
Fracture Mechanics of Concrete Structures, de Borst et al {eds)© 2001 Swets & Zeitlinger, Lisse, ISBN 90 2651 825 O 

A predictive model for the peeling failure of plated RC beams 

O.J.Gastebled 
TNO Building and Construction Research, Delft, the Netherlands 

I.M.May 
Heriot-Watt University, Dep. of Civil and Offshore Engineering, Edinburgh, Scotland, UK 

ABSTRACT: The plate bonding technique is a cost-effective method of strengthening reinforced concrete 
beams. Possible modes of failure can easily be predicted, except for the peeling failure for which no predictive 
model is available. Peeling is characterised by the debonding of the plate caused by a horizontal splitting crack 
propagating at the level of the inner reinforcement. Assuming that the ultimate load is reached when the split­
ting crack starts to propagate, a predictive model is developed using fracture mechanics. The critical load is 
obtained considering the energy balance of the system during splitting crack propagation. Simplifying as­
sumptions are made and the empirical formula for the assessment of the fracture energy proposed by the CEB­
FIP Model Code 1990 is used to obtain analytical formulae. This approach results in satisfactory agreement 
between experimental data and the predicted failure loads. It is concluded that a reliable design method could 
be developed from the proposed formulae. 

1 INTRODUCTION 

The plate bonding technique consists of strengthen­
ing existing structures by gluing steel or FRP plates 
to their tension face, L'Hermite & Bresson (1967) 
and Rostasy et al. (1992). It is now acknowledged to 
be a structurally sound and cost-effective method. 
The attractiveness of the method is such that its use 
is likely to increase in the future. However, there is 
still no broad consensus on design recommenda­
tions. While the flexural types of failure modes of 
plated beams can easily be predicted using engineers 
bending theory, there is no broadly accepted predic­
tive model for the brittle peeling failure observed 
experimentally, Arduini & Nanni (1997). The devel­
opment of a reliable predictive model for the pre­
mature peeling failure is essential to achieve safe 
and ductile design. 

Peeling is characterised by horizontal fracture 
propagating at the level of the inner reinforcement, 
which causes the plate and the concrete cover to 
separate from the rest of the beam. Oehlers (1992) 
describes the mechanism of peeling in these terms: 
"The first crack to form was the diagonal crack [ad­
jacent to the plate end]. [ ... ]A further increase in the 
load induced a horizontal peeling crack at the level 
of the bottom reinforcement [ ... ]. Shear failure of 
the beam propagated the peeling crack very rapidly, 
which, in turn, caused the plate to debond [ ... ]. 
Shear failure of the reinforced concrete beam and 
debonding due to shear peeling coincided and it is 
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worth emphasising that both shear failures were very 
rapid." These observations point out that the peeling 
failure coincides with the unstable propagation of a 
horizontal fracture plane at the level of the bottom 
reinforcement. After an extensive review of experi­
mental studies available in the literature, this mecha­
nism has been identified as splitting cracking associ­
ated with diagonal shear cracks, Gastebled (1999). It 
should be noted that this phenomenon is similar to 
the cracking mechanism observed in the flexural­
shear failures of unplated beams without stirrups, 
Gastebled & May (2001). 

The predictive model presented in this paper is 
based on the assumption that the peeling failure of 
plated beams is triggered by the unstable propaga­
tion of a splitting crack. The study of unstable crack 
evolution requires an energy approach. Using linear 
fracture mechanics, the ultimate load is worked out 
considering the energy balance of the reinforced 
concrete system. 

2 FRACTURE MECHANICS MODELS 

2.1 Pure bending mode 

When peeling occurs in pure bending, the plate sepa­
rates from the beam along with the concrete cover, 
thus releasing the inner reinforcement from its con­
crete encasement. This results in a dramatic decrease 
in the local flexural stiffness of the beam. If the en-



ergy balance of the system is considered, peeling oc­
curs at a load for which exactly enough energy is re­
leased by the softening system to feed the fracture 
energy required by splitting. The advance of peeling 
does not change the topology of the problem. There­
fore, the peeling occurs at constant load in a critical 
state of stability. 

