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ABSTRACT: In this work, we present the theoretical formulation of a material model combining consistently 
two kinds of dissipations: the volume-proportional one which is accounted for by continuum damage or con­
tinuum plasticity model and the other one proportional to a (macro-) crack which is specified by the traction 
- separation constitutive model. The details pertinent to the numerical implementation of the proposed model 
within the framework of incompatible modes are also presented. 

INTRODUCTION 

Ever increasing demand to achieve a better under­
standing of the behavior of a particular structural sys­
tem and achieve a more economical structural de­
sign requires that the latter be based upon the limit 
load computation. It is often the case, in an analysis 
of this kind, that certain parts of the structural sys­
tems are heavily damaged and thus enter a post-peak 
or softening phase before the limit load of the struc­
ture has been reached. It is well known by now (e.g. 
see de Borst (1999)) that the strain softening phe­
nomena of this kind present a serious difficulty for 
classical continuum models for representing inelas­
tic deformations (e.g. plasticity or damage models) in 
assuring that the numerical solutions computed with 
different finite element mesh grading all lead to the 
same post-peak softening response. It is much less 
known how to construct such models able to pro­
vide a correct measure of energy dissipation and to 
handle the strain softening in a very efficient man­
ner. Namely, a number of remedies which have been 
proposed initially involve, in general, a fairly elab­
orate modification of the classical continuum mod­
els. For example, the non-local continuum formula­
tion (e.g. see Pijaudier-Cabot & Bazant (1987)) im­
poses that the stress state in a single point depends 
not only on the total strain and internal variables at 
that point but also on the values of those variables 
in a predefined neighborhood. Similarly, the gradi­
ent plasticity and gradient damage model (e.g. see 
de Borst et al. (1992)) lead to a non-local character­
ization of the plastic multiplier or damage indicator. 
Each of these formulation imposes a significant in­
crease in complexity of the corresponding numerical 
procedure, and introduces the notion of the character-
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istic length, or in other words, to quantify the dissipa­
tion as proportional to the volume. In order to circum­
vent the difficulty of having to identify the charac­
teristic length, more recent works on strain-softening 
problems (e.g. see Oliver (1996), Armero (1999) or 
Jirasek & Zimmermann (2001)) have turned to us­
ing a discontinuity of the displacement field ( effec­
tively simulating a macro-crack) and re-interpolating 
the manner of computing the amount of energy dissi­
pation by a chosen traction-separation softening dia­
gram. The models of this kind only take into account 
two possible states purely elastic or a macro crack ac­
tivation, and complete! y ignore the dissipation due to 
micro-cracking. The main idea of this work, relates to 
the fact that physics of the problem is the most closely 
represented by a model which is capable to take into 
account both micro- and macro-cracking and properly 
interpret the nature of associated inelastic energy dis­
sipation. One such model is proposed in this paper. 
In Section 2, we present the governing equations (see 
Ibrahimbegovic et al. (1998)). For clarity of the ideas, 
this is done for one-dimensional setting. In Section 3, 
we discuss the corresponding details of numerical im­
plementation which are set within the framework of 
incompatible modes (see Ibrahimbegovic & Wilson 
(1991)) and present a couple of illustrative examples. 
Some closing remarks are stated in Section 5. 

2 THEORETICAL FORMULATION 

We consider a one-dimensional problem of axial de­
formation of a trnss-bar, supported at one end and 
loaded by both distributed loading b(x, t) and trac­
tion f(t) applied at its free-end. (We note that tis the 
pseudo-time parameter used to describe a particular 
loading program). For any material model of the bar 



one can write the kinematics and equilibrium equation 
(under small displacement gradient hypothesis): 
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E x,t -
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where E is the infinitesimal strain and u is the Cauchy 
stress. 

The first model we focus upon is the plasticity 
model which assumes that there exist an elastic do­
main where no change of inelastic deformation would 
occur, i.e. 

cp(u, q) = lul - (uy - q) ::; 0 (3) 

where <Ty is the yield stress, separating initially the 
elastic and plastic domains, whereas q is the harden­
ing variable taking into account an eventual evolution 
of the elastic domain due to hardening/softening phe­
nomena. In a plasticity model at small deformation it 
is usually assumed (e.g. see Lubliner (1990)) that the 
total deformation can be additively decomposed into 
elastic and plastic parts. Moreover, the stress depends 
only on the elastic deformation part, whereas the plas­
tic flow is governed by normality rule which amount 
to: 

CT 
€(x, t) = E + "y(x, t)sign(u) (4) 

where E is Young's modulus and 'Y is the plastic mul­
tiplier. If the displacement field is allowed to have a 
discontinuity (e.g. a crack -opening) it can be written 
as 

11.('.I;, t) = u(x, t) + [u](t)H,,(x) (5) 

where u(x, t) is a smooth part and H,,(x) is the Heav­
iside function and [u](t) is the crack opening. The 
strain field obtained from (1) and (5) can be written 
as: 

c(x, t) =au~:' t) + [u](t)o,,(x) (6) 

where o,Jr) is the Dirac delta function. By introduc­
ing the result ( 6) into ( 4) and appealing to the smooth­
ness of the stress field (consider for example a stati­
cally determined problem where stress field can be 
obtained from equilibrium equation only) one con­
cludes that it must hold 

ry(:r, t) = ;y(x, t) +'fo,,(x) 

