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On regularized plasticity models for strain-softening materials 

Simon Rolshoven & Milan Jirasek 
LSC, DGC, Swiss Federal Institute of Technology at Lausanne (EPFL), Switzerland 

The paper analyzes and compares several regularization techniques for softening plasticity. It is shown that 
a basic nonlocal plasticity model with a nonlocal cumulative plastic strain in the softening law provides only 
a partial regularization. As an alternative, a refined nonlocal plasticity model with a combination of local 
and nonlocal cumulative plastic strain is investigated in detail. An efficient numerical algorithm solving the 
nonlocal consistency condition is outlined and a convergence proof is given. Furthermore, the behavior of 
the refined nonlocal model is compared to gradient plasticity with a softening law dependent on the gradient 
of the softening variable. The differences between plastic strain profiles localized inside the body and at the 
boundary are investigated and the cotTespondence between the boundary conditions in the gradient formulation 
and the rescaling of the weight function in the nonlocal formulation is discussed. A physical interpretation of 
the attractive or repulsive character of the boundary layer is suggested. 

INTRODUCTION 

Classical plasticity theories based on material models 
that are "simple" in the sense of Noll fail to provide 
an objective description of softening, since, after the 
onset of localization, the boundary value problem be­
comes ill-posed. The width of the localized zone is re­
lated to the heterogeneous material structure and can 
be correctly predicted only by models that have an in­
trinsic parameter with the dimension of length. Such a 
length scale is absent in standard theories of elasticity 
or plasticity, and it must be introduced by an appro­
priate enhancement. 

Among the generalized continuum models that 
can serve as localization limiters and restore well­
posedness of the boundary value problem, the most 
popular seem to be formulations that work with gra­
dients or nonlocal averages of internal variables or 
their conjugate thermodynamic forces. Development 
of such formulations for damage models is relatively 
straightforward, because the concerned variable driv­
ing the dissipative process (e.g., the damage energy 
release rate, or the equivalent strain) is usually di­
rectly related to the total strain and thus can be eas­
ily evaluated in a displacement-driven finite element 
procedure. In plasticity, however, the problem is more 
delicate, since the concerned variable is typically the 
accumulated plastic strain, which must be computed 
from the consistency condition that has no longer a 
local character. The present study focuses on some 
fundamental aspects of nonlocal and gradient models 
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for softening plasticity, the identification of common 
features and differences as well as their physical inter­
pretation. Regarding a refined nonlocal model, the nu­
merical implementation is also addressed. In view of 
the limited space and to keep the presentation simple, 
all considerations are done in one dimension, but most 
of the conclusions can be transplanted to the general 
case. Attention is restricted to the small-strain theory. 

2 STANDARD AND ENHANCED 
PLASTICITY MODELS 

2. 1 Local plasticity 
For a one-dimensional problem, standard local plas­
ticity with linear isotropic hardening is described by 
the equations 

(]" E(E Ep) (1) 

j(J,Jy) IJl-Jv (2) 

Jy Jo+Hr;, (3) 

ip . of . ( ) 
""oJ = r;,sgn J (4) 

K, 2 0, j(J,Jy) :::; 0, K,j(J,Jy) 0 (5) 

which represent the elastic law, definition of yield 
function, hardening law, flow rule, and loading­
unloading conditions. In the above, J is the stress, 



E is the strain, Ep is the plastic strain, E is the elas­
tic modulus, H is the plastic modulus (positive for 
hardening and negative for softening), CTo is the initial 
yield stress, and K, is the hardening variable. From the 
flow rule (4) and the first condition (5) it follows that 
K, = lipl, which gives to the hardening variable"' the 
physical meaning of the cumulative plastic strain. 

Consider a bar of constant cross section fixed at one 
end and loaded by an applied displacement at the op­
posite end. For hardening, the response is unique, and 
the distribution of strain remains uniform. For soft­
ening, the governing equations admit infinitely many 
solutions with a nonuniform strain distribution. The 
stress must remain uniform and decrease, but plas­
tic yielding does not need to occur at all sections of 
the bar. The plastic zone can become arbitrarily small 
and failure can occur at arbitrarily small dissipation. 
These physically inadmissible properties of the theo­
retical solutions lead to pathological sensitivity of the 
nume1ical results to the computational grid. 

