiber composite behavior (Kelly 1964). 

At present, a new generation of high performance 
cementitious composites (HP2C) is emerging on the 
market with chemically and mechanically fine tuned 
strength, ductility, and durability properties. At this 
stage, it is useful to review the different length scales 
which determine the mechanical performance of 
FRCC and HP2C. This is the main focus of this pa­
per. 
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2 GOVERNING EQUATIONS 

The loading and pullout behavior of a single fiber 
is usually modeled from known parameters, includ­
ing the material behavior of the fiber, the matrix, and 
the matrix-fiber interface. These models often as­
sume that through the elastic loading phase, the fiber 
and matrix are bonded by the interface, which trans­
fers stresses from the fiber to the matrix. Assuming 
the fiber and matrix have not failed, an interfacial 
crack forms and propagates creating a debonding 
zone as the load increases. Shear stresses can also be 
transferred through the debonding zone through fric­
tional stresses. When the fiber becomes fully 
debonded, the fiber begins to slip as the imposed de­
flection increases. As slip increases, the fiber-matrix 
contact zone decreases. This causes the load transfer 
capability to decrease. 

There are three distinct phases in the loading and 
pullout of the fiber: the elastic stage, the onset of 
failure and/or yielding, and the fiber slip stage (if 
any). The first two phases will be considered using 
dimensional analyses of various FRCC models. Two 
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Figure 1. Fiber Bridging of Concrete Cracking 



Fiber 

Matrix 

R* = radius of matrix only 
cqrrying shear stresses 

r1= radius of fiber 

Figure 2. The Three-Body Matrix-Interface-Fiber System 
(Budiansky et al. 1985). 

aspects in particular will be examined: transfer of 
elastic stresses along the fiber-matrix interface, and 
onset of FRCC yielding or failure. One of the sim­
plest micro-mechanical systems for fiber pullout 
studies is the three-body model introduced by Budi­
ansky et al. (1985) shown in Figure 2. This fiber 
loading model assumes that the fibers are aligned 
and regularly distributed in the matrix. The free body 
is composed of a fiber (fiber radius rt), and a matrix 
layer, separated by an interface layer of finite thick­
ness e = R * - ff. Let P = CTtAt be the normal stress re­
sultant at the free end of the fiber (or fiber force) 
over the fiber section At= nrr2 , crr the average longi­
tudinal fiber stress, and 'to the shear stress at the fiber 
perimeter at r = rr. Elementary force equilibrium 
over a fiber element of length dz gives: 

dcrr _ 2t0 

dz rr 
(1) 

and the momentum balance in the matrix reduces to: 

r dcrm + d(Tim) = 0 
dz dr 

(2) 

with CTrn = crzz the longitudinal stress in the direction 
of the fiber alignment, and 't = a the shear stress. 
In the interface zone rE ]r~:R * [, zr the longitudinal 
stress is assumed to be zero, which requires that the 
shear stress decreases with 1/r, i.e. from integration 
of the last term of Equation (2), 'trn(r,z)/-r0(z) = rr/r. 

With Equation (1) and (2) in hand, the various fi­
ber loading models differ only in the constitutive law 
applied for the three components of the three-body 
system. 

2.1 Elastic Embedment Length 

The elastic load transfer from the fiber to the matrix 
requires a certain embedment length. It is generally 
assumed that the shear stress at the interface obeys 
an elastic interface constitutive relation of the form 
(see Aveston et al. 1971; Leung & Li 1991, among 
many others): 

'to (z) = -k[[w]] = -k(w f (z)-w m (z)) (3) 
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where [[w]] = wr(z) - Wm(z) is the displacement be­
tween the fiber (subscript f) and the matrix (sub­
scri2t m). The slip modulus, k (of dimension [k] = 
MT2L-2

), is defined to be the shear stress per unit of 
displacement between the fiber and matrix. An esti­
mate of this slip behavior has been given by Budi­
ansky et al. (1985), by assuming a continuous elastic 
behavior of the matrix constituting the interface 
zone: 

r dw(r, z) = 2Erz = 'tm (r, z) = 't 0 (z) E.!:_ 

dr µm µm r 
(4) 

where µrn = Em/2(l+vrn) is the shear modulus of the 
matrix, Em the Young's modulus of the matrix, and 
Vrn the Poisson's ratio of the matrix. Integration over 
r, with the boundary conditions w(r = rf'z) =w/z) and 
w(r = R * ,z) =wm(z) yields the slip modulus: 

(5) 

Budiansky et al. (1985) also provide an estimate for 
the thickness of the interface zone: 

ln(R *Ir ) = 2 ln Yr + V m (3 - Yr) 
r 4Vi! 

