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Size effect analysis of reinforced concrete deep beams 

T.Hasegawa 
Institute of Technology, Shimizu Corporation, Tokyo, Japan 

ABSTRACT: A finite element failure analysis of reinforced concrete deep beams is perfonned using the Multi 
Equivalent Series Phase Model and the Enhanced Microplane Concrete Model to simulate experimentally 
obtained size effects of the deep beams. It is shown that the models can provide good prediction of experimental 
results of reinforced concrete deep beams on the cracking, shear-compressive failure localization, failure 
mechanism, deformation, shear strength, and its size effect. The loading boundary condition and the geometrical 
unsimilarity in beam shape other than in the shear span are shown to have important influence on not only the 
shear strength but also the failure mode and post-peak behavior. 

I rNTRODUCTION 

Comparing with reinforced concrete slender beams, 
fracture and size effect in reinforced concrete deep 
beams are complicatedly influenced by a lot of factors 
like the formation of fai lure mechanism by crack 
propagation, size effects in tensile fracture, localized 
shear-compressive failure, and so on. Therefore, a 
numerical simulation of the failure mechanism in 
reinfo rced concrete deep beams is important to 
establish a rational shear design method for them. 

In the present study, a general purpose finite 
element system DIANA incorporating the nonlocal 
Multi Equivalent Series Phase Model (MESP Model; 
Hasegawa 1998) and the local Enhanced Microplane 
Concrete Model (EMPC Model; Hasegawa 1995) is 
utilized to simulate size effect tests of reinforced 
concrete deep beams of Niwa (Niwa 1983) and 
Matsuo (Matsuo 2001). The MESP Model (Figure 1) 
as a nonlocal constitutive law for concrete has been 
demonstrated to be able to predict size effects in 
tensile fractures, multiaxial compressive failures, and 
shear fractures of concrete, which is suitable for 
simulating failures ofreinforced concrete deep beams 
under the complicated stress condition. 

2 ANALYSIS MODELlNG 

2.1 Analysis cases A, B, and C 

Shear tests of three reinforced concrete deep beam 
specimens of Niwa are simulated in the first series of 
the analysis cases A, B, and C. Those specimens 
called SIO, Sil, and LRO have the same a/d = 0.5 (a 
=- shear span length; d = effective depth), but 
individual d of300, 600, and 900 mm, respectively. 

The specimens are not geometrically similar, but only 
effective depth and shear span length are similar 
among the three specimens. The finite element mesh 
used in each analysis case is shown in Figures 2-6. 
Assuming symmetry of the structure, only half-left 
structure models are considered. In the analysis cases 
A and C, the finite elements in the web plain concrete 
portion are enlarged similarly to discretize the three 
test specimens with different sizes into individual 
finite element meshes. The nonlocal MESP Model is 
used for the plain concrete portions of the specimens 
in the analysis case A. On the other hand, the local 
EMPC Model is applied to the same concrete portion 
in the analysis case C to compare the results of the 
analysis cases A and C and investigate the 
effectiveness of the nonlocal constitutive model. In 
the analysis case B, the finite element size in the web 
concrete portion of the smallest specimen are kept 
constant to discretize the other two larger specimens. 
The MESP Model is used in the analysis case B to 
examine mesh dependency of the model. 

2.2 Analysis cases D, E, and F 

In the second series of the analysis cases D, E, and F 
shear tests of three reinforced concrete deep beam 
specimens of Matsuo are simulated. Those specimens 
called 0 200, D400, and D600 have the same 
ajd = 1.0, but individual d of200, 400, and 600 mm, 
respectively. As in the experiment of Niwa, the 
specimens of Matsuo are not geometrically similar, 
but only effective depth and shear span length are 
similar among the three specimens. The finite 
element mesh used in each analysis case is shown in 
Figures 7-1 0. In the analysis case D the finite 
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elements in the web concrete portion are enlarged 
similarly to discretize the test specimens into finite 
element meshes, as in the analysis cases A and C. The 
MESP Model is used for the plain concrete portions 
of the specimens in the analysis case D. 

