
1 INTRODUCTION 

Slabs on grade represent one of the main applica-
tions of Steel Fiber Reinforced Concrete (SFRC). 
In these structures fibers can totally substitute the 
conventional reinforcement (rebars or welded mesh) 
with significant advantages in terms of toughness 
and strength under static and dynamic loads. Fur-
thermore, fibers can reduce cracking due to thermal 
or shrinkage effects. The use of fiber reinforcement 
is often economically convenient with respect to 
conventional reinforcement (rebars or welded mesh) 
due to the labor cost reduction. 

SFRC slabs on grade are often designed with 
elastic methods that cannot adequately simulate the 
actual material behavior after cracking of the con-
crete matrix. In fact, after cracking SFRC has a 
remarkable non-linear behavior that should be cor-
rectly modeled with numerical analyses based on 
Non-Linear Fracture Mechanics (Hillerborg et al. 
1976). 

In the present paper early results of an extensive 
experimental and numerical research program on 
SFRC slabs on grade are presented. The behavior 
of slabs placed on an elastic subgrade are consid-

ered herein with regard to both serviceability and 
ultimate limit states. The slabs are subjected to a 
single point load in the slab center. 

The experimental study concerns four full-scale 
slabs on grade loaded in the center up to failure 
with the acquisition of the deformation field and 
the crack pattern. The specimens were character-
ized by different fiber geometries and fiber con-
tents. 

The numerical analyses, based on Non-Linear 
Fracture Mechanics (NLFM), aim to take into ac-
count the actual behavior of fiber reinforced con-
crete that becomes particularly important in hyper-
static structures where a remarkable increment of 
the load may occur after cracking until a collapse 
mechanism occurs (Meda & Plizzari 2003). FE 
analyses have been carried out by commercial code 
ABAQUS (1999) where user subroutines have 
been introduced to better describe FRC cracking 
behavior. A mesh of multi-layered isoparametric 
shell elements has been adopted to describe the 
midsurface shape of the slabs. 

Finally, the role played by secondary cracking on 
stiffness and ultimate load is underlined. 
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2 NUMERICAL MODEL 

An extension of PARC model (Belletti et al., 2001) 
is formulated herein to describe the non-linear me-
chanical behavior of FRC subjected to plane 
stresses (Belletti et al., 2003a). In the uncracked 
stage, biaxial stress state has been modeled by 
means of two equivalent uni-axial stress-strain 
curves (Darwin & Pecknold 1977, Kupfer et al. 
1969) while the fracture energy is adopted to pro-
vide stress-strain relationship in the cracked stage. 
Normal and shear stresses along crack surfaces are 
computed as functions of the local crack opening 
and slip. The FRC post-cracking behavior is mod-
eled in PARC by a realistic micromechanics-based 
constitutive relationship. The latter includes the 
effects of the aspect-ratio, volume fraction and in-
terface bond strength of fibers, as well as concrete 
strength, on the stress-crack opening law (Li 1992, 
Li et al. 1993). The aggregate bridging effect is 
separated from the fiber bridging effect and the 
state of stress that characterizes the fibers before 
cracking is also taken into account. 

Material behavior in the uncracked and cracked 
stages is described in the following Sections. 

2.1 Uncracked stage 

Uncracked FRC is idealized as a nonlinear elastic 
orthotropic material, assuming as orthotropy axes 
the principal directions (1, 2) of strain and the fol-
lowing material stiffness matrix (Darwin & 
Pecknold 1977, Belletti et al. 2003a): 
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where Ec1, Ec2 are concrete elastic secant moduli in 
the principal directions, and G12 is the shear 
modulus of concrete: 
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Ec1 and Ec2 are evaluated through the respective 
uni-axial curves equivalent to the biaxial state 
(Darwin & Pecknold 1977, Belletti et al. 2003a). 
The peak values σci,max (i=1, 2) of the uni-axial 
curves for compression can vary according to a 
biaxial strength envelope (Kupfer et al. 1969, Bel-
letti et al. 2003a). 

2.2 Singly cracked FRC (primary cracking) 

When the maximum principal stress becomes 
greater than the concrete tensile strength, concrete 
cracks and PARC model is adopted for modeling 
the cracked FRC. Primary cracks are idealized as 
equally spaced (at a distance am) and oriented at 
right angles to the maximum principal tensile stress 
(direction remaining fixed; Fig. 1a). The local co-
ordinate system (1, 2) is assumed coincident with 
the principal stress directions at crack onset and it 
does not vary during the entire loading process. 
The local strain vector is then expressed as func-
tion of the crack opening w and slip v, as well as of 
the strain εc2 in the concrete strut between two con-
tiguous cracks (Fig. 1b): 
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The strength and stiffness of FRC in this stage is 
due both to concrete and fibers. 

