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ABSTRACT: 

 

A model for core drilling in concrete is introduced through a kinematical constraint to the

process (helicoidal trajectories of the cutters). By coupling the kinematic condition with the mechanical

balance of engine power and drilling energy, a global formulation is obtained. The concept of drilling

strength 

 

S

 

, i.e. the energy consumed to remove a unit volume of material, is introduced. The drilling strength

depends on the fracture mechanisms in the material, and thus on the geometry and size of the cutters. The

model comprises a set of parameters which can be determined according to experiments.
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1 INTRODUCTION

Core drilling represents an important process in

many fields of engineering, e.g. civil, geotechnical

and mine engineering. For instance, the extraction

of cores from concrete structures is an every-day

operation.

 

 

 

Drilling into concrete is usually carried

out under wet conditions, i.e., a flushing liquid

(usually water) is used with the aim of cooling the

cutting parts of the tool (to decrease their brittleness

and wear rate) and of removing fragments outside

the hole. Application of dry drilling (where the chips

are removed by an air jet) is currently restricted to

soft brick masonry, where temperatures at the

cutting edges do not normally exceed 150-200 

 

°

 

C. 

The demand for innovative tools able to drill into

materials like reinforced concrete and hard rocks is

increasing. However, research in the field has been

limited, especially when compared to the wide

literature concerning classical drilling tools for

energy resources supply (Kerr, 1998). Extending

results from these fields to the process of core

drilling into concrete and masonry must be done

with much care, since the ploughing action of the

indenters is remarkably different from a traditional

compressive action on soils and rocks. Neither can

the theories of metal cutting be adopted in the

presence of quasi-brittle materials, since plastic

collapse is substituted by discontinuous chipping,

fracture and fragmentation (Chiaia, 2001).

Two families of cutters for core drilling are

available in the market, impregnated segments or

single hard indenters. Impregnated segments (Miller

& Ball, 1990, 1991) consist of a metal matrix where

a distribution of small hard particles (usually

synthetic diamonds or WC-Co particles) is

embedded. Single indenters (Sneddon & Hall, 1988)

are made of a metal support with a ultra-hard coating

at the cutting edge (hard metal composites or

polycrystalline diamond, e.g. PCD). Although the

mechanical process is the same at the scale of the

tool, the cutting action and the wear effects in the

two cases are remarkably different at the scale of the

cutters. It will be shown that significant scale

effects, due to fracture mechanics, affect the

performances of the cutters.

2 THE MODEL BY WOJTANOWICZ & KURU

2.1 

 

Assumptions of the model

 

Wojtanowicz & Kuru (1993) derived a simple

model for rock perforation which can be adapted to

core-drilling in concrete. The model is based on the

static balance of the forces acting on a single cutter,

assuming similarity between bit and cutter. Three

equations constitute the mathematical model:

torque, drilling rate and bit life. The equations

comprise cutter geometry, rock properties and four

empirical constants, used to match the model to a

real drilling process.



 

As shown in Figure 1, the model is derived from

the analysis of the forces active at each cutter, where

a certain wearflat is assumed to be already formed.

In the model, 

 

R 

 

is the radius of the core-bit

 

, u

 

 is the

cutter penetration in the base material, 

 

ϑ

 

 is the

cutting angle, 

 

β

 

 is the back rake angle (assumed as

negative in Figure 1), 

 

λ

 

 is the side rake angle, 

 

f

 

n

 

 and

 

f

 

t

 

 are respectively the normal and tangential forces

acting upon the indenter, 

 

f

 

c

 

 is the cutting force

(orthogonal to the cutting area), 

 

f

 

w

 

 is the component

of the normal force orthogonal to the wear flat, 

 

f

 

fw

 

and 

 

f

 

fc

 

 are the frictional forces acting respectively on

the wear flat area and on the cutting surface area. Bit

life, drilling rate, and bit torque equations are

deduced from the balance of forces for a cutter

moving with a constant angular velocity . The

following assumptions are made:

a) the base material displays plastic behavior (i.e.,

the local normal force 

 

f

 

n

 

 upon each cutter does not

depend on the penetration 

 

u

 

). We will show that,

neglecting the 

 

f

 

n

 

 vs. 