Consider an uncracked plated beam in the vicinity 
of the plate end, the flexural stiffness of the beam is 
discontinuous at the plate end, changing from an un­
plated cross-section to a plated cross-section. Both 
stiffnesses, however, are relatively high as initially 
no cracking is present and the inner reinforcement 
acts compositely with the surrounding concrete. 

The propagation of the splitting crack by a length 
8e results in the plate being released for a length &e 
in the direction of the plate, resulting locally in a 
significant decrease in the flexural stiffness, to 
which only the steel bar and the concrete compres­
sion area contribute. Therefore, a hinge is formed lo­
cally with rotation occurring at constant load, with 
the incremental angle of rotation, 80, proportional to 
the crack extent, 8e. 

Due to the formation of the splitting crack, the 
variation, of the strain energy, which is due to the 
reduction in the flexural stiffness is given by: 

(1) 

=_!_M 2(_1 ___ 1_J·0e 
2 (El),p (El);,; 

(2) 

where M is the external bending moment, (El);n; 
and (El)sp are respectively the flexural stiffness be­
fore and after splitting, and & is the increase in the 
extent of the splitting crack. 

The work done by the external bending moment 
due to the incremental rotation, which results from 
the local softening of the structure is: 

JW,,, =M .(i(:) (3) 

=M'(-1 __ 1 J·& 
(El),p (El);,; 

(4) 

The consumption of the fracture energy is pro­
portional to the splitting crack extent: 

(5) 

where r corresponds to the fracture energy re­
quired to propagate the splitting crack over one 
length. 

Using the fundamental equation of fracture me­
chanics for splitting propagation, then the energy 
balance is: 

JW,,,-OU,,-OG=O (6) 

This yields the following expression for the criti­
cal load level: 

Mer= 1 
2r 

(7) 
-----
(EI),, (EI),,, 

Using the formula given by the CEB-FlP Model 
Code 1990 for the assessment of the fracture energy, 
assuming an aggregate size of 20 mm: 

G = 34.7i f, )o.7 N.m/m2 (8) 
f l 10 

with the concrete compressive strengthfc in MPa. 

Equation 7 becomes: 

1 
(9) 

-------
(El),p (El) ;n; 

where Mer is in kN.m, fc in MPa, EI in kN.mm2, 

Es in GPa and a1 in mm, and where at is the assess­
ment of the fractured area per unit length extension 
of the splitting crack. 
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2.2 Flexural-shear mode 

In the flexural-shear mode, after a diagonal crack has 
formed in the member at the plate end, splitting oc­
curs, propagating parallel to the plate, thus releasing 
the inner reinforcement. The release of the rein­
forcement allows the diagonal crack to further open 
and extend resulting in a rotation, 88, about the tip of 
the diagonal crack. A splitting crack of extent, &, 
leads to an incremental rotation, 88, proportional to 
&. Peeling occurs at a load such that just enough 
energy is released by the system during the transfor­
mation to feed the splitting crack extension. 

The mechanism producing the external work is 
the rotation under constant load about the tip of the 
diagonal crack. In order to calculate the energy re­
lease, the rotational stiffness of the beam needs to be 
determined. To that aim, the bulk of uncracked con­
crete and the embedded reinforcement are consid­
ered to behave as a rigid body except for the con­
crete, above the diagonal crack, subjected to 
compression. The rotational stiffness depends on the 
axial stiffness of the stirrups and on the axial and the 
dowel stiffnesses of the longitudinal reinforcement, 
which depend on the extent to which the reinforcing 
bar has been released by splitting. The stiffness is 
worked out considering the free body diagram, Fig­
ure 1. 

The discrete distribution of stirrups is smeared 
over the length of the beam, thus considering an area 
of stirrups of Avis per unit length, where Av is the 
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Figure I. Free body diagram and notation. 

area of one leg of a stirrup and s is the stirrup spac­
ing. The opening of the diagonal crack is assumed to 
be linear, therefore the point of application of the 
stirrup forces, Fv, is at two-thirds of the crack length 
from the crack tip. In the following the angle of the 
diagonal crack is assumed to be 45 deg. 

