
Fracture Mechanics of Concrete Structures, de Borst et al (eds)© 2001 Swets & Zeitlinger. Lisse, ISBN 90 2651 825 0 

Size Effect in Hardened Cement Paste and High Strength Concrete 
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ABSTRACT: This paper will report on an experimental investigation into the size effect in the strength of 
Dardened cement paste (HCP, nominal compressive strength 40 MPa) and high strength concrete (HSC, 
m minal compressive strength 110 MPa) as measured in three point bending. The aim of the investigation is 
to judge the range of applicability of the various size effect formulae available in the literature. With this aim 
in mind, the failure loads have been analysed according to the size effect formulae ofBazant and ofKarihaloo 
h the notched beams and according to those of Bazant and of Carpinteri for the unnotched beams. The 
c:sults of this analysis will be presented. Improvements to Karihaloo's size effect formula will also be 
proposed. 

l INTRODUCTION 

The fracture mechanics size effect, as opposed to the 
Weibull statistical size effect, is a controversial topic 
in the fracture of concrete. Yet, it is fracture 
mechanics which alone can illuminate the hitherto 
mexplained size effect observed in the strength of 
concrete structures. It would therefore seem 
appropriate to conduct dedicated experiments in 
order to establish the range of applicability of the 
several fracture mechanical size effect formulae 
available in the literature (Bazant, 1984, 1997; 
Carpinteri, l 994a; Karihaloo, 1999). 

Bazant ( 1984 ), using the energy release rate 
amcept, proposed the formula 

'7J ). =A, (1 + ~ r'· (I) 

lllbere lu NJ. is the nominal stress at failure of a 
suucture of specified shape and loading condition, 
IF is a characteristic size of the structure, and A 1 and 
81 are positive constants. Bazant's formula reduces 
11> the linear elastic fracture mechanics (LEFM) limit 
as W-+ oo. In fact, formula (1) has been established 
!ly" Taylor's expansion from this asymptotic limit 
(Karihaloo, 1995). 

Karihaloo ( 1999), using the stress intensity factor 
and the fictitious crack concepts, proposed the 
iilmula 

( )

y, 

'7.). = A, 1-i (2) 

where Ai and 82 are constants. This formula also 
reduces to the LEFM limit as W ~ oo. It is, 
however, unlikely to be applicable when W is small, 
which is a consequence of several approximations 
and assumptions made in its derivation. These will 
be touched upon later. 

Many quasi-brittle structures are known to fail at 
crack initiation, although the process zone is well 
developed. For such structures the nominal failure 
stress was found to approach the LEFM limit for W 
-+ oo from above 

(3) 

Here, A3 and B3 are positive constants. This formula 
was obtained by Carpinteri and his co-workers using 
multifractal scaling concepts (Carpinteri, l 994a, 
I 994b; Carpinteri and Ferro, 1994). Bazant ( 1997) 
also obtained a size effect formula for initially­
unnotched structures using the same concepts as for 
the notched structures. That formula, however, 
differs from (3) in that the exponent is 
approximately equal to unity. 

The aims of this paper are two-fold. First, it will 
compare the size effect formulae (1) and (2) for tests 
on hardened cement paste (HCP, nominal 
compressive strength 40 MPa) and high strength 
concrete (HSC, nominal compressive strength 
110 MPa) with a view to identifying their ranges of 
applicability. Beams (span to depth ratio of 4) with 
depth varying between 50 mm and 400 mm with a 
central edge notch were tested in three point 
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bending. The notches ranged in depth from the very 
shallow (notch to depth ratio 0.05) to tlte deep 
(notch to depth ratio 0.5). Comparison will also be 
made of the size effect formulae for unnotched HSC 
beams ranging in depth between 50 mm and 
400mm. 

The second aim of the paper is to eliminate most 
of the assumptions made in the derivation of formula 
(2) with a view to obtaining a better understanding 
of the stress redistribution in the fracture process 
zone and of its role in the size effect of concrete 
structures. 

2 NOTCHED HCP AND HSC BEAMS 

Tests were conducted on notched HCP beams of 
span to depth ratio 4 in three point bending. The 
notch to depth ratios were selec ted to be 0.05, 0.10, 
0.30 and 0.50. Four beams were tested for each 
notch depth. All beams were I 00 rnm wide (B). 
The mechanical properties of HCP were measured 
on several specimens using standard procedures. 
The mean values (and coefficients of variation) of 
the mechanicaJ properties are: compressive strength 
42.3 MPa (1 2.8%), split cylinder strength 3.53 MPa 
(12.7%), mod.ulus of elasticity 20.8 GPa (8.3%), and 
specific fracture energy 7. 13 J/m2 (15.6%). 