 

u

 

 dependence represents a

strong limitation of the model.

b)

 

 

 

there is perfect mechanical similitude between

a single cutter and the bit. Thereby, experimental

evidence claims for the following assumptions:

 

•

 

 the advancement 

 

δ

 

 per bit rotation is proportional

to the normal force 

 

f

 

n

 

 acting on a single cutter with

proportionality constant 

 

k

 

1

 

;

 

•

 

 the volumetric wear of the cutter is proportional to

the work of friction at the contact area, with

proportionality constant 

 

k

 

2

 

. The frictional drag at the

cutter side surface is negligible.

 

•

 

 the drilling rate  is proportional to the cutter

penetration 

 

u

 

 with proportionality constant 

 

k

 

3

 

;

 

•

 

 the bit torque 

 

M

 

t

 

 

 

is proportional to the single

cutter

 

’

 

s torque with proportionality constant 

 

k

 

4

 

.

c) if the penetration is small, also the cutting angle

 

ϑ

 

 is small and can be ignored in the static balance.

This means that the cutter moves in the direction

perpendicular to the stud axis. This assumption,

which contradicts the evidence for helicoidal

trajectories, does not affect the static balance.

 

Figure 1. Static balance of the forces acting upon a cutter.

 

2.2 

 

Balance equations

 

Under the above hypotheses, the equilibrium

diagram of the forces active between the rock and

the cutter can be easily obtained. For small values of

the cutting depth, the effect of the cutting angle 

 

ϑ

 

can be ignored. The normal and tangential

components can be expressed according to the

following equations:

(1-a)

(1-b)

We can put ,  and

, where 

 

µ

 

 is the sliding

friction coefficient between cutter and base

material, 

 

S

 

c

 

 and 

 

S

 

w

 

 are respectively the resistance to

crushing and the resistance to penetration of the base

material, 

 

A

 

c

 

 is the cutting area (

 

A

 

c

 

 = 

 

tu

 

), and 

 

A

 

w

 

 is

the wear flat area. Assuming 

 

ϑ

 

≈

 

0 one obtains:

, (2-a)

. (2-b)

Notice that, as currently detected in drilling

operations (Glowka, 1989), the penetrating force f

 

n

 

imposed on a worn cutter at a given depth is nearly

proportional to the wearflat area 

 

A

 

w

 

 in contact with

the base material.

2.3 

 

Drilling rate equation

 

The normal force balance equation can be solved for

the cutting surface as:

(3)

The cutting area, for a single cutter, is a function

of the penetration and of the wear state. Wear was

considered by the Authors through a dimensionless

function 

 

U

 

D

 

. Therefore, they obtained:

, (4)

where

 

 t

 

 is the width of the cutter. 

As the drilling velocity  is proportional to 

 

u

 

through an empirical constant 

 

k

 

3

 

, if 

 

n

 

d

 

 is the number

of cutters on the core bit, the bit progress per one full

rotation is 

 

n

 

d

 

-fold greater than 

 

u

 

. Thus, the drilling
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rate, according to Wojtanowicz & Kuru (1993), is

given by:

(5)

Inserting Eq. (4) into Eq. (5), we obtain:

(6)

where Fn = ndfn, F0 = ndSwAw,  is the angular

velocity of the bit and k5 is an exponent accounting

for possible nonlinearities due to inadequate

bottomhole cleaning. According to this model, the

drilling velocity is independent of nd. We will see

that the role of nd does not come into play because

of neglecting nonlinearity of the penetration law.

2.4 Bit torque equation: role of the rake angle β

Let us merge the balance equations (2a) and (2b).

The horizontal force on each cutter reads as:

(7)

and the total torque Mt is simply given by

. It can be deduced that, for constant

normal thrust on the bit, the active torque becomes a

unique decreasing function of the wearflat area.

