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ABSTRACT: The study of concrete behavior under mechanical and environmental actions is approached via 
microstructural analysis using the FEM. The discretization includes the larger aggregates embedded in a ma­
trix which represents the mortar and the smaller aggregates. Zero-thiclmess interface elements representing 
potential crack lines are inserted along all aggregate-matrix boundaries, and also along the main lines of the 
matrix discretization. Mechanically speaking, these elements are equipped with a fracture-based constitutive 
law which constitutes a mixed-mode generalization of Hillerborg's "Fictitious Crack Model". Numerical re­
sults in pure tension and compression are presented showing a good qualitative agreement with well known 
behavior of concrete. Consideration of environmental actions requires a moisture diffusion analysis on the 
same meshes. The formulation of interface elements for diffusion analysis is also described and illustrated. 

1 INTRODUCTION 

The behavior of heterogeneous materials such as 
concrete is clearly determined by the microstructural 
geometry and properties. Macroscopic models of the 
continuum type, which have been used traditionally 
in structural analysis, may be realistic for simple 
loading scenarios. However, as loading cases be­
come more complicated and, especially, as other 
phenomena such as diffusion of coupled behavior 
are important, accurate understanding of the material 
response can be drastically improved via microstruc­
tural analysis. 

As recognized by several authors (Rots and 
Schellekens, 1990), zero-thickness interface ele­
ments with appropriate constitutive laws, provide the 
means of extending the FCM concept (Hillerborg et 
al., 1976) into a modem numerical analysis of frac­
ture using the FEM. For a general crack propagation 
study in a homogeneous medium, this could require 
expensive remeshing. However, this technique 
seems especially appropriate for the microstructural 
analysis of heterogenous materials, in which a num­
ber of weak interfaces are already physically present 
within the material, and the remaining main potential 
crack paths can be easily established a priori of the 
analysis (Stankowski, 1990; Vonk, 1992). 

Cracks and material interfaces may also constitute 
preferred ways for faster, localized moisture migra­
tion within the concrete. These may also be conven­
iently represented by zero-thickness interface ele­
ments, with an appropriate formulation within the 
c:ontext of a FE analysis of the non-linear diffusion 
problem. This analysis, especially in the prospect of 
coupled behavior, may be advantageously carried out 
on the same meshes as the mechanical analysis, with 
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interfaces that may change their diffusion properties 
depending on mechanical crack opening. 

In this paper, the on-going work along this line at 
ETSECCP-UPC is summarized. First, the meshes 
used for the 2-D analysis of concrete specimens are 
described in Sect.2. The fracture-based constitutive 
laws of the interfaces for mechanical analysis are de­
scribed in Sect.3. Some results obtained in the analy­
sis of concrete specimens are described in Sect. 4. 
The formulation of the zero-thickness interface for 
diffusion analysis is then summarized in Sect.5. 
Some concluding remarks are finally presented in 
Sect. 6. 

2 GEOMETRIC ASPECT OF INTERFACE 
ELEMENTS, DISCRETIZATION OF 
CONCRETE SPECIMENS 

The interface elements used are "zero-thiclmess" 
isoparametric elements that can be inserted in be­
tween standard continuum finite elements. The 
nodes are grouped in pairs, which match on each 
side those of the adjacent elements. The two nodes 
from each pair are normally assigned the same coor­
dinates, although they may also be given slightly 
separate locations if needed to represent some thick­
ness or filling present in a physical interface. 

Square concrete specimens of 14xl4 cm dimen­
sions, which include 4x4 and 6x6 arrangements of 
irregular aggregates are discretized using normal 
continuum elements. Then, a number of zero­
thickness interface elements are inserted along the 
aggregate-matrix interface, and also across the mor­
tar matrix, to allow for the most relevant failure 
mechanisms. 



The geometry of the aggregates was taken from 
previous numerical work by Stankowski (1990), who 
generated these geometries using Voronoi/Delaunay 
theory on a perturbed mesh of initially regularly­
spaced points. For our purposes, the aggregate ge­
ometry was preserved, but the FE mesh was com­
pletely rebuilt in order to provide straighter crack 
paths, following the ideas proposed by Vonk (1992). 