The total fiber stress (σ f) is given by the super-
position of two effects: 
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where σb is due to fiber bridging and σ ps is due to 
the initial prestress in the fiber. The relationships 
between σb, σps and s are assumed according to Li 
et al. (1993) and Belletti et al. (2003a). The total 
displacement is s = w + v, having magnitude equal 
to s = (w2 + v2)1/2 (Belletti et al. 2002; Fig. 1b). 
 

(b)

am

lx 

ψ
2 1

(a)

σx

y τyx

τxy

σy

τ
σy

t x

σx

τxy

yx

ly 

εc2

fibres

x
ψ 

2 1 
y 

w

v
s  

ω 

σf1

τf1

σf ω

 
Figure 1. (a) Cracked FRC membrane element subjected to in-
plane stresses; (b) kinematic parameters defining the local strain 
vector. 
 

The two components of σ f, namely σ f1 (at right 
angles with respect to the crack direction) and τ f12 
(parallel), are evaluated as follows (Fig. 1b): 
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Stiffness cf  is given by the following relationship: 
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and contributes to the material stiffness matrix. 
For the aggregate bridging action (σ a) the rela-

tionship reported in Li et al. (1993) has been as-
sumed. This experimental law was calibrated on 
the basis of many experimental data as a function 
of the crack opening w. The stiffness term ct to be 
implemented into the local FRC stiffness matrix is: 
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The superposition of concrete and fiber effects in 
FRC softening is shown in Figure 2 through the 
relationship between the normal stress and the 
crack opening w (where v=0 and s ≡ w). 

Therefore, the assumed cracked FRC stiffening 
matrix has the following form: 
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where the secant modulus Ēc has been determined 
on the basis of the softened model for cracked con-
crete in compression proposed by Vecchio & 
Collins (1993). The evaluation of the aggregate 
interlock coefficients (ca and cv) can be found in 
Belletti et al. (2001) and it is based on the approach 
proposed by Gambarova (1983). 

The resulting local stiffness matrix in the global 
(x, y) coordinate system (Fig. 3a) is obtained by 
operating through a transformation matrix [Tε], 
which takes into account the angle (ψ) between the 
local 1-axis and the global x- axis: 
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2.3 Doubly cracked FRC (secondary cracking) 

When the stress field between two cracks produces 
a maximum principal stress greater than tensile 
strength, a secondary crack forms (Fig. 3). In the 
case of double cracking, a generalization of PARC 
is here adopted. It is based on the following as-
sumptions: 
- when secondary cracks start, primary cracks are 
not subjected to closing and re-opening; 
- total strain is obtained by adding the strain due to 
primary cracks to that due to secondary cracks. 

- stress field is the same both for primary and sec-
ondary cracks. 

The following notation is introduced (Fig. 3): 
11,21 is the local coordinate system relative to the 
primary cracks and 12,22 is the one relative to the 
secondary cracks, θ  is the angle between 11 and 12 
axes, while primary and secondary crack directions 
(with respect to x direction) are indicated by the 
angles ψ1 and ψ2, respectively (Figs. 3c, d). More-
over, kinematic variables for primary cracking are 
w1, v1 and εc2

(1)
 (Fig. 3c), while for secondary 

cracking they are w2, v2 and εc2
(2) (Fig. 3d). 

Therefore, the strains caused from each of two 
cracks are defined as: 
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where crack spacing ( ma ) is assumed to be the 
same for primary and secondary cracks and equal 
to the fiber length. 

Total strain, expressed in global coordinate sys-
tem, is decomposed into the contribution due to the 
primary cracking {ε12

(1)}xy and into a part due to 
secondary cracking {ε12

(2)}xy: 
{ } { } { }xyxyxy

)2(
12

)1(
12 εεε +=  

being: 
{ } [ ] { })1(

12
1)1()1(

12 εε ε
−= Txy         (14) 

and 
{ } [ ] { })2(

12
1)2()2(

12 εε ε
−= Txy        (15) 

where [Tε
(1)] and [Tε

(2)] are transformation matrices 
computed by ψ1 and ψ2, respectively. 