The smeared axial stiffness of the stirrups is de­
termined assuming that the effective unbonded 
length of the stirrups is known, and is equal to &: 

k = A,E, (10) 
' sli, 

Consequently, the forces acting on the free-body 
diagram can be formulated as a function of 8, 
Figure 1. Assuming that the unbonded length of the 
longitudinal reinforcement is known to be equal to Ii, 
and that the angle of the diagonal crack, </J, is 
45 deg.: 

F, = f kv2te·dt= E,A,, y 2e (11) 
0 sb, 

EA EA 
F =-·' -·' f'i.u =-'-'ye (12) ·' o, s o,. 
V = G,L, f'i.v _ J_ E.A yB (13) 

d 8, ·' - 26 Ii, 

where y is the vertical distance between the di­
agonal crack tip and the bottom reinforcement, A, is 
the area of the longitudinal reinforcement, E, is the 
steel Young's modulus, G, is the steel shear 
modulus, and 1::, is the reduced cross-section of the 
longitudinal reinforcement, taken as 0.9A,. 

The equilibrium of the free-body is satisfied in 
the horizontal direction, the vertical direction and 
about the tip of the diagonal crack, Figure 1: 

I
F,. =Fe (14) 

Ve + Vd + F, = V ( 15) 

V ·(dP1 + y)=VJ · y+F,. ·d+F, ·%y (16) 

where y and d can be replaced using their ratios to 

the height of the beam, respectively /JH and yH 
Substituting Equations 11 to 13 in Equation 16 

results in the equation: 

V·(d +y)=(J_+L+'l:_~!..,_/3hJE,.A, f3'H'B (17) 
pl 26 f3 3 A., Ii, s o, 
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If the expression for 8 is deduced from Equation 
17 and differentiated with respect to '5,, considering 
that the variation of the unbonded length, Q,, is equal 
to the extension of the splitting crack, &, the fol­
lowing equation is obtained: 

[ ;

-2 

oB- v(dpl + y) 1+ 2 A, o, /3H Oe 

AE.(~+LlR'H' 3(~+LJA_,o, s 
, , 26 /3 r 26 /3 

(18) 

The fundamental principal of fracture mechanics 
can now be applied to satisfy the energy balance of 
the transformation: 

ow'"' =20G 

(d pl + y )v"'' ·a&= 2r. & 

(19) 

(20) 

Substituting Equation 18 in Equation 20 and as­

suming that~= 11>, initially, where <P, and <Pv are 
8, $, 

the diameter of the main reinforcement and the di­
ameter of the stirrups respectively, it is possible to 
determine an expression for the critical shear force 
for a plated beam with stirrups: 

V =~9 +2yll+ 2 A, <I>, ~H~H ~A Er 
3 -+1 , v pl "13~ (9 JA<l>sd+~H '' 

26 ~ (21) 

It is possible to make a certain number of as­
sumptions without losing much of the generality of 
the formula: 

d= y.H=0.9H 
y = /J.H = 0.8 H 

Equation(21 then b1c':e~ J H 

V =1.372· l+0.363-"--' - ~A Er 
" A, ~, s d pl + 0.8H " ' 

(22) 

Using the formula given by the CEB-FIP Model 
Code for the assessment of the fracture energy, as­
suming an aggregate size of 20 mm, Equation 22 be­
comes: 



( A, <!>, H) H o_,, ~ 
V" =3.613· l+0.363:--- f, ',/A,E,a1 

A,<!>,. s dp1 +0.8H 

(23) 

where Ver is in kN,Jc in MPa, As in m2, Es in GPa 
and a! in mm, and where a! is the assessment of the 
fractured area per unit length extension of the split­
ting crack. 

3 EMPIRICAL DETERMINATION OF 
FRACTURED AREA 

For the prediction of the failure load, Equations 9 
and 23, to be complete, the fractured area caused by 
the extension of the splitting crack by a unit length, 
af, needs to be assessed. Two types of cracking are 
associated with splitting, i.e. the progression of the 
horizontal splitting crack itself and the shifting of the 
set of conical cracks ensuring shear transfer near an 
unbonded section of a ribbed bar. The total fractured 
area can then be divided into a known part corre­
sponding to the horizontal splitting crack and an em­
pirically assessed part corresponding to conical 
cracking. This results in the following expression: 

(24) 

Where b is the beam width, a is a correction fac­
tor, rs is the bar rib spacing and Ace is an assessed 
conical crack area. Assuming conical cracks radiat­
ing at an angle of 40 degrees up to a radius of 15 mm 
outside the reinforcing bar, Ace= 54 n ( <J;, + 15) mm, 
where n is the number of bars. 