(6) 

where vf and vm = 1 - vf denote respectively the 
volume fraction of fibers and matrix of the compos­
ite. For FRCC and HP2C the maximum fiber vol­
ume ratio is often restricted to Vr = 1 - 5% in order 
to maintain reasonable workability. Applying this to 
Equation (6) gives: 

R * Irr ""' 2.5 - 5 (7) 

This shows that the thickness e of the interface zone 
in FRCC and HP2C is typically on the order of 2-4 
times the fiber radius. Given the small values of fi­
ber radius of rr = 0.3 - 0.5 mm, e is on the order of 1 
mm, which justifies a posteriori the lumped interface 
behavior in form of Equation (3). This reduces the 3-
body system to a 2-body system separated by a 
(fixed) surface of discontinuity, where the displace­
ment is discontinuous, but the shear stress continu­
ous, i.e. 'tm(r = rf) = 'to. 

For this two-body elastic system, deriving Equa­
tions (1) and (3) yields: 

d2crr 2k 2k 
-----crr =--a 
dz2 rrEr rr 

(8) 

where we used an elastic fiber behavior, crr = Pl Ar = 
Erdwr Id z, with Er the elastic modulus of the fiber. 

E(z) = d~ m lr=rr is the longitudinal strain on the ma­

trix side of the interface, which is zero at the crack 
face., i.e. E(z =0) = 0, and increases along z due to 



Table l. Typical Values of Fiber and Concrete Material Pa­
rameters (Lim et al 1987, Rossi 1997). 

Tensile Strength 
Tensile Modulus 
Radius 
Total Length 
Embed. Length 

Steel Fiber 
500-1200 MPa 
200 GPa 
.3-.5 mm 
30-50 mm 
15-25 mm 

Normal Strength Concrete 
Fiber Volume 1-3% 
Tensile Strength 2-5 MPa 
Shear Strength 2-5 MPa 
Bond Strength 2-7 MP a 
Tensile Modulus 20-25 GPa 
Shear Modulus 
Slip Modulus 
FRCC Modulus 
Fracture Energy 

10-15 GPa 
1-3 GPa/m 
25-30 MPa 
5 J/m2 

High Strength Concrete 
Fiber Volume 3-5% 
Tensile Strength 8-20 MPa 
Shear Strength 8-20 MPa 
Tensile Modulus 50-60 GPa 
Shear Modulus 20-25 GPa 
Fracture Energy 30 J/m2 

the fiber-matrix stress transfer over the common in­
terface, until the strain in both matrix and fiber have 
the same value. Without solving Equations (8) and 
(2), by applying appropriate boundary conditions, it 
appears that the elastic stress transfer into the matrix 
is governed by a characteristic length: 

= ~rrEr = (E I )"2 fs 2k f µm (9) 

The illustration is straightforward by considering a 
linear transform of the spatial coordinate z = 8£ s z , 
where z = 0(1) H 8 = z Ifs • Using Equation (8) 
gives: 

( 
1 )Cl 2

cr 82 d~2r = crr -Ere (10) 

Inspecting the previous equation for 82 >> 1 shows 
that the fiber strain far from the crack face reaches 
the same value as the matrix, indicating a perfect 
elastic slip-less behavior of the composite behavior: 

02 >>1 HZ>> es : 
(11) 

As it is well known from homogenization theories of 
composite materials, this strain compatibility repre-
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sents a maximum elastic energy state, as both matrix 
and fibers deform in the same way, and can be con­
sidered, therefore, as an optimized composite behav­
ior. 