Primary and secondary cracks are assumed to act 
one by one, and so their behavior is hypothesized 
unrelated to each other. Therefore, stiffness mate-
rial matrices, [D12

(1)] and [D12
(2)], have the same 

form of that introduced for FRC with primary 
cracks only (Eq. 10), expressed in 11-21 and 12-22 
local coordinate systems, respectively. They are 
functions of local strain fields, {ε12

(1)} and {ε12
(2)} 

and, when transferred to the global coordinate sys-
tem x-y, they become: 
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The total stress in global coordinate system is the 

same for primary and secondary cracking: 
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Therefore, due to strain-decomposition, the total 
strain can be also written as follows: 
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Figure 3. (a) Doubly cracked element subjected to plane stress; 
(b) notations for primary and secondary cracking; (c) kinematic 
parameters of primary cracking; (d) kinematic parameters of 
secondary cracking. 
 

Through simple analytical computations the 
stiffness matrix, which links stress to strain in 
global coordinate system for doubly cracked FRC, 
is formulated as follows: 
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3 EXPERIMENTAL MODEL 

The behavior of SFRC slabs on grade was experi-
mentally studied by performing tests on full-scale 
specimens having a square geometry with a side of 
3 m and a thickness of 0.15 m (Fig. 4). The 
adopted dimensions are significant for industrial 
pavements, where the presence of construction 
joints can divide the structures into independent 
slabs. 

Three different types of steel fibers have been 
adopted: hooked fibers having a length (lf) of 
50 mm and a diameter (φf) of 1 mm (50/1.0, aspect 
ratio=50), hooked fibers lf=30 mm and φf=0.6 mm 
(30/0.6, aspect ratio=50), and straight fibers having 
lf=12 mm and φf = 0.18 mm (12/0.18, aspect ra-
tio=67). 

The slabs were made of a normal strength con-
crete (C25/30) typical for pavement use. Table 1 
shows the average values of compressive strength 
fc,cub (measured from cubes having a side of 
150 mm), tensile strength fct and Young’s modulus 
of concrete Ec (both measured on cylinders with 
φ=80 mm and h=240 mm). These values were de-
termined at the same day the slabs were tested. The 
volume fraction of fibers introduced in the experi-
mental slabs is also shown in Table 1 (slab P0, the 
reference one, is made of plain concrete). 

In order to determine the fracture properties of 
the materials adopted in the slab tests, four point 
bending tests have been performed on beams 
(150×150×600 mm), according to the Italian Stan-
dard (UNI 2003). The bending tests were carried 
out by using a close loop hydraulic machine (In-
stron) with the crack opening displacement as 
feedback control. 

In order to reproduce a Winkler soil, the slabs 
were placed on small steel springs (Figs. 4a and 5) 
that were designed to simulate a typical Winkler 
constant (k=0.08 N/mm3) when they were placed at 
a distance of 375 mm in both directions. The 
springs were obtained through small steel plates 
supported along the border (Fig. 5). A thin layer of 
high-strength mortar was placed between the 



springs and the slab to compensate for the out-of 
plane deformations of the concrete slab due to curl-
ing (Fig. 5). 

The stiffness of all these steel springs was ex-
perimentally determined with several loading cy-
cles. A typical result is shown in Figure 6. All the 
springs showed a similar behavior that was mod-
eled by means of a bilinear curve. 

The load was applied in the center of the slab by 
means of a hydraulic jack (Fig. 4b). A 1000 kN 
load cell was placed under the jack and 6 Linear 
Variable Differential Transformers (LVDTs) were 
used to measure the vertical displacements in dif-
ferent locations of the slab (Fig. 4b). 

Table 1. Mechanical properties of concrete and 
fiber content. _________________________________________ 
 fc,cub ft Ec Vf Vf  Vf Vf 
 (MPa) (MPa) (MPa) % % % % 
SLAB    50/10 30/0.6 12/0.18 TOT _________________________________________ 
P0 35.9 2.7 21436 0 0 0 0 
P1 35.3 2.7 24363 0 0.38 0 0.38 
P2 33.9 2.7 28854 0 0.38 0.19 0.57 
P3 33.9 2.7 29893 0.38 0 0.19 0.57 _________________________________________ 
 

 
(a) 

 
(b) 

Figure 4. (a) Spring position simulating the Winkler soil and (b) 
experimental setup. 

 

 
 
Figure 5. Steel spring for simulating the elastic subgrade. 
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The experimental results underline the impor-
tance of fiber reinforcement in concrete pavement 
(Fig. 7): Slab P0, without fibers, exhibit an ultimate 
load that is significantly lower than that obtained in 
the fiber reinforced slabs. In fact, in FRC slabs the 
load can still increase after the cracking due to the 
stress redistribution made possible by the material 
toughness and by the hyperstatic structure. More-
over, the addition of short steel fibers (volume frac-
tion equal to 0.19%) slightly increases the bearing 
capacity of Slabs P2 and P3. This can be seen as a 
synergism since small fibers may also reduce 
shrinkage cracking. 
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Figure 7. Experimental load versus central displacement curves. 
 