In the analysis case E the specimen 0600 is 
discretized as a full structure model, not exploiting its 
symmetry. Furthermore, in the analysis cas~ F to 
examine the influence of rotation and deformation of 
loading plate, the fixed displacement load is applied 
to only a single central node of loading plate 
elements. 

2.3 Tension stiffening model 

In all the cases .• reinforcement bars are modeled with 
the embedded reinforcement elements of Von Mises 
elasto-plastic constitutive model taking into account 
tension stiffening effect of concrete. The elements 
within the 100 mm height around the tension 
reinforcement bar are assumed as bond concrete 
elements to take into account tension stiffening effect 
of concrete. The local EMPC Model is assumed for 
the bond concrete. Figure 11 shows the uniaxial 
response of the local EMPC Model for the tens~on 
stiffening in the bond concrete elements comparing 
with experiment~! data (Shima et al. 1987). 

2.4 Regularization with MESP Model 

Jn the MESP Model, fracture localization at the 
microscopic level is modeled using a series phase 
consisting of fracture and unloading phases. Through 
a simple homogenization procedure for the individual 
series phase, the characteristics on orientation and 
size of series phases in the concrete volume element 
are taken into account in the resulting nonlocal 
macroscopic constitutive relation of the MESP Model 
(Figure I). This yields a regul~_rization of the MESP 
Model. Assuming the length l of the fracture phase 
as 2/F = d , the material parameters of the EMPC 
and MESPModels are determined by fitting the 
uniaxial tension softening relation to the one provided 
in CEB-FIP Model Code 1990 ( dmax = the maximum 
aggregate size). Then the regularizatio~ of th~ MESP 
Model for the individual finite element 1s achieved by 
taking into account the lengths of series phases in the 
element to calculate incremental stiffness of the 
model. Figures 12 and 13 show size effects of the 
MESP Model on the uniaxial tension and 
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compression for the concrete triangle elements used 
in the present analysis. The size effects result from the 
regularization with the MESP Model. 

3 ANAL YSJS RESULTS AND DISCUSSION 

3.1 Analysis cases A, B, and C 

The size effect of shear strength obtained in each 
analysis case is shown in Figure 14 along with 
experimental test data of Niwa, in which -r11 = V./bd 
= shear strength; V. = maximum shear load; b = 
beam width; fc' = concrete compressive strength. The 
design equation of the Japan Society of Civil 
Engineers Standard Specification is compared with 
the size effect in the same figure. Three analysis cases 
provide reasonable size effects of the shear strength. 
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The size effect obtained in the analysis case A using 
the similar elements resembles the one obtained in the 
analysis case B using the elements with the same size. 
The maximum difference of the shear strength 
between the two analysis cases is about 10%. The 
MESP Model relieves mesh dependency. It is worth 
notice that the EMPC Model (the analysis case C) 
also can predict an adequate size effect in spite of a 
local constitutive model. This is because there was an 
apparent size effect in the tests of Niwa due to the 
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geometrically unsimilar shape of test specimens and 
the size effect of failure mode. 

In Figure 15 the incremental defonnation at the 
maximum load in the analysis case A is compared for 
three specimens having the different effective depth. 
All specimens collapse due to the shear-compressive 
failure localization near the loading plate. However, 
the position of the element failing in the shear­
compressive softening localization is different among 
the three specimens, which means that the failure 
mode depends on the specimen size due to the 
geometrically unsimilar shape of specimens. It seems 
that the geometrically unsimilarity in shape of 
specimens brings an apparent and complicated size 
effect of the experiment. 
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In the previous s tudies (Hasegawa 1999, 
Yoshitake & Hasegawa 2000) it has been clarified 
that only tensile modeling which takes into account 
fracture energy is not sufficient to simulate the size 
effect of shear strength of reinforced concrete deep 
beams having the completely similar shape. It has 
been concluded that some models for the size effect 
on shear-compressive failure of concrete like the 
MESP Model are necessary for the simulation and the 
geometrical unsimilarity in beam shape results in the 
apparent size effect in the experiment of Niwa. 