2.2 Gradient plasticity 
A gradient plasticity model inspired by the ideas of 
Aifantis (1984) has been described e.g. by de Borst 
and Mtihlhaus (1992), its numerical implementation 
has been developed by Parnin (1994). It differs from 
the local model only by the dependence of the yield 
stress on the second derivative (in multiple dimen­
sions, on the Laplacean) of the cumulative plastic 
strain: 

(6) 

This modified softening law introduces the length 
scale l, which controls the size of the plastic zone. 
The presence of the second derivative of"' in the basic 
equations leads to the requirement of C1-continuity 
for this variable (and, consequently, for the plastic 
strain). 

The enrichment of the softening law by the second­
order gradient term regularizes the problem and pre­
vents localization of plastic strain into an arbitrarily 
small region. The regularizing effect of the gradient 
term can be explained as follows. In the absence of 
body forces, equilibrium conditions require the stress 
distribution to remain uniform at any stage of the 
loading process. In the plastic region Ip, the actual 
stress CT must be equal to the cunent yield stress CTy, 

which means that, inside the plastic region, CTy must 
be uniform. According to (6), this is possible only if 

(7) 

with c = canst. Since K, must be continuously dif­
ferentiable and must vanish outside the plastic re­
gion, it must start at the boundary of the plastic re­
gion with a zero slope and positive curvature. As 
we move into the interior of the plastic region, "' 
is increasing, thus to satisfy (7), its second deriva­
tive must decrease. Equation (7) with initial condi-
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Figure 1: Gradient plasticity model;"' (solid) and l2 "'" 

(dot) are such that "' + l 2 
K," (dash-dot) is constant. 

tions "'(O) = 0 and K,
1(0) = 0 has a unique solution 

K,(x) = c(l - cos(x/l)), and the opposite boundary 
of the plastic region is reached at x = 27rl, (Fig. 1). 
This analytical solution shows that the size of the lo­
calized plastic zone is directly proportional to the in­
ternal length scale l and independent of the softening 
modulus H. 

2.3 Basic fonnulation of nonlocal plasticity 

Nonlocal material models admit that the local state of 
the material at a given point may not be sufficient to 
evaluate the stress at that point. This can be physi­
cally explained by the fact that no real material is an 
ideal continuous medium, and on a sufficiently small 
scale the effects of heterogeneity and discontinuous 
microstructure become nonnegligible. For metals, this 
scale is in the order of microns, but for concrete and 
other highly heterogeneous composite materials, it is 
substantially larger. If the strain distribution is suffi­
ciently smooth, as is usually the case in the elastic 
regime, the standard local theory provides a good ap­
proximation and no important deviations from the ac­
tual behavior can be observed. After localization, the 
characteristic wave length of the deformation field be­
comes much shorter and this activates the nonlocal 
effects. For this reason, nonlocal theories that aim at 
regularizing the localization problem usually neglect 
the nonlocal elastic effects and apply nonlocal aver­
aging only to an internal variable (or the1modynamic 
force) linked to the dissipative processes. In plastic­
ity, this is naturally the softening variable (cumulative 
plastic strain), or the plastic strain itself. 

Perhaps the simplest nonlocal plasticity theory can 
be constructed if the softening law (3) is reformulated 
as 

CTy = CTo +HK,. (8) 

In this model, the yield stress depends on the nonlocal 
softening variable 

(9) 



a is a certain weight function decaying with the dis­
tance between x and C and the integral is taken over 
the length L of the bar (in general over the entire 
elasto-plastic body). In an infinite domain, the weight 
function a 00 (r) would depend only on the distance 
r = Ix ~I· In a finite domain, the weight function is 
often rescaled by 

with the argument that the nonlocal field correspond­
ing to a constant local field should remain constant 
even in the vicinity of a boundary. Commonly used 
nonlocal weight functions are the Gauss-like function 

a~uss(r) = ~exp (- ~~) (11) 

which has unbounded support, and the bell-shaped 
polynomial function 

with support radius R. 

if 0::::; r::::; R 

if r :2: R 
(12) 