In Figs. 1 a and 1 b, the discretization used for the 
matrix and the aggregate parts of the mesh for the 
6x6 specimen are shown separately. Fig. le shows 
the interface lines in the same mesh, and figure 1 d 
depicts a detail of node arrangements in pairs and in­
terface intersections. 

(a) (b) 

(c) (d) 

Figure I. FE discretization of the 6x6 arrangement: a) matrix, 
b) aggregates, c) interfaces inserted, and d) details of 
discretization. 

3 INTERFACE MODEL FOR MECHANICAL 
ANALYSIS 

Interface behavior is formulated in terms of the nor­
mal and shear components of stresses (tractions) on 
the interface plane, cr = [crN, crTl ',and corresponding 
relative displacements u = [uN, uT] '(t =transposed). 
The constitutive model is analogous to that used for 
each potential crack plane in the multicrack model 
(Carol & Prat, 1995); it has been recently described 
in detail and compared to other existing interface 
models in Carol et al. (1997) and Lopez (1999), and 
its main features and verification are summarized in 
the following. 

The constitutive formulation conforms to work­
softening elasto-plasticity, in which plastic relative 
displacements can be identified with crack openings. 
The main features of the plastic model are repre­
sented in Fig. 2. The initial loading (failure) surface 
F = 0 is given as a three-parameter hyperbola (ten­
sile strength x, asymptotic "cohesion" c, and asymp­
totic friction angle tarnjl, Fig. 2a). Classic Mode I 
fracture occurs in pure tension. A second Mode Ila is 
defined under shear and high compression, with no 
dilatanc(. allowed (Fig. 2b ). The fracture energies G/ 
and Gr1 a are two model parameters. After initial 
cracking, x, c and tancjl decrease (Figs. 2d and 2e ), 
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and the loading surface shrinks, degenerating in the 
limit case into a pair of straight lines representing 
pure friction (Fig. 2c). The process is driven by the 
energy spent in fracture process, W'', the increments 
of which are taken equal to the increments of plastic 
work, less frictional work in compression. Total ex­
haustion of tensile strength (X = 0) is reached for wcr 
= G/, and residual friction (c = 0 and tan¢= tan<jl,) is 
reached for wcr = G/la. Additional parameters CXx_, ac 
and U<j> allow for different shapes of the softening 
laws (linear decay for CXx_=<X,=U<j> =0, see Figs.2d, 2e ). 

The plastic model is fully associated in tension (Q 
= F), bl.it not in compression, where dilatancy is re­
duced with normal stress CTN (vanishing for CTN ---+ 
CTdi1, which is an additional parameter of the model) 
and also with shear degradation measured by c/co 
(vanishing for c ---+ 0, i.e. for Wcr---+ G/Ia). The dila­
tancy decay functions also include shape parameters 
aa di! and ac di! (also linear decay for zero values of 
shape parameters). The elastic stiffness matrix is di­
agonal with constant KN and KT, which can be re­
garded simply as penalty coefficients. 

Overall, the model has the following 8 required 
parameters: elastic KN and KT, initial strength xo, co, 
tan<jl0 , fracture energies G/, G/1a and zero-dilatancy 
stress crdil, plus the residual friction angle tan<jl, 
(which can be set equal to tan<jl0 in the absence of 
specific information) and _the five shape parameters 
ax , <Xe . U<j> . <la dtl and <Xe dtl (which can all be set to 
zero in the absence of specific information). 

The element formulation for mechanical analysis 
follows standard procedures based on the Principle 
of Virtual Work. The only special consideration re­
fers to the integration rules which correspond to 
Newton-Cotes/Lobatto schemes (with integration 
points in between each pair of nodes) in order to 
avoid spurious oscillations in the resulting stress 
profiles. See more details in Gens et al. (1990). More 
details about numerical and computational tech­
niques used can be found in Carol et al. (2001). 