The difficulty resides in the assessment of the 
factor a. It is believed that a, as a measure of the 
level of damaged caused by conical cracking that oc­
curs around the reinforcing bars due to bond stresses, 
is influenced by several parameters. By considering 
the mechanics of the conical crack formation, it is 
believed that the two major parameters influencing a 
are the concrete cover and the tensile strain of the 
steel bar. The concrete cover controls the distance to 
which the conical crack can radiate from the bar, and 
the tensile strain in the steel bars controls the crack 
mouth opening of the conical cracks. The assump­
tion that a equals zero is a safe assumption for de­
sign purposes. However, the adoption of this as­
sumption results in predictions that severely 
underestimate the failure loads measured experi­
mentally, Gastebled (1999). It is therefore desirable 
to develop an empirical evolution law for the factor 
a. In the following, a is assumed to depend only on 
the steel strain, £." and a multi-linear evolution law is 
deduced from experimental data. 
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3.1 Bending mode 

When the plated beam is reported to fail in the 
bending mode, i.e. after the occurrence of a flexural 
crack near the plate end, Es is calculated using cross­
sectional analysis at the plate end: 

Vexpdp1 (H ) 
t:, = (Eit, -c-y" (25) 

where Vexp is the experimental ultimate shear 
load, ( El)er is the flexural stiffness of the cracked 
unplated beam, i.e. equal to (E/),p, c is the concrete 
cover and Yer is the depth of the neutral axis of a 
cracked unplated beam. 

The corresponding aexp is assessed from the ex­
perimental ultimate load, Vexp, and the theoretical 
failure load, Mo. obtained using Equation 9 with 
a=O: 

a =~(v~pd~1 -IJ 
"P A 00 M~ 

(26) 

3.2 Flexural-shear mode 

When the plated beam is reported to fail in the 
flexural-shear mode, the force in the steel at the lo­
cation of the diagonal crack is assessed using the 
free body diagram, Figure 1. This results in the fol­
lowing expression for $,: 

Vexr (d pl + {JH) 
E = (27) 
' iH ·E,A, 

The corresponding CXexp is assessed from the ex­
perimental ultimate load, Vexp, and the theoretical 
failure load, Vo. obtained using Equation 23 with 
a=O: 

a =~(V•~P-lJ 
exp A y2 

cc 0 

(28) 

3.3 Empirical evolution law 

Experimental results for plated beams reported to 
have failed in peeling, either in the bending mode or 
the flexural shear mode, have been collected in the 
literature. In total, 32 experimental results have been 
extracted from Oehlers (1992), Ziraba et al (1994) 
and Swamy et al (1995). 

Equations 25 and 26 or 27 and 28 are used to plot 
the experimental a against the experimental steel 
strain at failure, Figure 2. The experimental points 
appear to lie on a straight line crossing the axis of 
zero aat a steel strain of 5xlff4. 
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Figure 2. Empirical evolution law of a. 

Below Es= 5xlff4, the tensile strain appears to be 
too small to cause conical cracking, i.e. a= 0. This 
results can be checked assuming a concrete Young's 
modulus of 25 GPa and an cracked-unbonded to un­
cracked-bonded steel stress ratio of 6, which yields a 
concrete tensile stress of 2 MPa at Es= 5x10-4. This is 
consistent with usual concrete tensile strengths. 

Above E, = 13xlff4, no experimental points are 
available. Thus the predicted value of a has been 
limited to 1.6 in order to avoid uncontrolled diver­
gence of the iterative procedure described further, 
Gastebled (1999). 

Using linear regression analysis, the slope of the 
best-fit line between t:,, = 5x10·4 and E, = 13x10·4 is 
calculated. This results in the following definition of 
the multi-linear evolution law of a: 
a= O fort:,,< 5x10·4 (29) 
a= 1.035 + 2.07 xl 0-3 E, for 5x10·4 < t:,, < 13x10·4 (30) 
a= 1.6 for E, > 13x10·4 (31) 

The empirical evolution law for a can now be used 
to predict peeling failure of plated beams. Because 
the steel strain at failure is not known a priori, the 
following iterative procedure is required: 
1- set a to zero and calculate a1 according to Equa­

tion 24. 
2- Calculate the failure loads in the bending mode 

and in the flexural shear mode according to 
Equations 9 and 23. 