Nonlocal plasticity based on a nonlocal softening 
law (8) has only a partial regularizing effect. After 
a proper calibration, it gives the correct dissipation 
and a mesh-insensitive load-displacement diagram, 
but the plastic strain is still localized into a single 
"point" (meaning here one cross section of the bar) 
and has the character of a Dirac distribution. Based 
on the fact that the nonlocal weight function decays 
with r (which is a natural and generally accepted as­
sumption), it is possible to show that the only solution 
with nonzero size of the plastic region is that with a 
constant plastic strain along the entire bar. The proof 
is especially easy for an infinite bar. Suppose that the 
plastic region Ip is a finite interval of nonzero size. In 
the plastic region, the nonlocal softening variable K, 

must be constant 

_ O'y - O'o O' - O'o 
K, = = -- = const. (13) 

H H 

and thus its derivative 

K,'(x) = Joo oaoo(lx - (\) K,(~)d~ (14) 
-oo ox 

must vanish there. The prime in a~ denotes the 
derivative taken with respect tor= Ix - ~I. Since the 
local softening variable K, vanishes outside the plastic 
region and is positive inside of it, and since a~(r) is 
negative for r < R and zero for all r ;;::: R, the inte-
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gral in (14) has a positive (and thus nonzero) value 
for x located in the plastic region just next to its "left" 
boundary. Consequently, K,' (x) > 0, which contradicts 
the assumption of constant K, in Ip. 

Planas et al. (1993) showed that the plastic strain 
must localize into one single point, in which case the 
above arguments do not hold because the plastic in­
terval collapses into a single point. The localized so­
lution can be described by 

K,(X) (15) 

where Xs is the (arbitrary) localization point, and 5 de­
notes the Dirac disttibution. The corresponding non­
local field 

- J, O' O'o K,(x) = a(x,~)K,(~)d~= H ( )a(x,xs) 
L a X8 ,Xs 

(16) 
is a multiple of the weight function (taken as a func­
tion of x with a fixed ~ x 8 ). Despite the fully lo­
calized character of the local strain, the energy G F 

dissipated during the failure of the bar (taken per unit 
cross sectional area) is nonzero: 

H a(xs, Xs) 
(17) 

The total bar elongation can be decomposed into the 
elastic pait, which is proportional to the bar length, 
and the inelastic part, completely independent of the 
bar length. Therefore, the present basic formulation 
is essentially equivalent to a cohesive zone model, as 
pointed out by Planas et al. (1993). 

2.4 Refined formulation of nonlocal plasticity 
In the foregoing analyses we have repeatedly used the 
argument that the expression added to the initial yield 
stress in the hardening law must be constant along the 
plastic zone, in order to satisfy both the yield condi­
tion and the equilibrium condition. The gradient for­
mulation achieves this by combining the local K, with 
a multiple of its second derivative, which can really 
provide a constant function if K, is selected as the 
shifted harmonic function 1 - cos ( x / l); see Fig. 1. On 
the other hand, a nonlocal average K, of any local dis­
tribution K, with the expected characteristics (mono­
tonically increasing from the boundary of the plastic 
region to its center) can never be constant across the 
plastic region; it will have a shape similar to the lo­
cal distribution but more fiat and spread to the sides 
(Fig. 2). But if the nonlocal distribution is amplified 
by a scalar factor larger than 1, it may coincide with 
the local distribution shifted by a constant. 

This motivates a nonlocal plasticity formulation 
with softening driven by a suitable linear combination 
of the local and nonlocal softening variable, proposed 
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Figure 2: Refined nonlocal plasticity model form= 
2: K, (solid) and Fe (dot) are such that 2Fc (dash) is con­
stant. 

independently by Stromberg and Ristinmaa (1996) 
and Planas et al. (1996); see also Bafant and Planas 
(1998), p. 497. The modified hardening law, 

O'y = O'o + H[mFc + (1 m)K,] (18) 

can be interpreted as the original law (8) with the 
nonlocal average Fe evaluated using a special singular 
weight distribution 

am(x, f) = ma(x, f) + (1 - m)6(x f) (19) 

This generalized formulation of nonlocal plasticity 
includes the local and the basic nonlocal model as 
special cases with m = 0 and m 1, respectively. 
Stromberg and Ristinmaa ( 1996) call it the "mixed lo­
cal and nonlocal model", while Planas et al. (1996) 
speak of the "nonlocal model of the second kind", 
the case m 1 being called the "nonlocal model of 
the first ldnd". It is important to note that 0 < m < 1 
does not lead to any improvement compared to the 
basic model with m = 1. This is intuitively clear from 
Fig. 2, and can be rigorously proven, cf. Planas et al. 
(1996). The plastic zone is finite if and only if m > 1. 