 
Figure 8. Multi-layered shell element mesh adopted. 

4 NLFE ANALYSES AND COMPARISON 
WITH EXPERIMENTAL RESULTS 

In order to better understand fracture behavior of 
SFRC slabs on grade and to investigate the reliabil-
ity of the numerical model here proposed, the pre-
viously presented experimental tests have been 
simulated by FE analyses. These analyses have 
been carried out by using multipurpose FE code 
ABAQUS (1999) where the material constitutive 
relationships were defined by user subroutines. 
Figure 8 shows the mesh of isoparametric multi-
layered shell elements adopted. Layers describe the 
geometrical and mechanical features of shell cross 
section and behave as membrane elements sub-
jected to plane stresses. The non-linear constitutive 
matrix of layers can be determined by means of 
PARC model. 

In order to compute the stiffness matrix of the FE 
model, three Simpson’s integration points in each 
layer and Gaussian reduced integration on the mid-
surface plane of shell element have been chosen. 
The non linear response of the springs, namely the 
no-tension behavior and the bilinear shape of the 
compression part, was taken into account by the 
numerical model as the trilinear law (Figure 6). 
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Figure 9. Total load versus central displacement for P0-P3 slabs: 
comparison between numerical and experimental results. 



 

 

 

 
 
Figure 10. Crack pattern of P3 slab: primary cracks at (central 
displacement) f = 1.125mm (a), at f = 3mm (c) and at f = 7.5mm 
(d); secondary cracks at f = 1.125mm (b). 

During numerical analyses the displacement of 
the slabs center has been monotonically increased, 
and the non-linear solution is reached by an itera-
tive secant stiffness procedure based on the New-
ton-Raphson convergence method. 

Figure 9 shows a comparison between experi-
mental and numerical results for the four experi-
mental slabs, in terms of total applied load versus 
central displacement. The numerical model can 
well predict the experimental behavior both for 
plain (Slab P0) and fiber reinforced concrete slabs. 
In particular, the slab stiffness in the initial branch 
of the curves and the ultimate load can be evalu-
ated with good precision. These quantities are the 
most important parameters for the slab design be-
cause can predict the behavior of the structure at 
service limit state and at ultimate. 

Another important parameter in slab design is the 
prediction of the final crack pattern since it evi-
dences the collapse mechanism and allows other 
design methods (i.e. based on yield lines, Meda 
2003) to be used. The numerical crack pattern at 
the bottom side of Slab P3 at different values of the 
central displacement (f) is presented in Figure 10. 
It can be noticed that a secondary crack appears 
when the principal stress due to bending is equal to 
the tensile strength (Fig. 10b). Figures 10a, d show 
the values of the crack opening displacement of 
primary and secondary cracks. One should observe 
that, by increasing the central displacements, the 
size of the doubly cracked zone does not increase 
significantly, but the continuous opening of secon-
dary and primary cracks causes a loss of the slabs 
stiffness. 

Figure 11 show the experimental crack pattern 
obtained for Slab P3. It can be noticed that, as pre-
dicted in the numerical model (Fig. 10d), two main 
cracks develop along the median lines. 

 

 
Figure 11. Slab P3: experimental crack pattern. 
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5 CONCLUDING REMARKS 

Experimental tests have shown that steel-fiber rein-
forcement significantly improves slab behavior in 
terms of strength, ductility and toughness. Fibers 
are efficient at both serviceability limit state, by 
reducing cracking phenomena due to loads or 
shrinkage effects, and at the ultimate limit state, by 
increasing the ultimate load. 

Following the concept of strain-decomposition, 
the first version of PARC secant matrix has been 
improved by considering fixed primary and secon-
dary cracks starting when maximum principal 
stress exceeds the tensile strength of concrete. The 
extension of PARC model to fiber reinforced con-
crete under primary and secondary cracks stage has 
allowed a more realistic prediction of the nonlinear 
behavior of slabs on grade. 

Both in the experimental tests and in the numeri-
cal simulations, primary and secondary cracks were 
observed under service loads. For this reason, 
fixed-crack models considering only primary 
cracks results in stiffer response than experimental 
observations. 

In order to better predict the behavior of FRC 
slabs on grade, adequate non linear numerical 
methods should be adopted. Contrarily to the elas-
tic theory, methods based on non linear fracture 
mechanics take into account the stress redistribu-
tion made possible by the material toughness and 
the hyperstatic structure (as the slab). These meth-
ods can be used for a more accurate pavement de-
sign. 
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