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ABSTRACT: The paper consists of two parts. In view of length limitations, and because several
comprehensive reviews behind the present lecture were already published in journals, the first part is
limnited to listing various recent advances that are surveyed in the conference lecture. The second, much
longer, part then complements this survey by presenting in mathematical terms several new results that
are only outlined in the lecture. These results concern: 1) a derivation of the first two terms of the
small-size asymptotic expansion of size effect of the cohesive crack model; 2) a review of the derivation
of the first two terms of the large-size asymptotic expansion of size effect ensuing from the smeared-tip
method; and 3) a size effect formula for a very broad size range, unifying the fracture energies measured

by the size effect method and the work-of-fracture method.

1. OVERVIEW OF SOME RECENT RESULTS

The size effect represents the most important
practical consequence of fracture behavior as well
as the clue to uncovering various fundamental char-
acteristics of concrete fracture. Interest in the qua-
sibrittle size effect, which started in the 1970s and
surged throughout the 1990s, continues unabated
and will probably persist for some time because
significant. open questions remain and applications
in design, especially in terms of revisions of design
code specifications, are still deplorably limited. The
conlerence lecture addressing this broad subject re-
views some selected recent results, dealing with:

¢ amalgamation of the deterministic (energetic)
theory of quasibrittle size effect with the
Weibull probabilistic theory of brittle size ef-
fect;

e derivation of small-size asymptolic properties
of size effect ensuing from the cohesive crack
model;

e size effect law for a very broad size range,
explaining the difference between the frac-
ture energies obtained by the work-of-fracture
method (Hillerborg 1985a,b) and the size ef-
fect method (proposed by Bazant in 1987, see
Bazant and Planas 1998) or Jenq and Shah’s
(1985) method:

e approximate statistical prediction of the frac-
ture properties of concrete from its simple de-
sign characteristics;

e size effect in redundant beam structures failing
by softening inelastic hinges; and

s size effect hidden in excessive dead load fac-
tor in the design codes (Bazant and Frangopol
2000).

In the closing of the lecture, it is pointed out that
the size effect must have played a major, yet previ-
ously unrecognized, role in a host of famous struc-
tural catastrophes (e.g., Malpasset Dam, St. Fran-
cis Dam, Schoharie Creek Bridge, Sleipner Qil Plat-
form, Hanshin Viaduct and Cypress Viaduct).

Sinece the alorementioned subjects have recently
been reviewed in several journal articles of various
foci and scopes (Bazant and Chen 1997, BaZant
1999a,b, 2000, 2001a), it would be superfluous, and
inevitably duplicative, to devote this paper to still
another review. Therefore, the rest of this paper
will focus on several new, still unpublished, resulis
that are outlined in the conference lecture.

2. NEW RESULTS ON ASYMPTOTIC
SIZE EFFECT PROPERTIES

2.1
Model

Small-Size Asymptotics of Cohesive Crack

The large-size asymptotic properties of the qua-
sibrittle size effect have been determined on the
basis of equivalent LEFM. That approach, how-
ever, is not possible for the small-size asvmptotic
properties. On the basis of the numerical solutions
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with the cohesive crack model, crack band model
and nonlocal model, it has been well known for
a long time that for a vanishing structure size D
the nominal strength ey of a quasibrittle strue-
ture approaches a finite value, o%,. This means
that the size effect plot of log oy versus log D must
approach on the left a horizontal asymptote. But
how precisely this limit value or horizontal asymp-
tote should be approached? It would be helpful to
know., To this end, we will try to determine the
second term of the small-size asvmptotic expansion
of size effect.

The static boundary value problem of linear elas-
ticity is defined in Cartesian coordinates z; (i =
1,2,3) as follows:

(1)

i = By (i + u4,)

J‘ij,j' - in = {] {ill P)
n;g; =p (on Iy) (2)
iu; = 1{) (011 Fd)

Here 0;; = stress tensor components, :(u;;+u;,) =
€j; = strain tensor components, E;;; = elastic mod-
uli, f; = body forces, p; = surface tractions, pre-
scribed on surface domain 'y, n; = unit normal of
the surface, and T’y is the surface domain where the
displacements are fixed by supports.

Let us consider geometrically similar structures
of various sizes 7 and introduce the dimensionless
coordinates and variables, labeled by an overbar;

Ty =xi/D, i =w/D, (3)
0 = 045/ 0p
B =pifon, fi= fiDfon, (4)

Eijn = Byl oo

The load magnitude 15 assumed to be characterized
by on as a single parameter, and so p; 18 a size in-
dependent distribution of the dimensionless surface
tractions on 'y, and f; is a size-independent distri-
bution of dimensionless body forces in volume V.
The surface normals n; at homologous points are
independent of size D (and thus need no overbar).