3 ANALYSIS OF NONLOCAL MODEL 

3 .1 Continuity of plastic strain distribution 
Inside the plastic region, the yield and equilibrium 
conditions imply 

For a continuous nonlocal weight function, the nonlo­
cal average Fe is always continuous, thus (20) implies 
that the function K, must also be continuous inside Ip. 
Repeating this argument recursively, one can show 
that all the derivatives of K, must be continuous, i.e., 
that the distribution of the plastic strain is infinitely 
smooth. This is, however, true only inside the plas­
tic region (and also inside the elastic region, where 
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K, vanishes). On the elasto-plastic boundary, the de­
gree of regularity can be lower. Planas et al. (1996) 
nevertheless have shown that K, must be continuous 
even on the elasto-plastic boundary. As we approach 
the elasto-plastic boundary from the interior of the 
plastic region, K, must tend to zero, otherwise one of 
the loading-unloading conditions would be violated. 
A positive limit would violate the condition f ::; 0 
in some subdomain of the elastic region close to the 
boundary, and a negative limit would violate the con­
dition K, 2. 0 in some subdomain of the plastic region 
close to the boundary. 

Thus, in contrast to gradient plasticity, K, is only at 
least c 0-continuus everywhere because of the elasto­
plastic boundary. This is why the formal equivalence 
between gradient and nonlocal plasticity, "derived" 
from the expansion into a truncated Taylor series 

Fc(x) = 1_: aoo(lx - fl)K,(f)df ~ K,(x) + c2K,"(x) 
(21) 

where the constant c is given by 

(22) 

does not hold, since K, would have to be 0 1-continuos 
everywhere. 

3.2 Plastic region far from the boundary 
For a given stress rate er < 0, the rate of the softening 
variable (which is for tensile yielding identical with 
the rate of plastic strain) can be found by solving the 
rate form of equation (20), written as 

m hr a(x,f)K,(f)df +(1- m)K,(x) = ~· (23) 

Here we have taken into account that K,( f) 0 for 
f ~ Ip, and so it is sufficient to integrate over the plas­
tic region only. Equation (23) is a Fredholm integral 
equation of the second ldnd for the unknown func­
tion K,( x), and it can be approximately solved using, 
e.g., the collocation method. A nonstandard feature 
of the problem is that the interval Ip is not known in 
advance. The numerical procedure starts from an as­
sumed interval Ip and computes the values of K, at the 
collocation points by solving a set of linear algebraic 
equations that approximate the integral equation. The 
formal solution must then be tested for admissibility. 
First of all, the condition K, 2. 0 implies that the val­
ues of K, at the collocation points must be nonnega­
tive. Second, if the yield condition f = 0 is satisfied 
at some points outside Ip at the beginning of the step 
(as is the case at the onset of localization from a per­
fectly uniform state), the rate of the yield function at 
those points must be nonpositive. This leads to the 
condition 
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Figure 3: Plastic strain profiles for nonlocal model far 
from the boundary. Values of m: 1.5 (solid), 3 (dot), 5 
(dash), 9 (dash-dot). 

to be verified for those x outside Ip at which \!7(x) \ = 
!7y(x). 

If any of the admissibility conditions is violated, 
the assumed plastic region is adapted accordingly, i.e., 
reduced if some resolved values of it, are negative, 
and extended if (24) is violated. This is iteratively re­
peated until an admissible solution is found. 

Suppose that the plastic zone is situated at a cer­
tain distance a from the boundary. The boundary in­
fluences the solution only through the rescaling factor 
in the nonlocal weight function a. Furthermore, for a 
weight function with bounded support, the rescaling 
is only activated if the distance a is smaller than the 
support radius R. Thus, if no rescaling is performed 
or if a ?: R, the solution is the same as for an infinite 
domain, and it is symmetric with respect to the center 
of the plastic region. 