It is known that, for negative rake angles, as the

inclination is decreased, the cutting action becomes

more efficient (Kerr, 1988). The drilling strength

(e.g. the specific drilling energy, see Section 3.3)

decreases for the same thrust on the bit. This makes

the bit more aggressive and, all other things being

equal, a higher drilling velocity is attained. The

smaller rake angle, however, makes the cutter more

vulnerable to impact breakage should a hard particle

be encountered. Conversely, a cutter with a larger

rake angle will produce smaller chips but will be

more durable in hard concretes, providing longer bit

life.

According to the model by Wojtanowicz & Kuru

(1993), when all the other operational parameters

are fixed, the drilling velocity is maximum for β=0.

This would suggest to use rake angles as small as

possible. In the real situations, a minimum value of

the negative rake angle is convenient with respect to

β=0, since it is usually accompanied by a finite

value of the clearance angle γ.

On the other hand, the theories of metal cutting

suggest that, for cutting rebars in reinforced

concrete, positive rake angles are more efficient.

This is because a combined shear-bending action is

provided, which favours continuous chip formation.

Considering the balance equations (1), we notice

that, for positive rake angles, the only variation is

the sign of the sinβ  term. Thereby, all the other

quantities being the same, the normal force fn is

smaller, while the horizontal force ft is larger. This

is a rather intuitive conclusion, although one has to

remind that the assumptions of the model rely on a

plastic rupture mechanism which is not very likely

to occur in the presence of positive rake angles. In

addition, a high wear rate can dramatically reduce

the cutting ability of the indenters with positive

back-rake angle.

3 HELICOIDAL MODEL FOR CORE DRILLING

3.1 Kinematic assumptions

The hypothesis of (circular) horizontal trajectories

of the cutters, although acceptable at the level of

force balance at the cutting edge, hinders important

aspects of the core drilling process. In particular, it

is impossible to model a continuous process. In

order to model a continuous, stationary process and

to respect the rotational symmetry (no cutter

prevails over the others), it is necessary to consider

intersecting helicoidal trajectories. Each cutter is

subjected to a normal component fn (due to the

penetration) and to a tangential one ft (the cutting

force) due to the ploughing action. Given two cutters

D1 and D2 in a core bit with radius R, at a distance

s=2πR/2 (Fig. 2), the torsion of the helix provides

the angle ϑ (the cutting angle), which can be

considered as a measure of the rate of advancement

(i.e., of the drilling velocity ).

Figure 2. Helicoidal trajectories of the cutters.

We can generalize the process to an arbitrary

number nd of cutters, equally spaced within the

circumference with radius R. Their mutual distance

s will thus be:

(8)
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Let us suppose that the penetration u is the same

for all the cutters. This assumption is quite

reasonable in a stationary regime, due to progressive

wear of the indenters. One can immediately notice

that, for a generic value of δ, each cutter, when

reaching the position previously occupied by the

cutter in front of it (i.e., after a rotation equal to 2π/

nd), must face an obstacle of height δ. In particular,

two situations may occur.

Figure 3. Non stationary drilling situations. Decreasing (a), and

increasing (b) drilling velocity.

If δ<u, each cutter would experience a decrease of

its penetration (e.g. u→δ, decreasing normal thrust)

whereas, if δ>u, each cutter would face an obstacle

of height larger than its penetration and this would

imply an increase of its penetration (e.g. u→δ),

which is possible only under the increase of the

normal force. Both situations refer to non-stationary

drilling (Fig. 3).

Figure 4. Optimal kinematic condition for the cutters.

Thus, the optimal value ϑ corresponds to the

condition δ=u, or, in other words, each cutter must

continuously face an obstacle of height exactly

equal to its penetration (Fig. 4). The optimal value of

the cutting angle must be directly related to the

penetration and to the mutual distance among the

cutters:

(9)

The apparently strange conclusion is that the rate
of advancement ϑ depends on the base material only
by means of the penetration u. The helicoidal

advancement is controlled by kinematic quantities.

The smaller the separation distance (in the direction

of the motion) among the cutters (i.e. the larger nd),

the larger must be the advancement, for a given

penetration, to ensure a stationary efficient process.

Note, incidentally, that a larger number of active

cutters requires a larger thrust on bit (and thus a

larger value of the active torque Mt) to keep a certain

value of the penetration u.