The mean values of the nominal failure strength 
of the notched HCP beams ((0>.r)u = PJ (BW)) are 
given in Table J. It is worth reminding the reader 
that the actua l failure strength in three point bending 
of a beam with span to depth ratio of 4 is u., = 
6Pl(BW), so that (O>.r)u = (u.,)/6. They are compared 
in Figures 1-4 for the four notch to depth ratios (a) 
with the predictions of formulae (1) and (2). T he 
constants in these formulae were determined in the 
usual manner. 

Tests were also conducted on notched HSC 
beams (span to depth ratio 4, width B = I 00 mm) in 
three point bending. The mean values (and 
coefficients of variation) of the measured 
mechanical properties are: compressive strength 

Table I. Failure loads for HCP beams 

w Mean Mean 
(mm) a P.(kN) ( UNh {MPa) 

15 3.98 0.53 
150 0.05 5.63 0.38 
300 9.83 0.33 
50 2.22 0.44 
100 0.10 3.49 0.35 
200 6.06 0.30 
50 1.62 0.32 
100 0.30 2.85 0.29 
200 4.09 0.20 
50 0.80 0.16 
100 0.50 1.32 0. 13 
200 2.14 0.11 

108.8 MPa (3.2%), split cylinder strength 7.40 MPa 
(4.9%), modulus of elasticity 40.45 GPa (3.9%), and 
specific fracture energy 44.7 J/m2 (8.7%). 
Three beams were tested for each of the three notch 
to depth ratios (a = 0.05, 0.10, 0.30). For the 
smallest notch to depth ratio only two beam depths 
were tested. The mean vaJues of the nominal failure 
strength are given in Table 2 . 
The nominal failure strengths are plotted in Figures 
5-7 for the three notch depths and compared with 
fonnuJae (1) and (2). 
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Figure I. Size effect plot for HCP specimens with ex = 0.05 
according to formulae. {I) and (2) 

Table 2. Failure loads for HSC beams 

w Mean Mean 
(mm) 

ex 
P.(k'N) ( a.v). (MPa) 

200 0.05 
22.79 1.14 

400 36.06 0.90 

100 10.88 J.09 

200 0.10 17.67 0.88 
400 2 7.70 0.69 
75 4.75 0.63 
150 0.30 8.11 0.54 

300 12.66 0.42 
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Figure 2. Size effect plot for HCP specimens with CL= U.10 
according to fonnulae (1) and (2) 

From the analysis presented in Figures l-7, the 
following conclusions can be drawn. 

• For notched HCP and HSC beams with notch to 
depth ratios of 0.05 and 0.10, the predictions of 
both formulae (1) and (2) deviate somewhat 
from the measured nominal strengths. The 
deviation of formula (2) for small sizes is 
particularly evident. The possible reasons for 
this will be discussed below. 
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Figure 3. Size effect plot for HCP specimens with CL = 0.30 
according to fonnulae {I) and (2) 
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Figure 4. Size effect plot for HCP specimens with a = 0.50 
according to fonnulae (I) and (2) 

• For notchcJ HCP beams witl1 uotch to depth 
ratio of 0.3 or more, both formulae (1) and (2) 
predict failure loads in good agreement with 
measured values for all sizes. 

• For notched HSC beams with notch to depth 
ratio of 0.3 or more, the predictions of both 
formulae are again in good agreement with 
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Figure 5. Size effect plot for HSC specimens with a = 0.0 
ace-0rding to formulae (I) and (2) 

measured values for large sizes. However, 
somewhat surprisingly, formula (2) alone would 
appear to predict the correct trend for small 
sizes. 

3 IMPROVEMENT OF FORMULA (2) 

In the derivation of formula (2) (Karihaloo, 1999) it 
was recognised that quasi-brittle materials develop a 
diffuse fracture process zone (FPZ) before the 
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Figure 6. Size effect plot for HSC specimens with a - 0.10 
according to formulae (I) and (2) 
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Figure 7. Size effect plot for HSC specimens with Cl = 0.30 
ace<1rding to fonnulae (I) and (2) 

formation of a traction-free crack whose size can be 
commensurate with that of a small test specimen. 
Within this zone the stresses are redistributed so that 
it is necessary to consider not only the singular term 
in the asymptotic crack tip field but also higher 
order, nonsingular terms. In the derivation proper, 
Karihaloo ( 1999) used approximations for the higher 
order terms, as well as the weight (Green's) 
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functions for a semi-infinite crack in an infinite 
plane instead of a finite size crack in a finite three 
point hend (TPB) specimen. These approximations 
have been recently eliminated by taking into account 
accurate higher order terms of the crack tip 
asymptotic field, as well as by using the weight 
functions for a finite crack. 