Denoting @&, = &/3%;, = partial derivatives with
respect to the dimensionless coordinates, and not-
ing that 8/0z;, = (1/D)&;, we can transform the
foregoing equations to the following dimensionless
form:

iy = Eijus (Bpi + Bty ), (5)
Ejﬁfj + fr UN{‘UD =10 [il’l v)
n;; = Pi onfog  (on f&)u (6)

=0 {onTly)

where V' is the domain of structure volume in the
dimensionless coordinates, and I'; and I'y are the
surface domains in dimensionless coordinates cor-
responding to I'y and ['y.

Let coordinates x; be positioned so that the crack
would lie in the plane (r;, ;) anc that the tip of
the cohesive crack (and not the notch tip) would
be at x; = 0. For a small enough D, the crack-
bridging stress o > 0 along the whole crack length
L, and il D is small enough and if the compres-
sion strength is unlimited, the cohesive crack (with
bridging stresses) will occupy at maximum load the
entire area of the cross section or, in the case of &
notch, the entire area of the ligament (note that
if compressive stresses are needed in the ligament.
they localize into a Dirac delta function}; then the
dimensionless crack length L = L/D = constant.
If the compression strength is limited and the cross
section is for instance subjected to bending, then
a finite portion of cross section or ligament will be
under compression, and then L/D will not be size
independent; but we may assume it to be such, as
an approximation for small D, since the strength in
compression is much larger than in tension.

In the case of cohesive fracture, equations (5) and
6) must be supplemented by two conditions for the
cohesive crack: 1) The dimensionless total stress
intensity factor K; = Kyv/D/oy produced jointly
by the applied load and the tractions & = &5, acting
on the crack faces must vanish in order to ensure
the finiteness of the crack-tip stresses, i.e.
K. =0 \7)
2) The cohesive (crack-bridging) stresses o must
satisfy the softening law of the cohesive crack, i.e.,
the curve relating o to the opening displacement
w — 2ugz on the crack plane. We will consider the
law

o = o[l — (w/wy)?] (8)

(for x; € (—L,0),2z2 =0); here p,u; = positive
constants, and oy = tensile strength (also denoted
as f{). In terms of the dimensionless variables cor-
responding to (3}, the dimensionless form of the
assumed softening law is

& =1 (Dm)? (9)
with

g=oloy, w=w/D,

D = D/uy (10)

(for , € (=L/D,0),Z; = D).

We will now consider the dependence of the so-
lution on structure size D. We will assume the di-
mensionless displacements, stresses and total stress
intensity factor to approach their limit for D — 0
as power functions of D with cxponent p, and will
try to verify the correctness of this hypothesis. So,
for small enough D, we sct;

5y = ay +a,;D"
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w; = @ +a.De, (12)
= w' + @' D",
K, = K]} + K|D?

where o}, oy, 0%, 0", 07}, ..., K] are size independent.

These expressions may now be substituted into
(9), (7), (5) and (6), and the binomial expansion
w” = (w0)?[1 + (w'/w°)pDP + ...] should be noted.
The resulting equations must be satisfied for various
small sizes D. For D — 0, the dominant terms in
these equations are those of the lowest powers of D,
which are those with D° and DP. By collecting the
terms without D and those with DP, we obtain two
independent sets of equations. It so happens that
each of these two sets defines a physically meaning-
ful boundary value problem of elasticity for a body
with given tractions applied on crack faces. This
proves our hypothesis made in (11) and (12) to be
justified.

Elasticity Problem I: By isolating the terms that
do not contain D (i.e., contain D°), we get:

Kl=0, & =1
(for AES ) < 0,.’7.’-: =ﬂ)

(13)

oy = Eiju 3(9;u] + 9uj), (14)
855, + fi oy /o0 =0,

(in V)
noy; = pi oy/de (on L), (15)
=0 (onTy)

Elasticity Problem I{: By isolating the terms that
contain DP, we get:

K, =0, ¢=—(u’y (16)
(for —-L < %, < 0,3, =0)
7, = Eiu 3(8;4 + 8;1}), (17)
a;57; + fiafoo =10,
(in V)
n;}; = pi oxfoo  (on L), (18)
i =0 (only)

Note that parameter w' does not appear in this
problem.

