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Size effect analysis of reinforced concrete deep beams

T.Hasegawa
Institute of Technology, Shimizu Corporation, Tokyo, Japan

ABSTRACT: A finite element failure analysis of reinforced concrete deep beams is performed using the Multi
Equivalent Series Phase Model and the Enhanced Microplane Concrete Model to simulate experimentally
obtained size effects of the deep beams. It is shown that the models can provide good prediction of experimental
results of reinforced concrete deep beams on the cracking, shear-compressive failure localization, failure
mechanism, deformation, shear strength, and its size effect. The loading boundary condition and the geometrical
unsimilarity in beam shape other than in the shear span are shown to have important influence on not only the
shear strength but also the failure mode and post-peak behavior.

1 INTRODUCTION

Comparing with reinforced concrete slender beams,
fracture and size effect in reinforced concrete deep
beams are complicatedly influenced by a lot of factors
like the formation of failure mechanism by crack
propagation, size effects in tensile fracture, localized
shear-compressive failure, and so on. Therefore, a
numerical simulation of the failure mechanism in
reinforced concrete deep beams is important to
establish a rational shear design method for them.

In the present study, a general purpose finite
element system DIANA incorporating the nonlocal
Multi Equivalent Series Phase Model (MESP Model;
Hasegawa 1998) and the local Enhanced Microplane
Concrete Model (EMPC Model; Hasegawa 1995) is
utilized to simulate size effect tests of reinforced
concrete deep beams of Niwa (Niwa 1983) and
Matsuo (Matsuo 2001). The MESP Model (Figure 1)
as a nonlocal constitutive law for concrete has been
demonstrated to be able to predict size effects in
tensile fractures, multiaxial compressive failures, and
shear fractures of concrete, which is suitable for
simulating failures of reinforced concrete deep beams
under the complicated stress condition.

2 ANALYSIS MODELING
2.1 Analysis cases A, B, and C

Shear tests of three reinforced concrete deep beam
specimens of Niwa are simulated in the first series of
the analysis cases A, B, and C. Those specimens
called SIO, SI1, and LRO have the same afd =0.5 (a
= shear span length; d = effective depth), but
individual d of 300, 600, and 900 mm, respectively.
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The specimens are not geometrically similar, but only
effective depth and shear span length are similar
among the three specimens. The finite element mesh
used in each analysis case is shown in Figures 2-6.
Assuming symmetry of the structure, only half-left
structure models are considered. In the analysis cases
A and C, the finite elements in the web plain concrete
portion are enlarged similarly to discretize the three
test specimens with different sizes into individual
finite element meshes. The nonlocal MESP Model is
used for the plain concrete portions of the specimens
in the analysis case A. On the other hand, the local
EMPC Model is applied to the same concrete portion
in the analysis case C to compare the results of the
analysis cases A and C and investigate the
effectiveness of the nonlocal constitutive model. In
the analysis case B, the finite element size in the web
concrete portion of the smallest specimen are kept
constant to discretize the other two larger specimens.
The MESP Model is used in the analysis case B to
examine mesh dependency of the model.

2.2 Analysis cases D, E, and F

In the second series of the analysis cases D, E, and F
shear tests of three reinforced concrete deep beam
specimens of Matsuo are simulated. Those specimens
called D200, D400, and D600 have the same
afd =1.0, but individual 4 of 200, 400, and 600 mm,
respectively. As in the experiment of Niwa, the
specimens of Matsuo are not geometrically similar,
but only effective depth and shear span length are
similar among the three specimens. The finite
element mesh used in each analysis case is shown in
Figures 7-10. In the analysis case D the finite



elements in the web concrete portion are enlarged
similarly to discretize the test specimens into finite
element meshes, as in the analysis cases A and C. The
MESP Model is used for the plain concrete portions
of the specimens in the analysis case D.

In the analysis case E the specimen D600 is
discretized as a full structure model, not exploiting its
symmetry. Furthermore, in the analysis case F to
examine the influence of rotation and deformation of
loading plate, the fixed displacement load is applied
to only a single central node of loading plate
elements.

