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1 INTRODUCTION 
Fibers have been used in many areas of concrete 
structures including tunnel linings, impact-
resistant structures, and repair/rehabilitation of 
damaged structures. However, most important 
application of fibers would be to prevent or 
control the tensile cracking occurring in concrete 
structures (Gopalaratnam and Shah 1985, 
Soroushian & Lee 1990, Oh 1992, Ezeldin et al. 
1992, Bantia & Trottier 1994, Leung & Geng 
1998, Li et al. 1998, Nataraja et al. 1999, Oh 
2002). It is, therefore, necessary to model 
realistically the post-cracking behavior of fiber-
reinforced concrete members. 

Recently, structurally-efficient synthetic fibers 
have been developed by authors and coworkers 
(Oh, et al 2002). These synthetic fibers have 
advantages compared to steel or other fibers in 
that they are corrosion-resistant and exhibit high 
energy-absorption capacity. 

The purpose of the present study is to explore 
experimentally and theoretically the cracking 
resistance and post-cracking behavior of newly-
developed structural synthetic fiber reinforced 
concrete beams. To this end, the pullout tests of 
fibers were executed which simulate pullout 
behavior of fibers at crack surfaces. The 
arbitrarily-oriented fibers at the crack surface 
have been considered by introducing a proba-
bilistic concept. The load-deflection and moment-
curvature curves were generated from the theory 
derived in this study and compared with test data. 

 
2 MODELS FOR POST-CRACKING 

BEHAVIOR 

2.1 Concept of analysis 

A fiber reinforced concrete beam as shown in 
Figure 1 has been considered for the analysis of 
post-cracking behavior. Figure 1 shows the 
failure mode of a beam with the crack mouth 
opening displacement. Figure 2 depicts the strain 
and stress distributions along the depth of normal 
reinforced concrete(RC) beam. These stress distri-
butions can be redrawn as shown in Figure 3 for 
fiber-reinforced concrete(FRP) beams. In this 
Figure 3, the pullout forces of fibers in tensile 
region depend on the crack opening displace-
ments along the depth from neutral axis. 

In order to obtain the post-cracking behavior of 
FRC beams, the stress-strain relations of concrete 
in compression and tension, and the stress-crack 
width relation after cracking must be properly 
defined. This will be clarified in the next section. 

2.2 Stress-strain relation of concrete in 
compression 

The Hognestad’s stress-strain relation(Equation 1 
and Equation 2) of concrete in compression is 
employed in this study, which is one of the most-
generally used equation to model the constitutive 
behavior of concrete. Figure 4 exhibits the typical 
stress-strain relation of concrete in compression. 

 

ABSTRACT : A realistic method of analysis for the post-cracking behavior of newly-developed structural 
synthetic fiber reinforced concrete beams is proposed. In order to predict the post-cracking behavior, 
pullout behavior of single fiber is identified by tests and employed in the model in addition to the realistic 
stress-strain behavior of concrete in compression and tension. A probabilistic approach is used to calculate 
the effective number of fibers across crack faces and to calculate the probability of non-pullout failure of 
fibers. The proposed theory is compared with test data and shows good agreement. The proposed theory 
can be efficiently used to predict the load-deflection behavior, moment-curvature relation, load-crack 
mouth opening width (CMOD) relation of synthetic fiber reinforced concrete beams. 

Keywords : structural synthetic fiber, post-cracking behavior, FRC beams, cracking, fiber pull-out test 



Figure 1. Failure mode of FRC beam under load 

 

Figure 2. Stress and strain relation of RC beam 

 

Figure 3. Schematic view of forces and stresses acting on 
cracked section of FRC beam. 
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in which 'cf  = compressive strength of 
concrete, ε0 =the strain at peak stress(see Figure 
4). The force C in compression zone can be 
written as follows. 

bcfC c 'α=                          (3) 

where α = the factor for average stress, b = width 
of beam, and c = the depth of neutral axis from 
the top face of a beam. The factor α can be 
considered as a conversion factor from actual 
stress-strain curves to a rectangular stress block. 
This can be obtained by equating the area under 
actual stress-strain curve to the area under 
rectangular stress block as follows(Park & Paulay 
1975) 
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The location of the compression force, γc, from 
the top fiber can be obtained as 
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where γ = centroid factor for compression force. 
 