Conversely, for 82 << 1, according to Equation (1) 
and (10), the embedment length is too small to trans­
fer stresses from the fiber into the matrix. In be­
tween these limit cases, the gauge length es given 
by Equation (9) defines a minimum required em­
bedment length for an elastic stress transfer of fiber 
stresses bridging a crack, requiring a minimum fiber 
length Lr, typically 

Lr/2>4-5xes H8 2 =16-25»1 (12) 

For FRCC and HP2C, typical values of fiber and 
concrete material parameters, summarized in Table 
1, are Yr= 1-5%, rr = 0.3 - 0.5 mm, Er= 200 GPa, µm 
= 10 - 15 GPa for FRCC and µm = 20 - 25 GPa for 
HP2C; thus 

= Erln(R *Irr) = 2- 4 
fr 2µm 

(13) 

Hence, a fiber length to fiber radius ratio on the or­
der of Lr /rr > 16 - 40 is required to ensure an opti­
mized elastic stress transfer in cementitious compos­
ites. This is generally the case, given typical fiber 
lengths employed for FRCC and HP2C, for which 
Lr /rr ~ 30 - 150. 

2.2 Anchorage Strength Length 

The elastic stress transfer from the fiber to the ma­
trix is restricted by the strengths of the composite 
components, fiber, matrix and interface. As a first 
approach, we will focus only on the strength of fiber 
and interface, by introducing in addition to the equi­
librium condition (1) the following strength criteria: 

(14) 

This is roughly along the lines of assumptions that 
led Kelly in 1964 to the derivation of a critical em­
bedment length: 

(15) 

To reveal its physical significance, it is useful to re­
derive Kelly's length scale from first principles of 
dimensional analysis (Barenblatt 1996), by introduc­
ing the following linear transformations of all pa­
rameters and functions involved in Equations (1) and 
(14): 

z=Zz'; rr=Rrr;; crr=L:rcr;; 

'to= To't~; crru = L:rucr;; 'tu =Tu< 
(16) 

where z', r;, cr;, '"C~, cr;u and < are the dimensionless 



counterparts of parameters z, rr> crr> 't0, crru and 'tu of 
dimension Z,Rf>I:f>T0 ,I:ru and Tu. Use of (16) in 
(1) and (14) yields: ' 

[
RrI:r Ida; _ 2--c~ 
ZT

0 
j-az' - ---;; (17) 

(18) 

Dimensional homogeneity of these two equations 
requires: 

=To = Rrl:r =1 
I:ru Tu ZTo 

(19) 

and leads to the identification of the following di­
mensionless parameters: 

Since one can always redefine invariants as product 
and power functions of the previously identified in­
variants nl' n2 and n3, we can choose the following: 

O"r - 'to 
crr=n1 =-; 't=n2= · 

cr fu 'tu 
(21) 

- -1 z 
z =n1n2 n3 =-

Ra 

where the gauge length Ra normalizing the z­
coordinate is Kelly's critical length scale given by 
(15). Proceeding as in the previous section, we let 
2z =OI! a~ withz = 0(1) H 8 = zl Rs in Equations (1) 
and (14): 

dcr - -
~=-8't; crr -1:::;0; 't-1:::;0 
dz 

(22) 

The dimensionless forms in Equation (22) indicate 
that the maximum stress transfer occurs for 8 = 1, 
for which the strength capacity of both fiber and in­
terface can be activated. In turn, for 8 >> 1, ~ =0; 

«E-- Fiber 1------7 
~ ~--------I __ =t ere 

t-- 2le ---i 
I la 

-- Fiber Tensile Stress 

-- Interface Shear Stress 

I la I 

Figure 3. Stresses in the Fiber and the Interface at the Point of 
Composite Yielding (Kelly 1964) 
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this implies for long fibers L/2 >> Ra, that the com­
posite behavior is dominated by fiber yielding, con­
fining anchorage effects into small zones at the end 
of the fiber over a length Ra . This is shown in Figure 
3, and is similar to steel bar reinforcement of rein­
forced concrete structures, in which the anchorage 
length of the bar is short in comparison to the entire 
bar. Conversely, for 8 <<1, associated with short fi­
ber lengths Lr /2 << Ra , the composite behavior is 
dominated by interface strength restrictions, with a 
negligible stress gradient dcrr I dz ----7 0. Therefore, 
for short fibers, fiber pullout is expected to occur be­
fore significant axial stress develops in the fiber. 