The role of stresses and displacements is played
by @, and % in problem I, and by &}; and % in
problem II. In problem I, the crack faces are sub-
jected to fixed uniform tractions equal to 1. In
problem II, in which o' plays the role of the cohe-
sive stress, the crack faces are subjected to tractions
—(w®)? which vary along the crack faces but can be
determined in advance from the w’-values obtained
in solving problem 1. The fact that isolation of the
terms with the zero-th power and the p-th power
of D happens to yield two separate boundary value
problems of elasticity is crucial for our goal. The

rest of the argument is easy and may be stated as
follows.

The magnitude of the loads (surface tractions and
body forces) is proportional to o, in problem I, and
to o)y in problem II. These elasticity problems are
known to have a unique solution. If o3, were zero,
i.e., if the applied load in problem I vanished, the
crack face tractions equal to 1 would cause K7 to be
nonzero, in violation of (13). Likewise, if o were
zero, 1.e., if the applied load in problem II vanished,
the nonuniform crack face tractions —(%%) in prob-
lem II would cause K| to be nonzero, in violation
of (16). If the loads for problems I and II were
mfinite, then K} or K| would be infinite as well,
which would again violate (13) or (16). Therefore,
the only possibility left is that both oy and o}, are
finite. Thus we have proven the following:

THEQREM I:If the softening law of the cohesive
erack model has a finite strength and starts ils de-
scent as wP, then the size effect law for nominal
strength approaches for D — 0 a fimte value and
does so as D”.

2.2 Some Implications for Size Effect Formulae

As widely agreed, the softening cohesive law for
quasibrittle materials such as concrete begins its
descent with a tangent of a finite slope (e.g., Guinea
et al. 1997); hence, p = 1. Consequently, according
to (11}, the size effect law must begin near zero size
D as a linear function of D, and as an exponential
in the logarithmic plot [the latter ensuing from the
approximation lnoy —Inod =In(1+oyD/oy) =
(ofy/o%) eP].

The case p > 1 means that the softening law be-
gins its descent from a horizontal initial tangent,
which is reasonable to assume for ductile fracture
of plastic yielding materials. The case p < 1 means
that the cohesive law begins its descent with a ver-
tical tangent, which would be an unrealistic super-
brittle behavior.

The condition that p = 1 for quasibrittle materi-
als such as concrete happens to be satisfied by the
classical size effect law for bodies with large and
similar cracks proposed by Bazant in 1984. Indeed,
on o (1 + DfDy)""% = 1 — Df2Dy for small D
(Dy = constant). But this condition is satisfied for
none of the formulae

__Bii
1+,/D/Do’

B
N T L+ (D/ Doy )i

on =ogy 1 — e~Do/D

= oo (1 — e-(00/0Y) /¥

oy =

oN

(19)

(with Dy,r,s = positive constant, r # 1) even
though each of these four formulae (the first being



a special case of the second, and the third of the
fourth) has correct small-size and large-size asymp-
totes. As for the case r > 1 (p = r), the softening
law begins its descent from a horizontal asymptote,
which means that this case might be suitabie for
ductile fracture of plastically yielding materials

'T'he foregoing analysis also applies to structures
failing at crack initiation from a smooth surface. It
may now be noted that the formula

i‘Dﬁ ir
on=0w (14 5')
derived from equivalent LEFM by Bazant (1998)
(which includes, as a special case for r = I, the
‘MFSL' law of Carpinteri et al. 1994a,b) does not
satisfy the small size asymptotic properties of the
cohesive crack model (for p = 1). However, a simple
adjustment of this formula, proposed in 1998 by
Bazant, does (n = positive constant):

(r>0) (20}

r Dy )Ur
1Dy 4+ D

It must be admitted that our imposition of the
small-size asymptotic properties of the cohesive
crack model on the size effect law is debatable since,
for cross section thicknesses less than several aggre-
gate sizes, the material is not a continuum. For this
reason, it may well be considered admissible to have
an infinite oy for D — 0 (which is the property of
the widely used Hall-Petch formula for the yeld
strength dependence on the crystal size in metals;
Petch 1954). Some researchers might even regard
the preceding asymptotic analysis invalid because
of heterogeneity of the material on the small scale.