3.2 Kinematic determination of the drilling velocity

If  is the angular velocity of the core bit, the

tangential velocity of the cutters is equal to R.

Thus, the drilling velocity is given by:

(10)

where we have used Eqs. (8) and (9). Notice the

remarkable similarity between Eq. (5) and Eq. (10)

obtained by Wojtanowicz & Kuru (1993) by means

of empirical assumptions. The optimal rate of

advancement ϑ depends on the base material by

means of the indenters  penetration u. Consider the

following general penetration law for a single

indenter:

(11)

where fn is the normal force upon the indenter, and

k, α are two constants depending on the base

material, the indenter geometry and the wear state. 

As is well known in mechanics, the value α ≅ 2 is

valid for elasto-plastic indentation of cones and

pyramids. It can be used for each small indenter

embedded into a impregnated segment, but is not

valid for the penetration of the whole cutter since the

total contact area is not constant. In the presence of

large, single hard indenters, the situation is closer to

a 2D wedge with a linear load-penetration law in the

elastic regime (Fisher Cripps, 2000).

Regarding the base material, we may argue that

exponents larger than 1.0 should be used for a very

s s

δ<u

u

fn fn

ft ft

fn

ft
D1 D2 D3

D1 D2ϑ

fn fn fn

ft ft ft

s s

δ>u

u

u

D1

D1 D2

D2

D3

V
ϑ

(b)

(a)

s s

δ=u
u

ϑ

fn fn
ft ft

fn
ftD1 D2 D3

D1 D2

ϑ( )tan
u
s
---=

ϕ̇
ϕ̇

δ̇ ϑ( )tan ϕ̇R u
s
---ϕ̇R und

ϕ̇

2π
------= = =

fn ku
α

=



hard base material whereas, when compressive

failure of the base material is governed by plasticity,

values of α ≤ 1 become more reliable. Simulations

by the lattice model (Fig. 5) have shown that α can

be lower than 1.0 if heterogeneity and cumulative

damage of the base material are considered

(Carpinteri et al., 2003). This would explain why, in

some cases (usually related to high thrust or to very

soft materials), the rate of increase of  with Fn is

more than linear (see Equation (13)). In any case, the

value α=1 corresponds to the experimentally

detected almost linear dependence of  on Fn.

Figure 5. Lattice simulation of the cutting process (a); load-
penetration response (b).

One should also take into account that the

development of wear flats (with drilled distance)

provides the progressive increase of the penetration

stiffness k. Assuming that Fn = nd fn, one easily

obtains:

(12)

Inserting the above relation into eq. (10), one gets:

(13)

which represents the optimal kinematic functioning

point of core drilling. 

Equation (13) implies that, if the drilling process is

carried out at constant angular velocity, the drilling

strength does not influence the drilling velocity

provided there is always sufficient supply of

mechanical energy. The drilling velocity, except for

the case when α=1, is also depending on the number

nd of active indenters. In particular, in the case α<1

(disordered soft materials, crushing failure), the

exponent of nd in Eq. (13) becomes negative, and

thus a smaller number of indenters implies a larger

drilling velocity. On the contrary, when α>1 (hard

homogeneous materials, brittle chipping), the

exponent is positive and therefore a larger number

of cutters provides better performances.

3.3 Definition of the drilling strength S

Electrical engines can balance larger torques, at

fixed angular velocity, by increasing the mechanical

power supplied to the bit. The characteristic curves

of the engine permit to obtain the dependence of the

quantity Pmech / Mt on the angular velocity .

In order to define a mechanical functioning point,

we need to balance the work provided by the engine

with the work dissipated by removing the base

material through the cutting action. The core drilling

process in quasi-brittle materials like concrete and

masonry involves different sources of energy

expenditure. In particular, frictional energy

dissipation with considerable heat production

occurs and secondary processes like fragmentation

and milling also add to the basic fracture process and

contribute to the total amount of dissipated energy.

The precise determination of each contribution is

awkward since it depends on the geometrical

characteristics of the cutter, on the activated friction,

on the flushing liquid and also on the operating

conditions. Therefore, the simplest way to proceed

is to collect all the sources of energy expenditure

into a single quantity, called the “drilling strength”
S, defined as the specific energy required to remove

the unit volume of the base material during a certain

drilling process. 

