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Friction and specimen slenderness influences on dissipated energy density 
of quasi-brittle materials in compression: an explanation based on fractal 
fragmentation theory 

A.Carpinteri & N .Pugno 
Department of Structural Engineering and Geotechnics, Politecnico di Torino, Torino, Italy 

ABSTRACT: The influence of the slenderness of a specimen in compression and of the friction between it 
and the loading platens on the dissipated energy density (strain-softening response) is theoretically analyzed. 
An assumption based on fragmentation and comminution is herein presented, the energy dissipated during the 
process being proportional to the area of the free surface of the fragments. 
Using the well-known empirical power-law for the frequency-size distribution of fragments describirng the 
scale-invariant and fractal character of the phenomenon, the dissipated energy density is obtained in a 
structural element under compression. The influences of specimen slenderness and friction is captured by the 
proposed model in a satisfactory way. 

I INTRODUCTION 

The study of the compressive mechanical behaviour 
of concrete, already analysed by several authors, 
does not present untill today a complete and 
systematic treatment, even if many salient aspects 
have been already emphasized. The most important 
of these aspects is represented by the phenomenon 
of strain-softening, that presents different 
characteristics by varying the test conditions. There 
are in fact several parameters to be taken into 
account, and two are the most important: the 
slenderness of the specimen and the friction between 
the specimen and the loading platens. 

The investigations carried out by Carpinteri, 
Ciola and Pugno (2001) and Carpinteri, Ciola, 
Pugno, Ferrara and Gobbi (200 I) emphasized these 
aspects both numerically and experimentally. The 
present investigation deals with this topic from a 
theoretical point of view based on the fractal 
fragmentation theory (Turcotte, 1986, 1989; 
Carpinteri and Pugno 200Ia,b). 

Several theoretical models have been proposed 
linking fractals (Mandelbrot, 1982; Feder. 1988) to 
fracture and fragmentation (Bela Beke, 1964 ). These 
models have been recently reviewed by Perfect 
(1997). 

Carpinteri (1994), Carpinteri and Chiaia (1997) 
and Carpinteti et al. (1999) used the fractal and 
multifractal approaches to explain the scaling laws 
for strength and toughness in the breaking behaviour 

of disordered materials. Engleman et al. (1988) 
applied the maximum entropy method to show that 
the number-size distribution follows a fractal law for 
fmgments that are not too large. By combining a 
fractal analysis of brittle fracture with energy 
balance principles, Nagahama (1993) and Yong and 
Hanson (1996) were able to derive a theoretical 
expression for the fragment size distribution as a 
function of energy density. Aharony et al. (1986) 
predicted the fragment size distribution from clusters 
of connected bonds in a cubic lattice using 
percolation theory. 

On the other hand, only more recently the 
fragmentation theory has been applied to the study 
of compression (Momber, 2000). 

2FRACTAL FRAGMENTATION THEORY 

After comminution or fragmentation (Turcotte, 
1992), the probability density funczion p(r), that 
times the interval amplitude dr represents the 
percentage of particles with radius comprised 
between rand r+dr, will be: 

ro 
p(r)= D 7::, , 

r 
( I) 

where, for fragmentation under compression, the so
called fractal exponent D is experimentally close to 
two (Momber, 2000). 
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The total fracture surface area of fragments is 
obtained by integration (r,,.. << r,...): 

rmr 
A1 oc N JY' p(r)drcc Nr:;,, (2) 

'mi11 

where N is the total number of particles. 
On the other hand, the total volume of the 

particles is: 

(3) 

If we assume a material "quantum" of size 
r.,,. =Constant (Novozhilov, 1969; Sammis, 1997; 
Carpinteri and Pugno 2000, 200la,b), and make a 
hypothesis of selfsimilarity, i.e., r,.... cc Ft, 
(Carpinteri, 1986), the energy W dissipated to 
produce the new free surface in the comminution 
process, which is proportional to the total surface 
area A1 (Griffit 1921; Smekal 1937), is: 

(4) 

and represents an extension of the Third 
Comminution Theory, where w cc V[5 (Bond, 1952). 
The fundamental assumptions of material "quantum" 
and of self-similarity can be derived from the more 
general hypothesis that the energy dissipation must 
occur in a fractal domain comprised, in any case, 
between a surface and a volume (Carpinteri and 
Pugno 200la,b). The extreme cases contemplated by 
eq. (4) are represented by D=2, surface theory (von 
Rittinger, 1867; Honig, 1936), when the dissipation 
really occurs on a surface (W oc v/n ), and by D=3, 

volume theory (Kick, 1885; Honig, 1936), when the 
dissipation occurs in a volume ( W °" V1 ). The 

experimental cases of comminution are usually 
intermediate, as well as the size distribution for 
concrete aggregates due to FUiler (Stroeven, 1991). 
On the other hand, concrete aggregates frequently 
are a product of natural fragmentation or artificial 
comminution. If the material to be fragmented is 
concrete, we have therefore a double reason to 
expect a fractal response. 