Yet such counter-arguments have a somewhat ni-
hilistic flavor. They could in fact be used to shoot
down all asymptotic methods, since the infinitely
large and the infinitely small are never attainable
in reality. Imposition of the small-size asymptotic
requirements is advantageous from the viewpoint of
asymptotic matching, i.e., approximations that have
two-sided exact asymptotic support (popularly, ‘in-
terpolation between opposite infinities; Bender and
Orszag, 1978). Although the cohesive crack model
is not amenable to a simple analytical solution in
the middle size range, its validity in that range is
not in question. In the spirit of asymptotic match-
ing, an approximation for the middle range will be
better if it satisfies the (easily solvable) small-size
and large-size asymptotic properties of the theory
that applies in that range.

TN = Uag (1 + (21)

2.3 Large-Size Asymptotics via K-Profile of Cohe-
siwe Crack

For very large sizes, Lhe asymplolic size effect
must again be determined from the theory valid for
the middle size range—i.e., from the cohesive crack

model (even though geometric scaling becomes in
practice impossible, since the own weight domi-
nates). In their mathematically rigorous and so-
phisticated analysis, Planas and Elices (1992, 1993)
used the smeared-tip method to establish the first
two terms of the large-scale asymptotic expansion
of the size effect of the cohesive crack model for the
case of notched structures of totally positive geom-
etry. In this method (Bazant and Planas 1998), a
cohesive crack is modeled as a weighted superpo-
sition of infinitely many LEFM solutions with dif-
ferent crack lengths. In the original version of this
methods, used by Planas and Elices (1992, 1993),
the weights were characterized in terms of the pro-
file of nominal strength density, the p-profile. This
profile depends, even for the large cize limit, on the
structure geometry, which is a disadvantage.

Recently (Bazant and Zi 2001), the smeared-tip
method was reformulated with the weights charac-
terized by the profile of a continuously distributed
(smeared) stress intemsity factor, called the K-
profile, which has the advantage that asymptoti-
cally for large sizes it is independent of the struc-
ture geometry. Thus the K-profile can be used to
characterize the softening stress-displacement curve
of the cohesive crack model; it can be derived from
that curve by solving a certain integral equation,
and the stress-displacement can be derived from
the K-profile. While this equivalence of the stress-
displacement curve and the K-profile is exact only
asymptotically for very large sizes, it is approxi-
mately valid even for normal structure sizes, and
since the cohesive crack model itself is only an ap-
proximation, the K-profile may be used as an al-
ternative general characterization of the cohesive
fracture properties, except perhaps for very small
structure sizes. One advantage of this alternative
approach is that the asymptotic properties of size
effect can be derived more easily. This advantage
was exploited (Bazant and Zi 2001) to re-derive
the Planas and Elices’ (1992, 1993) results on the
asymptotic size effect for notched specimens of to-
tally positive geometry in a shorter way, and to ex-
tend the analysis to other size effect types (Types
1 and 3 defined later).

For an elastic body with a sharp crack, the ap-
plied load P and the mode I LEFM stress intensity
factor are related as P = bv/D Kj(a)/k(c) where
a = a/D, a = crack length, 6 = body thickness;
k(a) = dimensionless stress intensity factor = K;
for D = b = P = 1. For an clastic body with
a cohesive crack, the applied load P, the crack-
bridging (cohesive) stresses o and the crack open-
ing w are expressed in the smeared-tip method
as a superposition of the LEFM solutions for in-
finitely many cracks with continuously distributed
(smeared) tips;

LiD
P*:fd;):h»ﬁf:»‘[’r o
1]

(o)
k(o)

(22)



dKi(a) =

cqlp)dp (23)

where K. = /E'G; = fracture toughness (crit-

ical K;) (G = fracture energy); E' = effective
Young’s modulus); ¢; = half-length of the fracture
process zone (FPZ); L = final length of the crack
al total break; dK;(«) is the stress-intensity factor
of the smeared tips lying between o aml o + da;
p = (& — a)/20 where 8 = ¢;/D = Loy — ay);
; 15 the end of the stress-free crack portlon and oy
is the tip of the cohesive crack (end of FPZ); q(p)
is the dimensionless K-profile, such that the func-

tion g(p)//|w — p| be integrable for 0 < w < 1.
For D — oo, the FPZ in the relative coordinate o
becomes a point, and so LEFM must apply, which
means that [dK; = K. or [, = [ g(p)dp = 1.
The use of g(p) contrasts with the original version
of the smeared-tip method, in which (22) and (23)
are replaced by dP = p(a)Dda where p(a) is the
load-sharing distribution.