In common with the earlier derivation (Karihaloo, 
1999), the traction-free crack with a FPZ of length 
t 1, at its tip is decomposed into a traction-free era.ck 
(Figure 8) with the following stress field at its tip 

( ) - ( ) - a, I ''2 a, r = u 0 r - .[; + 3a,'Vr +Sa,r (4) 

and the FPZ with the stress totsJ-<T0 lt ,, -s)j and 
the displ11cement w(s) across its faces. In (4), a is 
related to the mode I stress intensity factor (SIF) K1 
via a, = K , ! ../21f . The coefficients a,, a1 and as 
depend on the crack length, applied load cr, and size 
and geometry of the body. Solutions for TPB and a 
typical wedge-splitting geometry have been recently 
obtained by Karihaloo and Xiao (200Ia,b). 

For a TPB with a span to depth ratio of 4, the 
coefficients a1, aJ. a5 are 

where 

k.(a)- ../a p. {a) 
..{i;(1 - a}Yi (1 +3a) 

p, (a)= 1.9+ 0.4 la+ O.Sla2 - 0.17a3 

g~ (a)=0.6534 - 9.2406a + 49.51 5a2 

- 153.97a' + 233.48a• - 148.73a5 

g1(a)= 2.1491 - 52.998a+468.48a2 
- 2084.4a' 

+4919.3a' - S869.4a' +276S.2a~ 

The displacement of the cohesive crack faces w(s) 
(representing the FPZ) can be expressed as the 
following singular equation 

( ' g(s,t )[o-{s)-a0 (t ,, - s )]dv = - w{t) (5) 

The finite tensile strength of concrete requires that 
SIF vanish at the FPZ tip. This in tum requires that 
the faces ofFPZ close smoothly, i.e. 

(6) 

The weight functions g(s,t) and k(s) are the 
respective crack face opening displacement at the 
location t and the SIF nt the crack tip of a single 
edge cracked specimen of finite size due to a pair of 
unit normal forces s on the crack faces (Figure 8). 
These have been derived by Xiao and Karihaloo 
(2001) 

( ) 4 .rs -.Ji 8 ( r: 3/ $/) g st =- - In +- A'Vt-At72 + Ai/> 
. , n:E' .rs+ .Ji E' I ' ' 

(7) 

k(s)=lf +A, J2;i (8) 

where E' = E for plane stress and E' = E /(I - \l
2
) for 

plane strain. Accurate interpolation formulae for A 1, 

AJ and As have been given by Xiao and Karihaloo 
(2001) which depend on the size and geometry of 
the body 

A, (a,r)_ f f(a}r1 i = l 3 s 
w {i}1 ,.. 9 ' • ' 

(9) 

where a = a I W , r = s I a and a is the crack length. 

• 11(5), w(s) 
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Figure 8. Decomposition of a traction !Tee r.mck with a 
fracture process zone of length I, (a) into the traction free crack 
with stress a 0 (r) ahead of crack tip {b) and the FPZ with stress 
[o(s) - 0 0(11, - .t)) and displacement w(s)(c). As the faces close 
smoothly the stress intensity factor at 0 will vanish. k(s) is the 
stress intensity factor due to unit concentrated loads at s, g(s, t) 
is the corresponding displacement at location 1 (d) (From 
Karihaloo, I 995) 

The functions ~ la) are 

l 34.606a) -41.019a 2 + 20.223a -3.7408 ) 

f,.(a) = (I - 2a)' 

o. 
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l-l3.817a
3 

+27.952a 2 -21.109a-4.8557 l 
J,3 (a)= (1-2a)' 

0, 

l 20.79la
3 

-13.60Ja
2 

+ !l.745a-3.9004 l 
f, 2(a)= (1 - 2a) 

- 3.2!67a' + 3.22a2 
- 0.7748a - 1.2004, 

l 16.38a' - l4.453a
2

+0.0025a+1.378 l 
f., (a) = (l - 2a )1 

127.17a' - 157.39a2 +73.588a - 9.5209, 

!I l.067a' - 5.29a 2 + 0.9753cr + 0.0354 ) 

f,.(a)= - 6.3283a1 +'ll.659a2 - 6.I03la+l.0268 
a ' ' 

1

2.486 la' - l.6212a 
2 

- 0.0339a + 0.1139 • ) 

.t;, (a)= (1 - 2.45a )' a Y. 
0, . l l.9089a

1 
- 3.0813a

1 
+

1

1.8375a -0.3641 ·) 
f u{a}= (l-2.45a)aY. 