For normal strength fiber reinforced cementitious 
composites (FRCC) Kelly's critical length is on the 
order of: 

FRCC :Ra= 50-150mm (23) 

This indicates that the most common failure mode of 
FRCC with typical fiber lengths Lr< 50 mm << 2 Ra , 
will be fiber slippage and pullout, not fiber rupture, 
as the critical anchorage lengths are rarely achieved. 
Therefore, the strength of the fibers is underutilized, 
and fiber slippage occurs before a significant frac­
tion of the fiber strength is activated. One way to ad­
dress this pi;oblem is to use hooked fibers. Alterna­
tively, one could employ lower strength fibers with 
strengths crru - 100 MPa to better suit the low bond 
strength of normal strength concretes. 

However, for high strength cementitious compos­
ites, 

HP2C : Ra = 10 - 40mm (24) 

This is a better material match for typical fibers 
lengths employed in HP2C, as Lr /2 ,ea approaches 
unity. Therefore, the amount of energy in HP2C, 
which is dissipated by both fiber slippage and fiber 
yielding, is larger than in FRCC, and contributes to 
the enhanced ductility property of HP2C. In the case 
of HP2C, hooked end fibers would not be necessary. 

2.3 Radial Influence Zone 

To this point the restricted matrix strength domain 
has been disregarded. Supporting this assumption is 
the fact that the shear is maximum at the inte1face, 
and restricted through introduction of strength crite­
rion (14b). However, one may argue that the stress in 
the matrix is not a pure shear stress state, but in­
volves, at least, a longitudinal stress crm = crzz and a 
shear component 'tm = crz, When these stresses reach 
the strength of the matrix, failure may not necessar­
ily be initiated at the interface, but at a certain dis­
tance from the fiber in the matrix. To evaluate this 
effect, we consider as governing equations, the equi­
librium relations (1) and (2), together with the condi­
tion of stress continuity at the steel-matrix interface: 

(25) 
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Figure 4. Fiber Spacing in a Representative Cylinder 

and, in addition to strength c1iteria (14), a tension 
cut-off criterion for the matrix, reading: 

"; + J( ";" )' +t;, -cr •• ,; 0 (26) 

Here, crmu is the tensile strength of the matrix. In ad­
dition to the invariants (20), dimensional homogene­
ity of the whole set of equations allows us to ma­
nipulate the following additional invariants: 

7t -~· 
6 - ' 

'Lo 
(27) 

7t =~· 'Lm 
7 ' 1tg =--

()mu ()mu 

With similar dimensional arguments as previously 
employed, recombining invariants (i.e., z = ztea = 
n,n;'n3 /2, or z=ztea =n,n3n 6 n;'l2), Kelly's 
c1itical length scale for plastic anchorage remains 
highly relevant, but depends now on the bond­
strength-to-tensile-strength ratio p = "C/crmu 
rc;'rc~ 1 rc 8 : 

(
cr r cr r J fa=max ~;~ 

'Lu ()mu 

(28) 

It is obvious that if the bond-strength "C
11 

is differ­
ent from the matrix tensile strength crmu' it will be the 
lower strength which will determine the minimum 
required anchorage length fa. For p = 'L/0'

0111 
< 1, fa 

reflects the critical anchorage length required for a 
simultaneous fiber yielding and plastic interface slid­
ing, while for p > 1, the interface will behave elasti­
cally, as the frictional mechanism will occur in the 
matrix in a zone close to the interface. 

Furthermore, it is instructive to inspect Equations 
(1) and (2) at the length scale of fa, by considering 
the dimensional transform 2z = fa z . For p > 1, 
considered in conjunction with Equation (25), the 
following dimensionless forms of (1) and (2) are ob­
tained: 

de; -
~=-1: (rf); 'Lm 
dz m 

~ 
()mu 

(29) 
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(30) 

We note for large values of crr/crmu' that 'tm still de­
creases with l/f, from a maximum value at the fi­
ber-matrix interface, irrespective of the longitudinal 
stress distribution in the matrix. This stress distribu­
tion will only be affected by the radial shear stress 
distribution when inspecting the matrix behavior on 
a radial length scale on the order of r* = rpr/2crmu' 
for which Equation (30) reads: 

a;i ~ { ~;: + ;~ } f' ~ ;. ~ ~~ ~ (31 l 

For typical values of FRCC and HP2C (Table 1), 
p - 1, the radial length scale is on the same order of 
the half the plastic anchorage length, i.e. r* ::::::: fa I 2, 
thus: 