The interface model is implemented the finite 
element code DRAC (Prat et al., 1993). This is a re­
search-oriented geotechnical/structural FE program 
with 2D/3D capabilities, various element types in­
cluding interfaces, post-processing module DRAC­
VIU, diffusion analysis module DRACFLOW, all in­
house developed at the Dept. of Geotechnical Engi­
neering and Geo-Sciences of ETSECCPB-UPC. 

4 EXAMPLES OF MICROSTRUCTURAL 
FRACTURE ANALYSIS 

4.1 Uniaxial tension 

A prescribed tensile displacement is applied to 
one side of the specimen, leaving lateral displace­
ment free in the transverse direction. Sum of reac­
tions divided by the size of the specimen gives the 
average applied stress. 

The material parameters are: E = 70000 MPa (ag­
gregate), E = 25000 MPa (mortar) and v = 0.18 
(both) for the continuum elements; for the aggregate-
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Figure 2. Crack laws: (a) hyperbolic cracking surface F and plastic potential Q; (b) fundamental modes of fracture; (c) evolution of 
cracking surface; (d) softening laws for X and c and (e) softening law for tan<j>. 

mortar interfaces: KN = KT = 109 MPa/m, tan¢o = 
tan¢, = 0.8, tensile strength Xo = 3 MPa, co = 4.5 
MPa, G/ = 0.03 N/mm, G/1a = lOG/, crdil = 7 MPa, 
and all other parameters equal to zero; for the mor­
tar-mortar interfaces the same parameters except for 
Xo = 6 MPa, co = 9 MPa, G/ = 0.06 Nlmm. 

The calculations have been repeated with load 
applied in the x (horizontal) and y (vertical) direc­
tions for the 4x4 and 6x6 mesh, and the resulting av­
erage stress-average strain curves are represented in 
Fig. 3. It can be noted that all them yield similar re­
sults in spite of the relatively different geometries 
involved. 

Fig. 4 includes results of the 4x4 specimen loaded 
vertically, at three different stages of the loading se­
quence (points Y1, Y2 and Y3 in Fig. 3), as well as 
the final deformed mesh (magnification factor = 
200). The thickness of the lines represents the 
amount of energy spent in the fracture process (We') 
at each point of the interface. 

It is apparent that many cracks start developing 
initially, but at some point deformations localize in 
one or two cracks perpendicular to the applied load, 
that develop while all other cracks unload (indicated 
with arrows in figure 4c). Well-lmown phenomena 
such as crack bridging and branching may be ob­
served in the results. 

4.2 Uniaxial compression 

In this case, load is also applied via uniform pre­
scribed displacement on the top side of the speci­
men, while lateral displacements are allowed. The 
material parameters are E = 70000 MPa (aggre­
gate), E = 25000 MPa (mortar) and v = 0.2 (both); 
for the aggregate-mortar interfaces: KN = KT = J09 
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Figure 3. Average stress-strain curves in uniaxial tension. 

MPa/m, tan¢0 = 0.6, Xo = 2 MPa, co = 7 MPa, G/ = 
0.03 N/mm, G/I" = lOG/, crctil = 40 MPa, tan¢, = 
0.2, <Xcrdil = -2, aq, = 1, and all other parameters 
equal to zero; for the mortar-mortar interfaces the 
same parameters except for Xo = 4 MPa, co = 14 
MPa, G/ = 0.06 N/mm. 

In Fig. 5, the stress-strain curves obtained with 
the 4x4 and the 6x6 meshes are plotted. The verti­
cal axis represents the average applied stress and 
the right side of the horizontal axis represents the 
corresponding (prescribed) strain, while the left 
side of the horizontal axis represents average lat­
eral strain. It is apparent that the results obtained 
with both meshes are quite similar, and they agree 
well with the typical behavior of concrete in uniax-



(a) (b) 
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Figure 4. Progressive cracking of the 4x4 mesh in uniaxial tension (a, b, c) represented by amount of energy spent, and final de­
formed mesh (d) upon y loading. 

ial compression as observed in experiments (Van 
Mier, 1984, 1997). 