Figures 16-18 are the shear responses in each 
analysis case comparing with the experiment, in 
which shear stress -r = V/bd ; V =shear load; 8p = 
relative displacement between the loading and 
supporting plates. Both the MESP and EMPC Models 
provide good prediction of the shear response up to 
the maximum load. However, the analysis predicts 
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very brittle responses in the post-peak regime while 
the experiment shows relatively ductile post-peak 
behavior. This might be due to insufficient 
regularization for compression in the analysis, and 
some problems related to analytical modeling of the 
loading boundary condition in the experiment. 

Figures 19 and 20 show the stress-strain responses 
of the elements a and b (Figures 2 and 3) in the 
analysis cases Al (d = 300 mm) and A2 (d = 600 
mm). In the smaller specimen (d = 300 mm) the shear­
compressive softening failure occurs at the element a 
within the shear span and the unloading takes place at 
the element b outside the shear span. On the other 
hand in the larger specimen (d = 600 mm), the shear­
compressive softening failure localizes at the element 
b outside the shear span and the unloading occurs at 
the element a within the shear span. The brittle post­
peak shear response obtained in the analysis is 
reasonable considering that the reinforced concrete 

deep beam failed in the shear-compressive softening 
localization and the unloading is dominant outside of 
the localization area. 

In Figure 21 plotted is the line of maximum 
principal strain e1 ~ 5e,0 with the th ickness 
proportional to its value to represent crack strain and 
crack direction at the maximum load in the analysis 
cases A3 and B3, which will be a good measure of 
crack width ( e,0 = the tensile strain corresponding to 
tensile strength). Similar cracking patterns are 
obtained in the analysis cases A3 with coarse mesh 
and B3 with fine mesh, which means that the MESP 
Model relieves mesh dependency on cracking. 

3.2 Analysis cases D, E, and F 

In Figures 22 and 23 the incremental deformation of 
the analysis cases D, E, and F is shown for the 
maximum load V. and for 2Vu/3 in the post-peak 
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'''.'\... - : e1 =0.01 
~-=---:~-.,.:---'"*"~ ...... 

'"' " ' 
Figure 21. Crack strain at maximum load in analysis cases A3 
and 83 (d= 900 mm) '""" (b) Analysis case 02 (c) Analysis case 03 

(a) Analysis case DI ( d) Analysis case E ( e) Analysis case F 

Figure 22. Incremental deformation at maximum load 

693 



regime. Figure 24 is the shear responses of the 
analysis cases DI (d =200mm) and 0 2 (d=400 mm} 
in terms of the relative displacement oR of the center 
point of beam to the supporting point at the level of 
tension reinforcement bar comparing to the 
experiment. On the other hand Figure 25 is the shear 
responses of the analysis cases Dl and D2 in terms of 
Op. In Figures 26 and 27 the similar relations T - 011 
and T - Or to Figures 24 and 25 are shown for the 
analysis cases D3, E, and F (d = 600 mm). In Figures 
28-30 the crack strain at the maximum load as in 
Figure 21 is plotted and compared with the cracking 
pattern after failure in the experiment. The distributed 
crack lines near the loading and supporting plates are 
considered to represent shear-compressive damage of 
concrete. 

It is obvious that the maximum load is obtained 
after the shear-compressive failure localizes near the 

- - analysis easeDI (d • 200 mm) 
• • ••• ·· analysis ca<e 02 (d • 400 mm) 

... 
'·· 

.. ...... ··. 

0 
0 2 4 6 8 10 12 14 

relative displacement Op/d (10·)) 

Figure 25. Relative displacement Op (d .. 200 and 400 mm) 

--- exp. ofMatsoo:spccimcn 0200 (d a 200 mm) 
-tr--- exp.ofMatsuo:specimen0400 (d • 400 mm) 
-- analysis.,.,., OJ (d=200mm) 
••••••• analysiscaseD2 (d=400mm) 

....... 