For a function with unbounded support, like the 
Gaussian weight function, there is always an influence 
of the boundary in the analytical problem. In a nu­
merical solution, however, the suppott is bounded; the 
"numerical" support radius R depends on the com­
puter tolerance. This is why, for sufficiently large val­
ues of a, the numerical solution is the same as for an 
infinite domain. 

The shape of the plastic strain profile is strongly 
influenced by the parameter m, see Fig. 3 for the case 
of the bell-shaped weight function. The length of the 
plastic region vanishes for m = 1 and continuously 
increases with m. 

3 .3 Plastic region close to the boundary 

One peculiar property of the refined nonlocal plas­
ticity model is that no admissible solution exists for 
0 < a < R. At points in the boundary layer of thick­
ness R, the nonlocal weight function is rescaled ac­
cording to (10). If the assumed plastic region has a 
nonempty intersection with the boundary layer but 
does not touch the boundary, the formal solution of 
equation (23) becomes no.nsymmetric and it is impos-
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Figure 4: Plastic strain profiles for nonlocal model 
at the boundary. Values of m: 1.5 (solid), 3 (dot), 5 
(dash), 9 (dash-dot). 

sible to adjust the size of the plastic region such that 
the plastic strain tends to zero on both elasto-plastic 
boundaries at the same time. Only if the plastic region 
is assumed to start directly at the physical boundary, 
with no elastic layer interposed, the condition K, = 0 
can be relaxed on the physical boundary and remains 
valid only on the internal elasto-plastic boundary. For 
the admissible solution, plastic strain attains its max­
imum value at the physical boundary and monotoni­
cally decreases to zero at the elasto-plastic boundary, 
(Fig. 4). For values of m close to 1, the plastic strain 
distribution is almost linear. 

3 .4 Finite element solution 

In view of the preceeding analysis, only the bell­
shaped function with bounded support of well-defined 
radius R is considered in order to avoid dependence 
on computer arithmetics. 

Incremental finite element analysis requires the im­
plementation of a procedure for the evaluation of the 
stress and plastic strain increments that correspond to 
a given increment of strain. The solution must sat­
isfy the loading-unloading conditions (5) at the end 
of the step. In the plastic region active during the 
step, characterized by nonzero increments of plastic 
strains, the yield condition f = 0 must be fulfilled at 
the end of the step. For the local plasticity model, this 
condition can be enforced at each material point inde­
pendently, using the conventional stress return algo­
rithms. In contrast to that, in nonlocal plasticity, the 
material points interact and the yield function at one 
point depends on the plastic strain increments at all 
points in the neighborhood of radius R. The equations 
for the evaluation of plastic strain increments become 
coupled. For one-dimensional nonlocal plasticity with 
linear softening under tension, we obtain a set of lin­
ear equations written in the compact form as 

[EI+ (1- m)HI + mHA] 6."" =fr (25) 



where I is the unit matrix, A is a square matrix rep­
resenting the discretized nonlocal averaging opera­
tor, 6/'i, is a column matrix with the unknown in­
crements of the softening variable at the individual 
Gauss integration points in the plastic region, and fr 
is a column matrix with the trial values of the yield 
function at the individual Gauss points, evaluated as 
fr = J + E6c Jy. Here, J and Jy are the stress 
and the yield stress at the beginning of the step, and 
6c is the strain increment. 

With a proper numbering of the Gauss points, the 
matrix A is banded but typically has a large band­
width, so a direct solution technique would be quite 
expensive. In any case, an iterative procedure must 
be used because the number of plastic Gauss points 
in (25) may change after the solution of the sys­
tem, since neighboring Gauss points may start yield­
ing. An iterative solution can be based on the ad­
ditive split of the system matrix into the local part, 
[E + (1 m)H]I, and the nonlocal part, mHA. If 
the nonlocal part were not present, the solution of (25) 
would be 

f:j.K,(1) = 1 f (26) 
E+ (1 m)H r 

This step is easy to perform; it corresponds to the 
standard local stress return algorithm with a modified 
value of the softening modulus. 