3- Use Equation 25 and 27 to calculate the corre­
sponding steel strains at failure. 

4- Use equations 29 to 31 and Equation 24 to up­
date a and a1. 

5- Go back to step 2 until convergence of the pre­
dicted failure loads. 

6- Compare the obtained failure loads for bending 
and flexural shear. Chose the smaller of the two 
as predicted ultimate load. 
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Figure 3. Ultimate shear loads from Quantrill et al (1996). 

4 BENCHMARKING 

Benchmarking of the predictive formulae is de­
scribed below. Experimental tests carried out by 
Quandrill et al (1996) on FRP plated beams with 
plain reinforcing bars, which all failed in the flex­
ural-shear mode, allow checking the analytical for­
mula, Equation 23. Experimental tests carried out by 
Swamy et al (1987) on steel plated beams with 
ribbed reinforcing bars allow checking the serni­
empirical approach presented in section 3.3. 

4.1 Peeling with plain reinforcing bars 

Quandrill et al (1996), using plated beams reinforced 
with plain bars, observed peeling failure in seven of 
the tested beams. Since plain bars achieve shear 
transfer without producing conical cracks, the corre­
sponding factor a can then be taken equal to zero. It 
is therefore possible to directly use Equation 23 in 
order to predict the failure load of Quandrill's 
beams. The comparison of the experimental results 
and the predicted failure loads is shown in Figure 3. 

Statistical analysis of the results yields a relative 
mean value of µ,,xpitheo = 124 % and a relative stan­
dard deviation of O'exp/theo = 28 %. It can be noted that 
the analytical formula consistently over-predicts the 
failure load by an average 24%, which accounts for 
most of the observed standard deviation. Such a dis­
crepancy is standard in the prediction of the failure 
of reinforced concrete structures and can be put 
down to the uncertainty, which belong to the meas­
ured or assessed material properties. 

4.2 Peeling with ribbed reinforcing bars 

Swamy et al (1987) tested steel plated beams reinfo­
ced with ribbed bars. Thirteen of the beams failed in 
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Figure 4. Ultimate shear loads from Swamy et al (1987). 

peeling. The iterative procedure proposed in section 
3 .3 is used to predict the failure loads of these 
beams. The comparison of the experimental results 
and the predicted failure loads is shown in Figure 4. 

Statistical analysis of the results yields a relative 
mean value of µ,,xp/theo = 108 % and a relative stan­
dard deviation of CTexp/theo = 13 % . Noting that nine of 
the thirteen beams are practically identical, the in­
herent experimental scatter is assessed using the Khi 
squared distribution. This results in an inherent ex­
perimental standard deviation comprised between 
4 % and 24 % with a level of confidence of 90 %. 
Since CTexp/theo lies in the center of this range, it is 
confirmed that the observed scatter is essentially due 
to the uncertainty inherent to the flexural-shear 
peeling failure and not the predictive method itself. 

5 CONCLUSIONS 

Peeling failure is recognized as the most critical fail­
ure mode of externally plated beams. However, there 
is currently no broadly accepted predictive model 
available. In this paper, two predictive formulae 
based on fracture mechanics and an empirical factor 
are proposed and benchmarked. 

Few simplifying assumptions are used to derive 
the analytical formulae and only two parameters are 
derived from empirical formulae, namely the spe­
cific fracture energy of concrete and a correction 
factor a for the assessment of the fracture area asso­
ciated with conical cracks. 

The benchmarking of the formulae against ex­
perimental data resulted in a satisfactory scatter of 
the experimental results around the predictions. This 
confirms the validity of the physical model and the 
choice of the simplifying assumptions. It is con­
cluded that these formulae ca be reliably used to 
predict the peeling failure plated beams, both with 
steel plates and FRP plates. It is believed that a de­
sign method could easily developed from this ap­
proach. 
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