Assuming the structure size D to be large enough
compared to the fracture process zone length 2¢;,

o) = I gg’; (24)
wlp) = w g, (29

Wi = [ g do

If the softening stress-displacement law of the co-
hesive crack model is written as o/f] = ¢(w/wy)
then the following equation must be satisfied:

S(p) W(p)
sm = ¢ (m)

This represents an integral equation from which the
K -profile g(p) may be solved if function ¢ is given.
It can be shown (Bazant and Zi 2001) that for

large sizes the nominal strength oy = P/bD for the
cohesive crack model may be expressed as follows:

(26)

a(p) dp

(27)

"= 75 h ot

The asymptotic analysis of this equation yields the
size effect curve of the cohesive crack model, pro-
vided that function k{«) is known. The analysis
shows that the size effects can be classified into
three basic types (rather than two, as previously
thought).

Type 1, k(0) = 0,k'(0) > 0. Unnotched structure
(cvg =0) of positive geometry, reaching maximum
load at the initiation of fracture growth. The size

effect is obtained in the form of (21), i.e,,

D,
{n.,,-:r:arﬂ.c,(]—|w L2

Lfr
r_gDrI-D)
(Bazant and Zi 2001) where » > 0, 5 > 0,
T = Kola/\J290cs, Dy = Lief{—g)/2Lgy Is =

o 4(e)dp/ /B > 1, 1= [ qlp)\/pdp < 1.

Type 2, k(ag) > 0, k'(ag) > 0. Structure of a pos-
itive geometry containing a notch or a pre-existing
traction-free crack (i.e., a fatigued crack). Asymp-
totic analysis of (27) yields the classical size effect
proposed by Bazant in 1984, ie.,

D -1/2
Oy = dg (l + 1)—0)

(Bazant and Zi 2001) where oy = K, /kov/ Dy,
Dy = 4Lkl [k, To = [ a(p) pdp. Note that Dy
depends on the softening curve.

Type 3, k(ag) > 0, k'(ap) = 0. Negative-positive
geometry—the geometry is initially negative, i.c.,
k'{a) < 0, which means that the crack initially
grows in a stable manner at increasing load, but
later becomes positive, i.e., k'(a) > 0. The max-
imum load is reached at crack length at which
k'(a) = 0. For this type it is found that

(28)

(29)

~1/2
oo Y ) (30)

D+D, D,

(Bazant and Zi 2001) where D; > Dy is required
for the curvature of log oy versus log D to be ev-
erywhere negative; Dy = 4k0k s (eroo/ Ko, Dy =
(K /kgap)?, Is = fu (p~%) ( )dp. Since in Type 3
the crack at maximum load is large, it was thought
that the size effect should be the same as in Type 2.
Yet it is not. But, at the same time, the difference
is not very pronounced. It consists merely of a more
abrupt transition between the same asvmptotes.

UNZUD(

2.4 Summary of Required Asymptotic Properties
of Size Effect

THEQOREM II. For quasibrittle wnaterials, the
(deterministic) size effect curve of oy versus
must have the following small-size and large-size
asymplotic properties:

For D — 0: (31)
D

on & 1= 5= (32)

For D — o0

D

Typel: oy x 142 +.. (33)

S| .

Twwe? on « 5 (1-35+-) G



2
Type 3: oy —1—(1—D—°+..

5 (1-55+-) @

(Fig. 1). Here Dy, D,, Dy, D, = constants, D, =
DyD, /2, D, = rDy, and  is the proportionality
sign. Note that types 2 and 3 are verified by the
following expansions:

() =303

= % 1—% ) (36)
Dl D -1/2
(735t %)
D+ D, " Dy
By, DD T
Vo T D+ /D)
i i B0 T, TP
VD D? D
< ,/% (1 » I;f; % ) (37)

2.5 Broad-Range Size Effect and Unification of
Gy and Gp

In principle, the fracture energy of a material
with a large FPZ must be equal to the energy dissi-
pated by fracture propagation in an infinitely large
specimen. The basis of the size effect method of
fracture energy testing is the extrapolation of nom-
inal strength to an infinite size. So why the fracture
energy GGy obtained by size effect testing is system-
atically less than the fracture energy Gg obtained
by the work-of-fracture method?

There are several explanations (Bazant 2001),
and one of them is that the simple classical size
effect law used for notched specimens (Type 2) is
not valid for a sufficiently broad size range. A broad
range size effect law whose large size asymptote can

D=0
a o e
p=1 ~ |
m e
w w w
- \UM_&:_\_\UN
D D D

be made to agree with the Gg-value without sacri-
ficing the fit of the oy-values for ordinary specimen
sizes can be written as follows:

T (S S (38)
N=14D/Do\ " 1+ADg/D

Tn
i A“Du/D)

(Bazant 1999b, 2001) (Fig. 2). This formula satis-
fies all the asymptotic requirements stated in (33)
(Type 2); A, v are non-negative constants, A > 1.
With n = 1 and A = 30, formula (38) can fit broad-
range finite clement results on size effect, such as
those in Bazant (1985).