Due to the presence of the nonlocal part, /j.K,(l) is 
not the exact solution of (25). In the spirit of the Ja­
cobi iterative method, we can define a sequence of 
successive approximations f:j.K,(n) by the formula 

[E+ (1-m)HJ6K,(n) +mHA6K,(n-l) fr (27) 

from which 

f:j.K,(n) = f:j.K,(1) - mH A6K,(n-1). (28) 
E+ (1- m)H 

The difference between the exact solution /j.K, and its 
approximation /j.K,(n) is in each iteration multiplied 
by the matrix (mH/[E + (1 - m)H])A, and con­
vergence is guaranteed if the norm of this matrix is 
smaller than 1. Matrix A has only nonnegative ele­
ments, because the nonlocal weight function is non­
negative. The sum of elements in each row is equal 
to l, provided that the nonlocal weight function is 
rescaled according to (10), and smaller than 1 without 
rescaling. If the vector norm is chosen as the max-
norm 

l/xJJmax (29) 

then the cotTesponding matrix norm of A is equal to 
1. Thus, convergence is guaranteed for 

{::} E+H>O. (30) 
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This condition must be satisfied anyway, since for 
E + H :::; 0 snapback occurs even if the plastic strain 
remains uniform, which is inadmissible. This means 
that the iterative nonlocal stress return algorithm al­
ways converges. 

For the numerical simulations of strain localization 
in a one-dimensional bar, an initial imperfection in the 
form of a reduced yield stress value is placed into one 
finite element. The numerical results match the solu­
tions obtained in section 3.2 for a 2: R. The solution 
is centered over the initial imperfection. On the other 
hand, if the initial imperfection is located within the 
distance R + Ls/2 to the boundary (Ls being the size 
of the plastic region on an infinite domain), the strain 
localizes at the boundary, which corresponds to the 
solution obtained in section 3.3. 

3.5 Thermodynamically based nonlocal plasticity 
model 

Barino et al. (1999) have analyzed the thermody­
namic aspects of nonlocal plasticity models and pro­
posed an extension of the postulate of maximum 
plastic dissipation to nonlocal models. They denoted 
the usual nonlocal averaging operator as R and con­
structed the adjoint operator R*, defined by the iden­
tity 

l f R*(g) dx j~ R(f) gdx (31) 

that must hold for any functions f and g for which the 
right-hand side of (31) makes sense. It is easy to show 
that if R is the integral operator (9), the adjoint oper­
ator R* is a similar integral operator with swapped 
arguments of the kernel (weight function): 

[R*(g)](x) = k a(~,x)g(~)d~ (32) 

If the weight function is symmetric with respect to its 
arguments (which is the case on an infinite domain or 
if no rescaling around the boundaries is applied), the 
operator R is self-adjoint, i.e., R* R. 

For one-dimensional plasticity with linear soften­
ing, the model proposed by Barino et al. (1999) dif­
fers from the local model only in the softening law 
(3), which now takes the form 

Jy =Jo+ R* (H R(K,)). (33) 

Writing the averaging operators explicitly and chang­
ing the order of integration, we obtain 

Jo+ k a(~,x)H k a(~,7J)K,(77)d77d~ 
Jo+ H l la(~, x)a(~, 77)d~K,(77)d77 = 

Jo+ H l f3(x, 7J)K,(77)d77 (34) 



where 

f3(x,77) = i a~~,x)a(~,77)d~. (35) 

The final expression in (34) has the same structure as 
the softening law (8) used in basic nonlocal plasticity. 
The nonlocal weight function f3 is now defined indi­
rectly by (35), and it is always symmetric with respect 
to its arguments. On a finite domain, nonlocal averag­
ing with /3 as the weight function transforms a uni­
formly distributed local variable into a nonlocal vari­
able that is not uniform in the vicinity of the boundary. 

The solutions of the one-dimensional localization 
problem obtained with the model of Barino et al. 
(1999) remain essentially the same as those obtained 
with the basic nonlocal plasticity model. If the func­
tion a is regular, /3 is regular as well and the plastic 
region localizes into a single point. In multiple dimen­
sions, mesh-induced directional bias are expected to 
persist. 

Even though Barino et al. (1999) considered the 
usual, regular nonlocal weight function, their ap­
proach is quite general and admits defining R as an 
operator combining the nonlocal average with the lo­
cal value in the spirit of the modified nonlocal model 
presented in section 2.4. It remains to be investigated 
whether such a model leads to localized plastic re­
gions of a finite size. 