2.3 Tension stiffening model

In all the cases, reinforcement bars are modeled with
the embedded reinforcement elements of Von Mises
elasto-plastic constitutive model taking into account
tension stiffening effect of concrete. The elements
within the 100 mm height around the tension
reinforcement bar are assumed as bond concrete
elements to take into account tension stiffening effect
of concrete. The local EMPC Model is assumed for

2.4 Regularization with MESP Model

In the MESP Model, fracture localization at the
microscopic level is modeled using a series phase
consisting of fracture and unloading phases. Through
a simple homogenization procedure for the individual
series phase, the characteristics on orientation and
size of series phases in the concrete volume element
are taken into account in the resulting nonlocal
macroscopic constitutive relation of the MESP Model
(Figure 1). This yields a regulanzatlon of the MESP
Modcl Assurnmg the length ¥ of the fracture phase
as 21° , the material parameters of the EMPC
and MESP Models are determined by fitting the
uniaxial tension softening relation to the one provided
in CEB-FIP Model Code 1990 (d,,,,, = the maximum
aggregate size). Then the regularization of the MESP
Model for the individual finite element is achieved by
taking into account the lengths of series phases in the
element to calculate incremental stiffness of the
model. Figures 12 and 13 show size effects of the
MESP Model on the uniaxial tension and
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Figure 6. Analysis case B3



compression for the concrete triangle elements used
in the present analysis. The size effects result from the
regularization with the MESP Model.

3 ANALYSIS RESULTS AND DISCUSSION
3.1 Analysis cases A, B, and C

The size effect of shear strength obtained in each
analysis case is shown in Figure 14 along with
experimental test data of Niwa, in which 7, =V, /bd
= shear strength; V, = maximum shear load; b =
beam width; f.' = concrete compressive strength. The
design equation of the Japan Society of Civil
Engineers Standard Specification is compared with

The size effect obtained in the analysis case A using
the similar elements resembles the one obtained in the
analysis case B using the elements with the same size.
The maximum difference of the shear strength
between the two analysis cases is about 10%. The
MESP Model relieves mesh dependency. It is worth
notice that the EMPC Model (the analysis case C)
also can predict an adequate size effect in spite of a
local constitutive model. This is because there was an
apparent size effect in the tests of Niwa due to the
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geometrically unsimilar shape of test specimens and
the size effect of failure mode.

In Figure 15 the incremental deformation at the
maximum load in the analysis case A is compared for
three specimens having the different effective depth.
All specimens collapse due to the shear-compressive
failure localization near the loading plate. However,
the position of the element failing in the shear-
compressive softening localization is different among
the three specimens, which means that the failure
mode depends on the specimen size due to the
geometrically unsimilar shape of specimens. It seems
that the geometrically unsimilarity in shape of
specimens brings an apparent and complicated size
effect of the experiment.

In the previous studies (Hasegawa 1999,
Yoshitake & Hasegawa 2000) it has been clarified
that only tensile modeling which takes into account
fracture energy is not sufficient to simulate the size
effect of shear strength of reinforced concrete deep
beams having the completely similar shape. It has
been concluded that some models for the size effect
on shear-compressive failure of concrete like the
MESP Model are necessary for the simulation and the
geometrical unsimilarity in beam shape results in the
apparent size effect in the experiment of Niwa.

Figures 16-18 are the shear responses in each
analysis case comparing with the experiment, in
which shear stress T = V/bd; V = shear load; §p =
relative displacement between the loading and
supporting plates. Both the MESP and EMPC Models
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very brittle responses in the post-peak regime while
the experiment shows relatively ductile post-peak
behavior. This might be due to insufficient
regularization for compression in the analysis, and
some problems related to analytical modeling of the
loading boundary condition in the experiment.
Figures 19 and 20 show the stress-strain responses
of the elements @ and b (Figures 2 and 3) in the
analysis cases Al (d =300 mm) and A2 (d = 600
mm). In the smaller specimen (d = 300 mm) the shear-
compressive softening failure occurs at the element a
within the shear span and the unloading takes place at
the element & outside the shear span. On the other
hand in the larger specimen (d = 600 mm), the shear-
compressive softening failure localizes at the element
b outside the shear span and the unloading occurs at
the element a within the shear span. The brittle post-
peak shear response obtained in the analysis is
reasonable considering that the reinforced concrete

deep beam failed in the shear-compressive softening
localization and the unloading is dominant outside of
the localization area.