The energy dissipation occurs on a two
dimensional surface according to Griffith, rather 
than on a morphologically fractal set. On the other 
hand, the distribution of particle size follows a 
power-law, the number of infinitesimal particles 
tending to infinity. 
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The fragmented volume V1 = 1; and the volume 

of the specimen under compression v = 13 are not 

necessary coincident, so that: 

(5) 

In the extreme cases the fragmented volume is 
independent of the specimen volume and the 
exponent /3 is equal to zero or they are directly 
proportional and /3 is equal to one. 

The exponent /3 permits to model the friction 
between loading platens and specimen. Only when 
there is not any friction, the more intuitive 
hypothesis of direct proportionality between 
fragmented volume and specimen volume (/3 close to 
one) can be assumed. As a matter of fact, the 
frictional shearing stresses acting at the interface 
produce triaxially-confined regions near the bases 
where a multitude of microcracks propagate 
(Carpinteri, Ciola and Pugno, 2001; Carpinteri, 
Ciola, Pugno, Ferrara and Gobbi, 2001). In other 
words, the micro-cracked confined region, or the 
fragmented volume, will be constant varying the 
slenderness (/Jclose to zero, Fig. I). 

Noting that the slenderness (specimen-height over 

side-length) can be obtained as A.=~ , from eqs. 
v,.1 

(4) and (5) we can evaluate the relative dissipated 

strain energy density If/= W during the compression 
v 

of the specimen as a function of its slenderness: 

(6) 

where Dis close to two and /3 is close to zero or one 
respectively for friction tests and frictionless ones. 

3 COMPARISON BETWEEN THEORETICAL 
AND EXPERIMENTAL RESULTS 

In this section, a comparison between the 
experimental (Carpinteri, Ciola and Pugno, 2001; 

Micro-cracked 
confined regions D 

Figure I. Microcracked confined regions for friction tests. 



Carpinteri, Ciola, Pugno, Ferrara and Gobbi, 2001) 
and the theoretical predictions obtained from the 
very simple law of eq. (6) is presented. The 
comparison regards prismatic concrete specimens 
with a square base (50 x 50, 100 x 100, 150 x 150 
mm2) and with three different slendernesses (0.5, 
1.0, 2.0), with and without friction between the 
specimen and the loading platens, for a total of 
eighteen cases. 

The friction condition is represented by the direct 
contact between specimen and platens, since the 
shearing stresses at the interface arise in opposition 
to the lateral expansion of the specimen. On the 
other hand, the introduction of teflon layers between 
the specimen and the loading platens allows for the 
lateral expansion of the material; as a consequence, 
the shearing stresses at the interface become 
negligible (the friction coefficient in that case is 
close to 0.0 I). 

Eq. (6), described by a straight line in a bi
logarithmic diagram, is experimentally confirmed 
(Figures 2 and 3). The slope of the straight line, as 
theoretically predicted by eq. (6), is larger for 
friction tests (ft close to zero, Figure 2) than for 
frictionless ones (jJ close to one, Figure 3). 
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Figure 2. Dissipated energy density y = log 'f/ /'F;.1 vs 

specimen slenderness x = logA,. Comparison bet ween 
theoretical straight line (eq. (6)) and experimental data (bi
logarithmic diagrams for friction tests). 
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Figure 3. Dissipated energy density y = log 'P /'P,=, vs 

specimen slenderness x = logA, . Comparison between 

theoretical straight line (eq. (6)) and experimental data (bi
logarithmic diagrams for frictionless tests). 

The experimental average of the slope for 
friction tests is -0.84 and for frictionless ones -0.52. 
If we consider f3 = 0.2 for friction tests and f3 = 0.8 

for frictionless ones, eq. (6) predicts (with D=2) 
respectively -0.87 and -0.47. 

4 CONCLUSIONS 

The analysis of the results presented in the paper 
shows a satisfactory correspondence between Lhe 
theoretical predictions and the experimental data. 
The experimental ductility increases with the 
specimen slenderness decrease and the friction 
influence is theoretically captured. 

As a consequence, the very simple Jaw of eq. (6), 
based on the developed fractal fragmentation theory, 
can be used to predict the slenderness and friction 
influences on the dissipated energy density of quasi
brittle materials in compression. 
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