0, 

. 1 - l3.866a
1 

+ I0.633a
2 

-3.0231a + 0.3968 ,) 

J,,(a) = (1 - 2a)3ay, 
7.2667a' - 10.215a2 + 6.8468a-0.8862, 

l 25J.04a' -234.57a2 + 7S.35a - 8.7819 I 
J,,(a)= (1 - 2aY ' 

- 607.25a' + 8 I l.68a 2 
- 376.24a + 56.809, 

f10 (a) ~ 1- 2a ' l 
3.2033a' -4.212a

2 
+ J.6762a - 0.25 ) 

14.152a' - 26.064a~ + 13.866a - 2.3786 , 

l 0.0213a' - 0.119a 2 +0.0904a - 0.0185 l 
J,. (a) = (1 - 2.45a )'a 1 

' 

0, 

l- 0.3963a ' + 0.5465a' - 0.2519a + 0.0388 l 
J,, (a) = (1-2.0la}6 a 1 

' 

0, 
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f., (a)= (1 - 2a)1 a' ' l 19.996a' -17.901a
2 

t- 5.595a - 0.6524 l 
l29.03a' - 204.66a2 + l08.13a -17.662, 

l
-143.59a' + l42.36a

1 
- 47.318a + S.3329 l 

f 
I ) - (t -2a)'a2 , 

SJ\a -
· - I 87.17a' + 264.43a 2 -130.17a + 21.167, 

1- a 

f so (a}= { l.l667a' + 4.045a' - 3.0112a + 0.3928, } 
-I.0667a' - S.J35a2 +4.4722a - 0.9;68, 

This work is still under progress, but the results are 
expected to be available at the time of the oral 
presentation of this paper . 

In each of the above expresions exceptfs3(a.), the 
first entry is for a s 0.4 and the second for a > 0.4. 
In the expression of fsi,a) the first entry is for a s 
0.5 and the second for a. > 0.5. 

4 UNNOTCHED HSC BEAMS 

A fonited number of unnotched HSC beams were 
also tested in three point bending. The depth of 
these beams covered a wide range from 50 mm to 
400 mm. All beams were 100 mm wide. The mean 
failure loads and nominal strength values are given 
in Table 3. 

The mean nominal strength is plotted against the 
beam depth in Figure 9, together with the line of best 
fit. The odd values for depths 75 and 300 mm are 
presumably due to just one specimen being available 
for testing. The trend is , however, very clear - the 
strength reaches the asymptotic value for large sizes 
from above. 

The measured values are compared in Figure I 0 
with the predictions of the multifractal scaling 
(MFSL) formula (3) due to Carpinteri. The 
constants A3 and B3 in this formula are calculated by 
a standard regression approach. Fonnula (3) but with 
the exponent ~ replaced by 1 also gives the nominal 
strength at crack initiation as obtained by Bazant 
( 1997). The constants A 3 and B 3 are also determined 
by linear regression. The constant A3 represents the 
nominal strength for an infinitely large beam, 
whereas the constant BJ is related to the thickness of 
the so-<:alled "boundary layer" of cracking. The 
Bazant modification of fonnula (3), denoted SEL, is 
also shown on Figure 10. 



Table 3. Failure loads foT unnotched HSC beams 

w Mean Mean 
(mm) P.(kN) (uN). (MPa) 

50 9.40 1.88 
75 11.90 1.59 
100 16.40 1.64 
150 24.45 1.63 
200 30.40 1.52 
300 41.53 1.38 
400 56.50 l.41 
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Figure 9. Variation in nominal failure strength with beam depth 
for unnotched HSC beams 
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Figure I 0. Size effect plots for unnotched TPB beams 

For unnotched HSC beams, Carpinteri's formula (3) 
consistently gives better predictions than does 
Bazant's formula, although the difforence in the 
predictions of the two is rather small. 

5 CONCLUDING REMARKS 

In conclusion, it must be pointed out that the above 
work did not contribute to a resolution of the 
controversy raging in the literature. In particular, it 
did not shed any light on why the strength of 
notched beams approaches the asymptotic limit for 
large sizes from below, whereas that of unnotched 
beams approaches it from above. However, 
preliminary results from the new theoretical work 
briefly described in Section 3 above show that there 
is a change in the curvature of the size effect plot 

(i.e. log (aN)u vs log W) as the notch to depth ratio 
reduces towards zero. These results are most 
encouraging and, if confirmed by a detailed analysis, 
will be reported during the presentation. 
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