The law (38) provides a unification of the size ef-
fect fracture energy Gy, which corresponds to the
final asymptote of the first term (n = 0) represent-
ing the classical size effect law, with the work-of-
fracture energy Gp (Hillerborg 1985a,b, Nakayama
1965, Tattersall and Tappin 1986), which corre-
sponds to the final asymptote of (38). Choosing
1".'.:2, il =\/2-5— 1 = 1.58 and '}'3_225—]. — T
= (.92, one has a formula that gives the size effect
on nominal strength agreeing within a size range of
about 1:20 with the fracture energy G, yet for ex-
trapolation to infinite structure size gives fracture
energy Gp = 2.5G . Here 2.5 is the widely accepted
ratio of Gy and Gy, as found by Planas et al. (1992)
and Guinea et al. (1994a,b) (see also BaZant and
Planas 1998), and recently confirmed as optimal for
a database involving 238 test series from different
laboratories (Bazant and Becg-Giraudon 2000: see
also a paper in these proceedings).

The values I'y = G, may be regarded as partial
fracture energies associated with sizes Hy = A*Dj.
and the plot of ['y versus log H; may be regarded as
the fracture energy spectrum of the cohesive crack
model. The first value of the spectrum is the frac-
ture energy G corresponding to the area under the
initial tangent of the softening curve of the cohesive
crack model, and the sum G+ T+ .. .+, =Gp =

D — oo

Ty

y

1/D

Fig. 1 Asymptotic size effects for large sizes (right) and for small sizes (left bottom), with the corresponding
softening law of cohesive crack model for initial opening (left top).
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Fig. 2 Broad-range size effect law.
arca under the whole softening curve. For predict- For D — oot
ing the maxirmum loads of struectures in the normal D\™™ D,
size range, only G is needed, although G, which Type 1: on x (—5) + D Foue  {39)

governs the far post-peak response, would in the-
ory govern the size effect on ncminal strength for
an infinite size. In this manner, the long debated
discrepancy between G; and Gg can be reconciled.

With regard to Sec. 2.1, note that the broad-
range size cffect law (38) has correct small-size
asymptotics—it gives a finite gy-value for D — 0
and approaches this value linearly.

Other formulae satisfying Theorem II are possi-
ble, e.g., o8 = 02 Sk /(1 + D/Dy) where v, Dy
= constants. However, [ormula (38) is more conve-
nient, for generalization from narrow-range data.

2.6 Effect of Strength Randomness

Weibull type extreme value statistics of material
strength randomness has no influence on the mean
size effect at sufficiently small sizes (Bazant and Xi
1991, Bazant and Noviak 2000a). The same for large
structure sizes if the structure is notched or if it fails
only after a large stable crack growth. But if the
structure is not notched and fails at the initiation
of fracture growth, then the asymptotic size effect
for D — oo approaches Weibull-type size effect,
an o D™ where n = the number of dimensions
in geometric similarity (1. 2 or 3) and m = Weibull
maodulus (n # 12, as previously thought, but about
24 for concrete; Bazant and Novdk 2000b). Eq.
(33) giving the first two terms of the large-size
asymptotic expansion of Type 1 size effect must
now be replaced by

where D), = constant. The overall size effect law
which replaces (28) and achieves asymptotic match-
ing to the deterministic size effect of cohesive crack
model for small sizes is (with rn/m < 1)
. 1fr
] (40)

rafm
)

The randomness of strength is not important for
flexure of concrete beams less than about 1m thick.
But is has a major effect for cross section thickness
of the order of 10 m, which is important for arch
dams. Material randomness of course influences the
size effect on the variance of opy.

Dy

rih
nly+ D

i 7Ds+ D

oN

3. CLOSING REMARKS

Fracture mechanics of concrete is now in a golden
period of research in which great rewards in engi-
neering are within grasp. However, the existing ap-
plications in structural design still lie far below the
potential of the theory. The case for introducing
the available theory into practice needs to be made
more convincingly, especially with regard to the size
effects. Although many details relevant to struc-
tural design practice still remain to be researched
and some fundamental questions settled, the theory
now appears ripe for applications.
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