According to this global  definition, the drilling

strength is measured as Joule/m3 or N/m2, and

therefore S has the same physical dimensions of

material strength σu and Young’s modulus E. As a

first approximation, in fact, the drilling strength S of

a certain material can be considered as proportional

to its ultimate (crushing) stress σu. However, since

the drilling strength S depends on the size and shape

of the indenters, it is not a material constant but

undergoes remarkable size effects (see Section 4).

As shown in Figure 6, the drilling strength can be

related to the cutting force ft. By equating the work

done by the cutting force ft to the work dissipated by
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crushing during an horizontal advancement v of the

cutter, one obtains the cutting force simply as:

(14)

Figure 6. Simple crushing model for the definition of the drilling
strength S.

Another global quantity that can be used as a

measure of energy expenditure is the pseudo-

friction coefficient µ* = Ft/Fn. The drilling strength

can be related to µ* by simple balance arguments.

The mechanical power provided by the engine can

be expressed, in fact, by means of the active torque,

as a linear function of µ* or as a linear function of S:

(15)

where Abit=2πRt represents the circular projected

area of the groove (t represents the width of the

groove made by the cutters). Comparing the two

formulations, one obtains:

(16)

i.e. the pseudo-friction coefficient can be expressed

as a function of the drilling strength and of the

penetration stiffness. Equation (16) permits to relate

the general kinematic model of drilling to the

simpler Coulomb approach, based on the pseudo-

friction coefficient µ* = Ft/Fn (Davim et al., 2000).

Having defined the drilling strength S, we can

now couple the kinematic description of the drilling

process with the mechanical balance equation. By

equating the externally supplied mechanical power

Pmech to the power dissipated by crushing the base

material, one obtains the mechanical functioning

point :

, (17)

where η represents the mechanical efficiency of the

engine. 

By equating Eqs. (13) and (17), the coupled

equation of core drilling is obtained, where the

kinematic and mechanical conditions are merged:

(18)

The above equation can be specialised for

different base materials and for different wear states.

If the characteristic curve of the engine is known, all

the regimes of drilling can be described. For

instance, the maximum normal thrust

(corresponding to the clogging limit) can be

computed as a function of the maximum mechanical

power:

(19)

Also, the drilling strength corresponding to a

certain drilling process can be calculated a
posteriori from the experimental tests as:

(20)

The above equation confirms that, when α<1, if

the minimum drilling strength is pursued, the

number of cutters must be the smallest as possible.

The opposite conclusion applies for α>1. In

addition, it shows also that, all the other parameters

being fixed, a larger thrust implies a smaller specific

consumption of energy, according to several

experimental tests (Miller & Ball, 1990, 1991).

4 SIZE EFFECTS ON DRILLING STRENGTH

The cutting force has been related to the drilling

strength S by means of Equation (14). This simple

approach permits to consider all the sources of

energy dissipation occurring in the drilling process

by means of a single mechanical quantity. More

refined studies, at the level of the indenters, should

permit to estimate the value of S on the basis of

theoretical arguments. In the context of Strength of

Materials, the physical dimensions of the drilling

strength ([F][L]–2) correspond to the assumption of

crushing (plastic) collapse ahead of the cutter (see

Figure 6).
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When brittle fracture rather than plastic crushing

dominates material collapse, a more consistent

material parameter can be used, namely the fracture

toughness KIC, with the anomalous physical

dimensions (KIC=[F][L]–3/2). Dimensional

Analysis, in this case, provides:

(21)

where ρ is a nondimensional shape factor.

Rearranging equation (18), we obtain the following

alternative expression of the drilling velocity:

(22)

It can be noticed that the dependence of  on the

normal force Fn is weaker than in the case of plastic

collapse.

The above description, based on Fracture

Mechanics, permits also to give theoretical basis to

the measured size-effects on cutting strength, as

already pointed out in a previous paper by Chiaia

(2001). Let us consider two different indenters,

pushed inside the base material by different values

of the normal force (Fig. 7). 