In the left part of the figure, one can see the evo­
lution of the lateral strain. Initially, £2 evolves 
maintaining approximately the Poisson relation. 
Before reaching the peak load, the lateral strain 
starts growing faster, and in the softening branch it 
overcomes the strain prescribed in the loading di­
rection. In Fig. 6, the same behavior is represented 
in terms of a "volumetric" strain defined as 
(£1+2£2), which also matches the typical experi­
mental curves. 

In Fig. 7, the evolution of the cracking process 
of the 6x6 specimen is represented in terms of the 
modulus of the "plastic" (cracking) part of the rela­
tive displacement vector at each point of the inter­
faces. The four stages of loading represented in the 

U,(MPa) 
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Figure 5. Average stress-strain curves for the 4x4 and 6x6 
meshes under uniaxial compression. 
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figure, correspond to the four points marked 1, 2, 3 
and 4 on the stress-strain curves of Fig. 5. 

The state represented in figure 7 a corresponds to 
point 1 with widespread distributed microcracks 
mainly originated at the concrete-mortar interface. 
Fig. 7b corresponds to point 2, in which the local­
ization process has started. Some of the micro­
cracks are getting connected sideways forming in­
clined macrocracks, while the rest unload. At point 
3 (Fig. 7c), one can clearly appreciate one or two 
localization bands well developed which divide the 
specimen into three main blocks, while the remain­
ing incipient macrocracks have arrested. 

In the final stage (Fig. 7 d, point 4 in Fig. 5) the 
same scheme is maintained, and the few blocks 
formed slide with friction with respect to each 
other. Note that the transition from 7b to 7c repre­
sents a significant reduction of stress (points 2 to 3 
in Fig. 5). 

-50 E, 0"1 (MP a) 
(-)> 

bjtE, 4x4 mesh 

6x6 mesh 

' ' ·30 

-10 

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 -1.0 -2.0 

(E1 + 2 E 2) [10"3 ] 

Figure 6. Stress vs. "fictitious" volumetric strain curves in 
uniaxial compression. 



(b) 

(c) (d) 

Figure 7. Localization process in uni axial compression, represented in terms of the magnitude of plastic strain at the interfaces. 

5 DJFFUSION ANALYSIS WITH 
INTERFACES 

The diffusion analysis with interfaces is based on 
the well-known differential equation: 

l__[D oH] + h(x) = oH 
ox; ox; or 

(1) 

Finite Element techniques for this equation are 
well established, see for instance Zienckiewic 
(1977). For the specific problem of moisture diffu­
sion in concrete, the equation is written most ad­
vantageously in terms of the relative humidity H, 
as proposed by Bazant and Najjar (1971). Relative 
humidity therefore becomes the nodal variable for 
the FE analysis. Diffusivity is generally accepted to 
depend on relative humidity, i.e. D=D(H), which 
gives the problem a non-linear character and re­
quires iterative procedures (Alvaredo and Witt­
mann, 1992). 

In order to achieve a fully coupled analysis, the 
diffusion analysis must be run on the same meshes 
as the mechanical calculations. This means to de­
velop interface elements with double nodes, also 
for the diffusion analysis, which seems not stan­
dard in the literature of other fields with similar 
equations. For instance, in flow in porous media, 
localized flow in cracks is usually represented by 
single-noded line elements (in 2-D) or surface ele­
ments (in 3-D) which are simply superposed to the 
standard continuum field. If double-node interface 
elements are considered, the nodes on each side of 
the interface may give different values of H. This 
means that the interface elements in this case rep­
resent not only preferential flow channels, but also 
discontinuities in the potential field. 
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In order to formulate these elements, two differ­
ent mechanisms are taken into account: the longi­
tudinal and the transversal flow. For each of them, 
separate interface diffusivities, KL and KT, are pos­
tulated. The longitudinal flow is treated as a con­
ventional problem of diffusion through a line (in 
2D) or surface (in 3D). This flow is formulated in 
terms of variables at the "mid-points" of the inter­
face, which are points located at mid-distance be­
tween each pair of nodes. This leads to a first ele­
ment matrix equation restricted to the mid-point 
variables, which involves a "longitudinal stiffness 
matrix" KrM L· 