Figure 4. Hongnestad’s stress-strain curve for concrete in 
compression 
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2.3 Stress-strain relation of concrete in tension 

2.3.1 Tensile behavior before crack occurrence 
The tensile behavior of concrete can be 
reasonably assumed as linear elastic before 
cracking. The elastic modulus is generally 
described as 

)('5500 MPacfctE =               (6) 

2.3.2 Post-cracking behavior of concrete after 
tensile strength 

The cracking starts to occur right after the tensile 
stress reaches the tensile strength and the tensile 
stress decreases as the crack width increases. The 
strain at first cracking, εcr, can be obtained as 
follows.  

ctE
rfcr =ε                           (7) 

in which fr = tensile strength of concrete, Ect = 
elastic modulus before cracking. 

The stresses after cracking depend on the 
widths of cracks. It is reasonably written here 
based on the Gopalotratnam & Shah’s model 
(1985)[see Figure5]. 

Figure 5. Tension softening curve after cracking (Shah's 
model) 
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in which ctσ = the tensile stresses after cracking, 
k =  empirical constant = 60.8, w = crack 
width(in mm), λ = empirical constant = 1.01. 

2.4 Calculation of sectional forces and 
deflections of FRC beams 

The deformation of concrete beams without 
reinforcing bars is usually localized at central 
position as shown in Figure 1. The cracked 
portion at central location acts as a plastic hinge. 

The distribution of compressive strain at extreme 
fiber of the beam, εx, is shown in Figure 1(b). The 
displacement ∆n at compression face can be 
obtained from this compressive strain distribution 
εx. 
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The slope(rotation angle) of beam, dθ, may also 
be obtained from Figure 1. 
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The deflection at central position is obtained from 
the slope of the beam as follows. 

2
Ldd θδ =                         (11) 

The crack mouth opening displacement (CMOD) 
at the bottom surface is also written as 

)]([2 chddCMOD −= θ            (12) 

The internal resisting moment, Me, of the beam 
can be derived from the stress distributions of 
concrete in compression and tension zones and 
also the pullout forces of all the fibers across the 
crack plane as shown in Figure 3(Equation 13 and 
14). 

0
1

)(
0

=∫ ∑
=

+
c

c

N

i ifybdσ              (13) 

∑
=

+⋅∫=
N

i iyifydybceM
c

1
)(

0
σ        (14)     

From the moment of Equation 14, the applied 
load on the beam, P, is obtained as follows. 
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P
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The pullout force fi of the fiber of ith layer in 
Equation 14 should be obtained from the relation 
of bond stress and bond slip of a fiber and they 
directly depend on the crack widths of the 
beam(see Equation 16). 
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The fibers are randomly distributed at the crack 
plane as shown in Figure 6 and this effect must be 
considered appropriately to calculate the fiber 
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forces. Banthia(1994) reported that the average 
number of fibers per unit area of crack plane 
follows normal distribution and can be 
summarized depending on the fiber contents as 
shown in Table 1. 

 

Fig. 6 Orientation and embedded length of randomly 
distributed fibers  

Table 1. Average number of fibers according to 
fiber content 

Fiber content, percent of volume  0.75% 1.50% 
Average, fibers per 4cm2  7.922 15.173 
Standard deviation, fibers per 4cm2  6 8.9 
Sample size, n  448 493 

 
On the other hand, Soroushian and Lee(1990) 
proposed the number of fibers per unit area, N1, as 
follows. 
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where, α = fiber orientation factor, Vf = fiber 
content, and Af = cross-sectional area of fibers. 