Finally, let us mention that the symmetric form of 
the nonlocal weight function is not dictated by the 
requirements of thermodynamic admissibility but by 
the adoption of the postulate of maximum plastic dis­
sipation, which provides a fully associated model. 
The basic formulation of nonlocal plasticity does not 
seem to violate the second law of the1modynamics. 

4 DISCUSSION OF BOUNDARY EFFECTS 

4.1 Plastic region far from the boundary 

For a localization zone sufficiently far from the 
boundary, the plastic strain profiles for gradient plas­
ticity and nonlocal plasticity are plotted in Fig. 1 and 
Fig. 2. The shapes of the curves exhibit small differ­
ences, especially close to the elasto-plastic boundary, 
where the profile obtained with the gradient plasticity 
model is smoother due to the imposed C 1-continuity. 

4.2 Plastic region close to the boundary 
In the vicinity of a boundary, the plastic strain profile 
strongly depends on the adopted boundary condition 
(for the gradient model) or rescaling rule (for the non­
local model). 

For the gradient model, the boundary condition 
must be formulated in terms of either the softening 
variable K, or its first derivative K,

1
• Obviously, it does 

not make sense to prescribe a nonzero value of K, or K,
1

, 

because the condition must be satisfied at all stages of 
the loading process, including the elastic stage, during 
which the softening variable vanishes. If a zero value 
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Figure 5: Comparison of refined nonlocal and gra­
dient model in the vicinity of a boundary: nonlo­
cal model with rescaling (solid), without rescaling 
(dash); gradient plasticity with K,

1(0) = 0 (dot), and 
with K,(0) = 0 and K,

1(0) = 0 (dash-dot). 

of K, is prescribed on the boundary, the distribution 
of plastic strain in a plastic zone starting right at the 
boundary is exactly the same as far from the bound­
ary, Fig. 5. On the other hand, if a zero value of K,

1 

is prescribed, the foregoing solution remains admis­
sible, but another solution emerges, with maximum 
plastic strain right at the boundary. This solution gives 
a steeper post-peak slope of the load-displacement di­
agram than the solution with a plastic zone far from 
the boundary. According to the stability criterion dis­
cussed in Bafant and Cedolin (1991), this is the solu­
tion that would actually occur. 

For the nonlocal model, the effect of boundary 
treatment is even more pronounced. The model of 
course does not require any boundary condition, but 
it is necessary to specify how the nonlocal averag­
ing operator treats the case when a part of the neigh­
borhood that contributes to the nonlocal average pro­
trudes out of the body. If the original weight function 
is kept without any changes and the integral is com­
puted only over the part of the contributing neighbor­
hood located inside the body, there is no solution with 
a localized plastic region touching the boundary. In 
fact, not even a solution with a localized plastic region 
separated from the boundary by an elastic layer of a 
thickness smaller than R + Ls/2, where Ls is the size 
of the plastic region in an infinite bar, exists. On the 
other hand, if the nonlocal weight function is rescaled 
according to (10), a solution with a maximum plastic 
strain right at the boundary emerges, and this solu­
tion again leads to a steeper load-displacement dia­
gram than that obtained far from the boundary. 

In conclusion, the boundary can either repel or at­
tract localization, depending on the details of the for­
mulation. From the physical point of view, this di­
chotomy could be related to the microstructure of the 
boundary. For example, for concrete one may think of 
the two cases schematically presented in Fig. 6. For 
a boundary layer of soft matrix without any hard ag-
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Figure 6: Micromechanical structure at the boundary. 

gregates, localization at the boundary would be eas­
ier than inside the body, Fig. 6 a. If, on the other 
hand,· the hard particles are present at the boundary 
and are strongly glued to the rigid support, localiza­
tion at the boundary would be more difficult than in­
side the body, Fig. 6 b. The two types of boundary 
conditions or of boundary averaging rules discussed 
above should be seen only as the extreme cases. It 
would be possible to construct intermediate boundary 
conditions (e.g., a linear combination aK, + bK,1 = 0) 
or rescaling rules. Their design should be guided by 
micromechanical analyses of the boundary region. 
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