Figure 7. Geometrical similarity in the chipping problem.

Of course, two different values of the cutting

force ft are induced by the two situations. It is

physically plausible to assert that self-similarity

holds in the distribution of the fragments removed

by the ploughing indenters. Similitude is supported

by the power-law distributions of the fragments

obtained in drilling experiments (Turcotte, 1989).

Thereby, assuming the penetration u as the reference

length scale, the volume Vf of the removed chip

scales as u3, while the area of the fracture surface Af
scales as u2.

The drilling strength S has been introduced in the

model as a scale-independent parameter. Indeed,

when the chipping process is discontinuous, the

failure criterion must be written in terms of the

stress-intensity factor KI, to be compared with the

fracture toughness of the material, KIC. Thus, the

cutting force ft has to obey the following relation:

(23)

where χ is a nondimensional geometrical factor and

f(x, y, z) is a nondimensional geometrical function.

Dimensional Analysis yields, in this case, the

following scale dependence of the cutting force on

the penetration: . The above scaling law

can also be justified by the dimensional disparity

inherent to the energy balance. The elastic strain

energy stored in the fragment, in fact, scales as u3,

whereas the energy which can be dissipated along

the fracture surface scales as u2. In the case of

plastic crushing, instead, both energies would scale

as u3. 

The intrinsic nonlinearity of chipping (which is

independent of the penetration law) implies that a

Coulomb-like linear relation is misleading. In fact,

in typical drilling experiments (see Mishnaevsky,

1994, 1995), the ratio ft/fn increases with u. Due to

geometrical self-similarity of chips, one can assert

that the work W done by the cutting force when

removing a single fragment is given by the product

of the force times a displacement cu (Fig. 7).

Therefore, recalling eq. (14), we get:

(24)

where c is a nondimensional geometrical factor.

From Eqs. (15) and (24) one obtains the following

scaling law for the drilling strength:

(25)

where κ is a nondimensional geometrical factor

(see Figure 8).
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Figure 8. Size effects on the drilling strength.

The above scaling law is confirmed by the

experiments. Single-scratch tests carried on large

PCD cutters (t=4mm), have shown that the drilling

strength is one order of magnitude larger than the

material’s compressive strength (e.g., S=400MPa

fo r  a  r e f e rence  conc re t e ) .  I n  t he  ca se  o f

impregnated segments, instead, where the size of

the indenting diamonds is much smaller (t=100µm)

the measured drilling strength is close to 1000MPa.

As expected, larger indenters activate less specific

strength, i.e. they are more efficient although a

larger normal force will be necessary to ensure their

penetration. The square root scaling is modified in

the presence of soft materials, because a certain

extent of crushing always occurs immediately

ahead of the indenter, and thus the two destruction

mechanisms interact with each other (Van Kesteren,

1995).

5 GLOBAL EQUATION OF CORE DRILLING

The dependence of the drilling strength S on the

back-rake angle can be expressed by relating the

helicoidal theory of core drilling to the geometrical

configuration of the single cutter. This dependence

is explicitly taken into account by the static balance

proposed by Wojtanowicz & Kuru (1993), although,

in that theory, the cutting mechanism is restricted,

whatever the back-rake angle, to plastic crushing.

Considering the balance equations (1), and

expressing the drilling strength S as the work of the

cutting force per unit of removed volume along the

scratch, we obtain an expression where S can be

related to a reference drilling strength S* measured

for β=0:

(26)

The trigonometric term (sinβ+µcosβ) is already

present in the model by Wojtanowicz & Kuru

(1993). Notice that, in the above model, positive

angles correspond to β < 0. Therefore, positive rake

angles imply a lower apparent drilling strength, i.e.,

a better drillability. By inserting Eq. (26) in Eq. (18),

one obtains the global equation of core drilling:

(27)

which, in principle, permits to model any kind of

drilling process. In order to consider in the model

also cutter’s wear, the dependence of the stiffness on

the total drilled distance should be considered. This

is a coupled problem, since the wear rate is affected

by the relative hardness of the cutter and base

material.
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