In Figure 21 plotted is the line of maximum
principal strain g =5¢, with the thickness
proportional to its value to represent crack strain and
crack direction at the maximum load in the analysis
cases A3 and B3, which will be a good measure of
crack width ( &,, = the tensile strain corresponding to
tensile strength). Similar cracking patterns are
obtained in the analysis cases A3 with coarse mesh
and B3 with fine mesh, which means that the MESP
Model relieves mesh dependency on cracking.

3.2 Analysis cases D, E, and F

In Figures 22 and 23 the incremental deformation of
the analysis cases D, E, and F is shown for the
maximum load ¥, and for 2V, /3 in the post-peak
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(d) Analysis case E
Figure 22. Incremental deformation at maximum load

(e) Analysis case F
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displacement load is applied to the full structure
model, is almost identical to the analysis case D3 of
symmetric structure model. However, when the shear
crack in the left span propagates further a bifurcation
from a symmetric to an unsymmetrical fracture mode
occurs in the analysis case E. Then the difference of
shear response between the analysis cases D3 and E
begins increasing gradually. The crack strain
distribution of left and right spans is similar and
approximately symmetric at the maximum load in the
analysis case F. On the other hand the crack profile of
the analysis case E is different between the left and
right spans, which indicates that an unsymmetrical
fracture mode is dominant.

Figure 31 is stress-strain responses of the elements
a and b (Fipure 10) in the analysis cases E and F. Very

— g =002

similar softening fracture responses occur in both
¢lements a and b for the analysis case E while in the
analysis case F the unloading responses take place at
the maximum load in the element a of the left span
and the softening fracture responses occur in the
element & of the right span. In the analysis case F the
shear-compressive failure localization near the right
end of loading plate induces the rotation of the
loading plate, which intensifies the unsymmetrical
fracture mode. The loading boundary condition has
an important influence on the bifurcation to the
unsymmetrical fracture mode and the fracture
localization in reinforced concrete deep beams. In the
experimental study of Matsuo as well as Niwa the
details of the loading boundary conditions such as the
arrangement of spherical seat and load cell were not
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Figure 28. Crack strain at maximum load in analysis case D1, and cracking pattern after failure in the test (¢ = 200 mm)
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clarified, which are related to the rotation degree of
freedom and the deformation of the loading plate.
Therefore, it was difficult to pursue further the issue
of the loading boundary conditions in the present
analysis.

A detailed examination reveals that the rotation of
principal direction within the elements a and & is too
large to be ignored. Since the MESP Model has an
important advantage that the model is rationally
applicable to the stress and strain conditions in which
the principal direction rotates, it seems that the
advantage of the model results in the present
reasonable simulation with accuracy.

Figure 32 shows the minimum principal strain
distribution at the maximum load in the analysis case
E. From Figure 32 and the comparison between
Figures 30 (b) and (c) the uniform displacement load
at the loading plate is considered to make the shear
crack band occur at a lower position in the web, which
results in widening of the concrete compressive strut
between the loading and supporting plates and it
enhances the shear capacity. It is worth notice that the
analysis case D3 with the symmetric structure model
brings about different results from the analysis case E
with full structure model in terms of not only the shear
strength but also the failure mode and the post-peak
response (ductility). An assumption of symmetric
structure model has to be paid great attention for
simulation of reinforced concrete deep beams.

In Figure 33 the size effect of shear strength
obtained in the analysis cases D, E, and F is compared
with experimental test data of Matsuo and Walraven
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Figure 33. Size effect on shear strength (a/d = 1.0)
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(Walraven & Lehwalter 1994) along with the design
equation of the Japan Society of Civil Engineers
Standard Specification. As in the analysis cases A, B,
and C the analysis method using the MESP and
EMPC Models can predict the size effect on shear
strength of reinforced concrete deep beams with
accuracy.

4 CONCLUSIONS

The Multi Equivalent Series Phase Model and the
Enhanced Microplane Concrete Model can provide
good prediction of experimental results of reinforced
concrete deep beams on the cracking, shear-
compressive failure localization, failure mechanism,
deformation, shear strength, and its size effect. The
loading boundary condition and the geometrical
unsimilarity in beam shape other than in the shear
span are shown to have important influence on not
only the shear strength but also the failure mode and
post-peak behavior.
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