The tran~versal flow is treated in a different 
way, more similar to the traditional mechanical be­
havior of interfaces. In this case, the PVW is ap­
plied to obtain a second matrix element equation, 
also restricted to mid-point variables, although in 
this case representing jumps. This equation in­
volves a "transversal stiffness matrix" KPM,T· 

Finally, both mechanisms are combined, assum­
ing that, at the mid-point, H is the average of the 
values at the corresponding pair of interface nodes, 
and that longitudinal and transversal flows at the 
interface nodes sum effects in a consistent way 
(Mestre, 1999). This leads to the final matrix equa­
tion of the interface element involving all double 
nodes: 

(2) 

where Qi and Hi are the full nodal flow ("force") 
and H ("displacements") vectors, and K 1 is the 
global interface "stiffness" matrix which has the 
following structure: 



tl(PM,L -KPM.T. 

4KPM.L + KPM,T 

(3) 

A first verification example of this formulation 
involves a band of material with a longitudinal in­
terface. Dimensions are 6x2 cm. Variable H is pre­
scribed to I on the right end, no flow is allowed on 
the upper and lower boundaries, and the flow is 
also prevented on the left boundary, except for the 
interface opening, where H is set to zero. The dif­
fussivity of the continuum is considered constant 
D=lcm/s. The interface diffusivities are 
KL=104cm2fs and KT=l06cm/s. Although originally 
intended as a purely academic example, this could 
represent for instance a crack and the surrounding 
material, in a regularly-spaced arrangement of par­
allel cracks in a large concrete element. The fact 
that the flow is allowed only to exit the domain 
through the crack mouth could correspond for in­
stance to a sealing coating or lining, which has 
only been broken by the cracks. 

Fig.8 shows the steady state results of the diffu­
sion analysis with interfaces, as a contour plot of 
the values of the potential variable H. Although not 
explicitly represented, the flow directions are also 
implied by the direction perpendicular to the equi­
potential lines at each point of the domain. (even if 
the interface has no thickness, it has been plotted 
with a small value for representation purposes). 

It can be observed that the flow is initially hori­
zontal (right side of specimen) and then progres­
sively converges into the interface, which is the 
only exit point on the left side. 

Figure 8. Example of diffusion analysis with interfaces. H on 
the right side is prescribed to 1, on the left interface mouth to 
0. Each band corresponds to a 0. 1 drop in the potential. 

6 CONCLUDING REMARKS 

Some aspects of the on-going research work at 
ETSECCPB-UPC on microstructural analysis of 
concrete have been described. The model for con­
crete fracture is based on "zero-thickness" interface 
elements equipped with a fracture-based constitu­
tive law. These interface elements are inserted be­
tween standard continuum elements with elastic 
behavior, and represent potential crack lines em­
bedded in the mesh. The constitutive law has the 
structure of work-softening elasto-plasticity, with 
two parameters, which represent fracture energies 
in models I and Ila. 

The microstructural model proposed can repre­
sent some of the most salient features of experi-
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mental concrete fracture, such as microcracking, 
localization and macroscopic crack formation, both 
in tension and compression. Other loading cases 
such as Brazilian, tension/compresion, etc. can be 
found in Lopez (1999). A qualitative agreement 
with well known concrete behavior is obtained on 
the average stress-strain curves as well as in the 
microcrack patterns and their coalescence and evo­
lution. This type of model also opens the possibil­
ity to study the influence of aggregate shape and 
size, relative strengths of aggregate-matrix, aggre­
gate-aggregate and matrix-matrix interfaces, and a 
number of other effects impossible to account for 
using macroscopic models. 

Finally, some attention in the paper has been 
devoted to the diffusion analysis with interfaces, 
which is needed in order to study a number of cou­
pled problems of great interest such as shrinkage 
cracking, penetration of ambient agents or water 
related to durability aspects, and hydraulic fracture. 
The formulation of the interface element for diffu­
sion analysis has been outlined, and a first simple 
verification example presented. Work is currently 
under way to integrate all these capabilities in to a 
single tool of general coupled analysis of concrete 
under combined mechanical and environmental ac­
tions. 
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