FRCC: r* = 25 - 75mm; HP2C: r* = 5 -15mm (32) 

Whether or not this length scale affects the me­
chanical performance of the composite material de­
pends on the average spacing of fibers in the com­
posite, which can be estimated using a representative 
composite cylinder such as the one shown in Figure 
4. The cylinder of the matrix-fiber composite has a 
radius C and a length (Lr + 2C) which encapsulates a 
fiber of radius rr and length Lr. To achieve fiber vol­
ume fractions between 1 - 5% requires a composite 
cylinder radius between 2 - 5 mm (using typical fi­
ber dimensions). The distance between neighboring 
fibers typically ranges between 2C = 5 - 10 mm. 
Hence, for FRCC, for which C << r*, the stresses in 
the characteristic cylinder are comprised mostly of 
shear stresses. Accordingly, failure is confined to the 
interface region (close to the fiber) in the form of in­
terface failure/fiber slippage. By comparison, in 
HP2C, C and r* are on the same order of magnitude. 
This suggests that there is a buildup of normal 
stresses in the HP2C matrix, which can induce mul­
tiple cracking in the matrix. It can also be suggested 
that this effect partially accounts for the substantial 
ductility gain of HP2C - in contrast to FRCC - after 
cracking. 

2.4 Optimal Fiber Radius 

When transverse cracks begin to form in the ma­
trix, the fibers bridge these cracks. If the matrix and 
reinforcing fibers have not failed, an interfacial crack 
may form between the fiber and the matrix, which 
can lead to debonding and pullout of the fiber, and 
ultimately to the failure of the composite. This proc-
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Figure 5. De bonding of Fiber from Matrix 

ess can be represented by the interfacial debonding 
model shown in Figure 5. 

In this model, a fiber is pulled out under a longi­
tudinal force of Fct from a representative matrix cyl­
inder of height h and radius R. At the pulled end of 
the fiber, a debonding zone of length /!, has formed. 
In the bonded regime of the fiber, z > /!, , the fiber 
and matrix share the same displacement field, which 
is approximated to develop linearly from 0 to u2. In 
the debonding zone, z < /!,, no stresses are trans­
ferred from the fiber to the matrix. In this way, the 
fiber displacement evolves under the load from u2 to 
u1 while the matrix displacement is constant at u2. 
That is, frictional stress transfer is ignored. The cho­
sen displacement field is kinematically admissible 
(satisfies the displacement boundary conditions), 
which allows us to solve for an upper bound value 
for the pullout stress in the fiber, p, at unstable 
debonding. The potential energy, Epot(~') of the sys­
tem is as follows: 

~· n(R 
2 
-r~) A 2 

Epot ( ) = 2(h-/l,) ( m + 2µm)U2 + 

(33) 

where A and µare Lame's material constants and 
k' =(Am+ 2µm)/(Af + 2µf). Also note: 

A +2 = Em(l-vm) 
m µm (1-2Vm)(l+vm) 

(34) 
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Figure 6. Comparison of Simplified 2-Body Displacement So­
lution with Budiansky's 3-Body Solution 

Minimizing the potential energy with respect to u1 
and u2 provides a solution for an upper bound esti­
mate of the minimum potential energy, and ulti­
mately to the energy release rate, G, which upon 
fracture propagation is equal to the fracture energy 
of the interface, Gf: 

dEpot - G G= 
d(2nrrR) r 

(35) 

One can then solve the macroscopic stress at fiber 
pullout L = p/Vf (with p the fiber pullout stress): 

L = 2Vr Gr (Ar + 2µ; )[(1- Yr )k'+ Yr] (36) 
rrk (1-Vr) 

This solution, based on a simplified kinematically 
admissible displacement field, is similar to the 
debonding stress solved by Aveston and Kelly 
(1973) and later by Budiansky et al. (1985). How­
ever, Budiansky used a three-body system taking 
into account the shear stresses in the interface zone. 