2 4 6 8 10 12 14 
relative displacement o • / d (I 0 •3) 

Figure 24. Relative displacement OR (d .. 200 and 400 mm) 

-4.56X J0"1 mm 

' " 

loading plate in the all analysis cases. Since in the 
post-peak regime for the analysis cases D 1, E, and F 
the shear-compressive failure localizes only near the 
loading plate and the unloading deformation in the 
other area is dominant, the response OR reveals 
snapback. However, the snapback behavior is not 
observed in the response Op for all the analysis cases. 
In the earlier loading stage the shear response of the 
analysis case E, in which the uniform fixed 
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displacement load is applied to the full structure 
model, is almost identical to the analysis case D3 of 
symmetric structure model. However, when the shear 
crack in the left span propagates further a bifurcation 
from a symmetric to an unsymmetrical fracture mode 
occurs in the analysis case E. Then the difference of 
shear response between the analysis cases D3 and E 
begins increasing gradually. The crack strain 
distribution of left and right spans is similar and 
approximately symmetric at the maximum load in the 
analysis case F. On the other hand the crack profile of 
the analysis case E is different between the left and 
right spans, which indicates that an unsymmetrical 
fracture mode is dominant. 

Figure 31 is stress-strain responses of the elements 
a and b (Figure JO) in the analysis cases E and F. Very 

- : "' =0.02 

'"' 

similar softening fracture responses occur in both 
elements a and b for the analysis case E while in the 
analysis case F the unloading responses take place at 
the maximum load in the element a of the left span 
and the softening fracture responses occur in the 
element b of the right span. In the analysis case F the 
shear-compressive failure localization near the right 
end of loading plate induces the rotation of the 
loading plate, which intensifies the unsymmetrical 
fracture mode. The loading boundary condition has 
an important influence on the bifurcation to the 
unsymmetrical fracture mode and the fracture 
localization in reinforced concrete deep beams. In the 
experimental study of Matsuo as well as Niwa the 
details of the loading boundary conditions such as the 
arrangement of spherical seat and load cell were not 

Figure 28. Crack strain at maximum load in analysis case O I, and cracking pattern after failure in the test (d = 200 mm) 
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clarified, which are related to the rotation degree of 
freedom and the deformation of the loading plate. 
Therefore, it was difficult to pursue further the issue 
of the loading boundary conditions in the present 
analysis. 

A detailed examination reveals that the rotation of 
principal direction within the elements a and b is too 
large to be ignored. Since the MESP Model has an 
important advantage that the mode l is rationally 
applicable to the stress and strain conditions in which 
the pr incipal d irection rotates, it seems that the 
advantage of the model results in the present 
reasonable simulation with accuracy. 

Figure 32 shows the minimum principal strain 
distribution at the maximum load in the analysis case 
E. From Figure 32 and the comparison between 
Figures 30 (b) and (c) the uniform displacement load 
at the loading plate is considered to make the shear 
crack band occur at a lower position in the web, which 
results in widening of the concrete compressive strut 
between the loading and supporting plates and it 
enhances the shear capacity. It is worth notice that the 
analysis case 0 3 with the symmetric structure model 
brings about different results from the analysis case E 
with full structure model in tenns of not only the shear 
strength but also the failure mode and the post-peak 
resp onse (ductility) . An assumption of symmetric 
structure model has to be paid great attention for 
simulation of reinforced concrete deep beams. 

In Figure 33 the size effect of shear strength 
obtained in the analysis cases D, E, and F is compared 
with experimental test data o f Matsuo and Walraven 
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(Walraven & Lehwalter 1994) along with the design 
equat ion of the Japan Society of Civil Engineers 
Standard Specification. As in the analysis cases A, B, 
and C the analysis method using the MESP and 
EMPC Models can predict the size effect on shear 
strength of reinforced concrete deep beams with 
accuracy. 

4 CONCLUSIONS 

The Multi Equivalent Series Phase Model and the 
Enhanced Microplane Concrete Model can provide 
good prediction of experimental results of reinforced 
concrete deep beams on the cracking, shear­
compressive failure localization, failure mechanism, 
deformation, shear strength, and its size effect. The 
loading boundary condition and the geometricai 
unsimilarity in beam shape other than in the shear 
span are shown to have important influence on not 
only the shear strength but also the failure mode and 
post-peak behavior. 
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