The orientation factor α can be considered as 
the effective factor that an arbitrary-oriented fiber 
is perpendicular to the crack plane(see Figure7). 
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If the boundary of the structure restrains the 
arbitrary orientation of the fibers, the orientation 
factor for a specified direction becomes larger. 
Soroushian and Lee(1990) reported the 
orientation factor for two-side-restrained case as 
follows. 
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Figure 7. Three-dimensional fiber orientation  
 

The tensile force(Fi) resisted by fibers at each 
layer of tensile zone of the beam can be obtained 
by multiplying the fiber force fi of that layer by 
the number of fibers. The force fi of single fiber 
can be derived from the bond stress-slip relation, 
which is also dependent upon the crack width wi 
of ith layer(see Figure 3). This bond stress-slip 
relation of structural synthetic fiber will be 
directly obtained by tests, which will be described 
in the following section. 

The development length Lf of a fiber required 
for not to be pulled out at the crack plane may be 
derived as shown in Equation 23. 
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in which Σ0 = perimeter of a fiber, and τu = bond 
strength of a fiber. Therefore, the actual embed-
ment length of fibers should be larger than the 
required development length in order not to be 
pulled out. 

Figure 8 summarizes the fiber forces, required 
anchorage lengths, and the probabilities of non-
anchorage failure for various layers of cracked 
section of a beam. The probability of non-
anchorage(or non-pullout) failure Pr can be 
derived as follows by two cases. 
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(1) Case 1 : Required anchorage length ≤  the 
half of fiber length(Lf ≤ lf/2) 

Figure 9 represents the cracked region of a 
beam. This is the case that the half of the actual 
fiber length(the region B in Figure 9(a)) is larger 
than the required anchorage length(the region A 
in Figure 9(a)). This can be written in a 
formalized equation as follows. 
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(2) Case 2 : Required anchorage length > the 
half of fiber length(Lf > lf/2) 

This is the case of Figure 9(b) that the required 
anchorage length is larger than the half of actual 
fiber length. This can be expressed as the 
following equation. 
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−= (see Figure 9). 

 

Fig. 8 Fiber force, required anchorage length, and probability 
of non-anchorage failure 

Fig. 9(a) Relation between required anchorage and embedded 
fiber length (Lf ≤ lf/2) 

Fig. 9(b) Relation between required anchorage and embedded 
fiber length (Lf > lf/2) 

 
Finally, the tensile forces resisted by fibers can 

be obtained from the number of fibers at each 
layer, effective orientation factor α, and the 
probability of non-anchorage failure Pr. The flow 
diagram for the flexural analysis of synthetic 
fiber-reinforced concrete beams is summarized in 
Figure 10. 

Figure 10. Flowchart for the analysis of synthetic FRC beams 

 
3 TESTS FOR POST-CRACKING 

BEHAVIOR OF STRUCTURAL 
SYNTHETIC FRC BEAMS 

3.1 Pullout test for single fiber 

The authors developed recently new structural 
synthetic fibers which are of crimped type with 
the length of 50mm. Figure 11 shows the pullout 
test specimen specially prepared for obtaining the 
pullout load-slip relation. Figure 12 shows the 
photograph for actual pullout test arrangement.  

Figure 13 depicts the average pullout load 
versus slip relation obtained from the present 
tests. The bond load-slip equation obtained from 
the tests may have the following form. 
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where a, b, c, and d are the constants to be 
obtained from test data, and Fp= pullout load(kN), 
S = slip in mm unit. 
 

Figure 11. Pullout test specimen 

 

 
Figure 12. Photograph of pullout test 

 

Figure 13. Load-slip relation for crimped-type synthetic fiber 

 

3.2 Flexural tests for structural synthetic fiber 
reinforced concrete beams 

The concrete beams reinforced with structural 
synthetic fibers have been tested  to obtain the 
flexural behavior including the load-deflection 
behavior, load-CMOD relations, and moment-
curvature relations. The mixture proportion of 
concrete is summarized in Table 2. The water-
cement ratio was 0.45 and the fiber content was 1 
percent of total concrete volume. The mixture was 
designed to accommodate the use for tunnel 
shotcrete lining structures. 