We can thus recover that 

. ( ) E[ Du(x, t) _ ( . CT x, t = 3:;:- - 'Y x, t)sign(u)] 

(7) 

(8) 
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'f(t) =\[~]I (9) 

The consistency condition leads from (3) to 

0 = efy(u, q) = sign(u)Efx - cy(x, t)E[ s·ign(u)]2 
+q + E ([u]sign(u)x -1') 5"(.x) 

=0 
(I 0) 

Assuming that the micro and macro-cracking 
would occur sequentially, we obtain for the first phase 

_ sign(u)Ef 
ry(x,t) = E[sign(u)]2~K (ll) 

Subsequently, the non-local form of the consis­
tency condition would lead to 

q = -sign(u)& (12) 

which implies that the hardening stress-like variable 
must remain bounded. Finally, by taking into account 
that q = -K~ and~= 'Y we can conclude in view of 
(9) that 

'fo,,(x) = l[u]lox(x) = -K-1q (13) 

which further implies that 

( 14) 

Quite the same formalism as the one presented 
herein for lD case can be used in a higher dimensional 
setting if one considers the Rankine yield criteria 

cp(<Ti,q) =<Ti - CTyh(q) ( 15) 

where <Ti are the principal values of stress, and h(q) is 
a particular form of the hardening/softening law. 

Considering this model enables to describe quite 
efficiently mode I failure in concrete structures. 

3 NUMERICAL IMPLEMENTATION AND SIM-
ULATIONS 

The non-classical plasticity model presented in the 
previous section is only a part of a successful develop­
ment capable of handling the localization phenomena. 
Another ingredient, equally if not even more impor­
tant is the chosen numerical implementation. In this 
work we build upon the simplest type of 2D finite el­
ement, a 3-node triangle previously used by Larsson 
et al. (1993), Oliver (1996) or Armero (1999). 

The potential macro-crack is placed in the center 
of element and the displacement interpolation is con­
structed as shown in Figure l . 

The real strain field is constructed as 

3 

c(x,t) = I;v73 N 0 (x)d0 +Ga ( 16) 
a=l 



M (x) 

Na (x) 

Figure 1: Interpolation functions of a 3-node triangle 
with discontinuity. 

where G is produced from the chosen displacement 
interpolation by applying the same differential opera­
tor to smooth and discontinuous part. Contrary to last 
result, the interpolation of the virtual strain is con­
structed with 

3 

Ot::(.T, t) = 2:= V' Na(x)wa + G(J (17) 
a=l 

where G is a modified incompatible mode strain­
displacement matrix with a zero-mean, which should 
guarantee the satisfaction of the patch test condi­
tion (e.g. see Ibrahimbegovic & Wilson (1991)). With 
such a choice of virtual strain interpolations, the dis­
crete problem takes a standard format of the equations 
of incompatible mode method, where the set of global 
equilibrium equations is supplemented by element­
based local equilibrium equations 

where 

e=l 

= Jrzc V 3 N(x)O"dD 

he= r GO"dD = 0, 'Ve E [1, Helem] Jne 

(18) 

(19) 

denotes the finite element assembly 
e=l 

procedure. We note that the choice of the element and 
G implies the automatic satisfaction of (19). 

3.1 One-dimensional model of simple tension test 
In the first example, we take a simple one dimensional 
representation of the standard traction test, where the 
specimen is driven to the ultimate load and its post­
peak response is explored under displacement con-

trol. In that sense, we need to combine the initial in­
elastic response under distributed micro-cracking and 
post-peak response governed by traction-separation 
of the macro-crack. The finite element models used to 
carry out this computation consider different number 
of truss-bar elements of ever decreasing size. The re­
sults obtained by the model developed herein remain 
insensitive to the finite element mesh grading, and all 
the computed force-displacement diagrams coincide. 
See figure 2. 
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Figure 2: Force-displacement diagram in a simple ten­
sion test. 

3.2 Two-dimensional of simple tension test 
In this second analysis, we take a two-dimensional 
representation of the previous problem. 3-node trian­
gles with discontinuity are used to mesh the geometry. 
The deformed mesh at the end of the analysis is de­
picted in Figure 3. For simplicity, the analysis is car­
ried out considering a J2 plasticity model under plane 
strain conditions where 45 shear band is the dominant 
mode of failure (see Figure 3). Similar analysis is un­
der way for Rankine model. 
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5 CONCLUSIONS 
In this work we presented an inelastic constitutive 
model which is capable of combining the phenomena 
of micro-cracking, typically produced in initial dam­
age phase, and macro-cracking, which is often dom­
inant in the final post-peak phase. We have shown 
that both theoretical formulation and numerical im­
plementation have to be addressed in order to guar­
antee the robustness of such a model. The model of 
this kind offers possibility to construct a more realis­
tic physical basis of total energy dissipation, between 
one proportional to damaged volume as opposed to 
the one proportional to crack surface. 



Time= 1.20E+OO 

Figure 3: Tension test simulation: numerical results. 
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