Figure 6 compares the derived solution (36) to 
Budiansky' s solution plotting the normalized macro­
scopic stress, L = L(r1 IE1 G 1 )

112 , versus fiber vol­
ume ratio, Vf. Comparing the solution given by 
Budiansky and the solution shown in this section 
shows that the three-body system exhibits similar 
behavior as the two-body system, particularly at 
typical fiber volume ratios of fiber reinforced ce­
mentitious composites. This confirms the relevance 
of the two-body system. Finally, solution (36) is also 

Table 2. Typical Values of Length Scales 

Length Scale FRCC HP2C 
Typical Length Typical Length 

mm mm 
Elastic Embedment .5-1 .5-1 
Anchorage Strength 50-150 10-40 
Radial Influence Zone 25-75 5-15 
Optimal Fiber Radius .005-.2 .01-.5 



similar to the one derived by Stang and Shah (1986), 
based on the compliance method, and on uniaxial 
matrix and fiber behavior,which neglects Poisson ef­
fects in the elastic response of matrix and fiber. 

Last, an obvious use of the size dependency of the 
fracture solution (36) is to derive a limiting radius 
for the fibers (see e.g. Aveston et al., 1971), which 
ensures an ideal failure of the composite; that is a 
simultaneous failure of the fiber in yielding and fail­
ure of the interface though debonding. Substituting 
the yield strength of the fiber crru into the fiber pull­
out stress p = LY r reveals an optimal fiber radius: 

4V/G r (Ar + 2µr )[(1- Yr )k'+ Yr] 
rfo = a:u k' (1- vf) (37) 

At this optimal fiber radius, simultaneous interface 
debonding and fiber yielding will occur. For typical 
material values, 
FRCC: rro = .005 - .2mm; 

HP2C: rfo = .01- .5mm 
(38) 

In most cases, rr >> rfo for FRCC implying fiber 
debonding will occur well before fiber yielding oc­
curs. Therefore FRCC materials are not designed ef­
ficiently to dissipate energy through simultaneous fi­
ber yielding and interface debonding. By contrast, 
HP2C materials have fiber radii of the same magni­
tude as the optimal fiber radius, rr ~ rro. Therefore, 
HP2C materials are better designed to dissipate en­
ergy through interface debonding and fiber yielding, 
which can account for the improved ductility proper­
ties of HP2C. 

Also note that the interface debonding capacity of 
the fiber pullout is independent of the length of the 
fiber. Therefore, it seems unlikely that the interface 
debonding resistance of the system can be improved 
with longer fibers. 

3 CONCLUSION 

The four length scales which are likely to affect 
the mechanical performance of fiber reinforced ce­
mentitious composites are summarized in Table 2. 
These length scales are related to the transfer of elas­
tic stresses, the anchorage of fibers, the radial influ­
ence zone, and the optimal fiber radius, and may 
serve as guidelines for the optimal design of FRCC 
and HP2C materials: 

111 The fiber lengths in FRCC are often insuffi­
cient to satisfactorily prevent interface failure 
and fiber pullout before the maximum capac­
ity of the fibers are achieved. Therefore the 
fibers in these materials are over-designed. 
The use of hooked fibers or lower strength 
fibers could improve this problem. In con­
trast, HP2C materials can often achieve si-
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multaneous interface failure/fiber yielding 
(without the use of hooked fibers)- a more 
efficient use of materials. 

111 The radial influence zones of fiber pullout in 
FRCC are much larger than the average dis­
tance between fibers. Therefore, only small 
normal stresses can develop in the matrix 
while shear stresses at the interface lead to 
composite failure. This represents an under­
utilization of matrix strength. By compari­
son, the loading of fibers in HP2C can often 
cause tensile stresses in the matrix, which 
can lead to multiple cracking. This may par­
tially account for the improved ductility be­
havior of HP2C. 

111 The radii of fibers in FRCC are often too 
large to achieve simultaneous debond­
ing/yielding of fibers. Therefore, fibers 
debond and are pulled out of the matrix well 
before the strength capacities of the fibers are 
utilized. This is not the case in HP2C which 
has fiber radii of the same magnitude of the 
optimal fiber radius. This induces simultane­
ous fiber yielding/debonding in HP2C. 

In summary, HP2C seems a better suited match of 
two materials and their interaction. Due to the com­
patibility of materials in HP2C, failure can occur un­
der multiple modes simultaneously. This allows a 
higher dissipation of energy and, in tum, a more duc­
tile material behavior. 

It should be noted that the considered length 
scales affect the mechanical behavior only, and do 
not take into account other aspects of concrete de­
sign such as cost and workability. 
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