Table 2. Mixture proportion for test specimens 
Unit Weight(kg/m3) W/C

(%) Cement Water Sand Gravel 

Fiber 
Content

(1%)
45 453 204 1115 487 9 

 
Figure 14 exhibits the arrangement for flexural 
tests of fiber reinforced concrete beams in four-
point loading condition. Figure 15 show special 
measuring device for central deflection of the 
beam. This device allows to measure exact 
relative displacements between the supports and 
center point. 

 

 Figure 14. Schematic view of flexural tests 
 

Figure 15. Devices for displacement measurement 
 

The dimension of the beam was 100×100×400mm 
and the span length was 300mm. The load was 
applied in displacement control manner with the 
rate specified in the static testing standard. 
 

4 ANALYSIS OF TEST RESULTS AND 
COMPARISIONS WITH THEORY 

 
Figure 16 shows the load-deflection curves 

obtained from the present tests for the beam with 
structural synthetic fiber volume of 1 percent. 
Figure 16 also compares the test data with the 
theory proposed in the previous section. It can be 
seen that the theoretical predictions fairly well 
agree with test data even after post-cracking 
ranges. 

The salient feature of the post-cracking 
behavior of structural synthetic fiber reinforced 
concrete beams is that the resisting load drops 
down right after first cracking, probably due to 
initial slip of fibers at crack plane, and then starts 
to increase due to structurally effective synthetic 
fibers in tensile region. Figure 17 also exhibits the 
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similar behavior of structural synthetic fiber 
reinforced concrete beam for fiber volume of 
1.5%. It is seen again in Figure 17 that the 
proposed theory agrees very well with the 
measured data, even up to the large deflection of 
the beam. 
 

Figure 16. Load-deflection curve for structural synthetic fiber 
concrete beam (fiber content: Vf = 1.0% by volume)  

 

Figure 17. Load-deflection curve for structural synthetic fiber 
concrete beam (fiber content: Vf = 1.5% by volume)  
 

Figure 18 shows the comparison of load-
deflect-ion behavior for two different fiber 
volume contents. Figure 18 indicates that the FRC 
beam with larger volume of fiber content(namely 
1.5% by volume) exhibits higher resistance 
especially after larger deflection. 
 Figure 19 describes the load-CMOD relations 

for two different fiber volume contents. It is noted 
here that, at the same loads after cracking, the 
FRC beam with larger volume of fibers exhibits 
much smaller CMOD values. This is indeed a 
great beneficial effect of structural synthetic fibers. 
Figure 20 shows the relation between CMOD and 
central deflection of FRC beam. These relations 
are very much similar for different fiber volume 
contents. Therefore, this relation of CMOD versus 
central displacement may be regarded as a 
material property for structural synthetic fiber 
reinforced concrete beam. 

Figure 21 shows the change of neutral axis 
depth according to central deflection. It is seen 
that the neutral axis depth continuously decreases, 
which reflects the crack growth according to the 
increase of applied load. Figure 22 describes the 
moment-curvature relations for FRC beams with 
two different fiber volumes. These curves are very 
similar to load-deflection curves previously 
described for synthetic fiber reinforced concrete 
beams 
 
 

Figure 18. Effect of fiber content on load-deflection curves 

 

Figure 19. Effect of fiber content on load-CMOD relation 

 

Figure 20. Relation between CMOD and deflection 
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Figure 21. Variation of neutral axis depth according to the 
increase of deflection 

Figure 22. Prediction of Moment and curvature relation 
 

5 CONCLUSIONS 
 

The post-cracking behavior of concrete beams 
reinforced with recently-developed structural 
synthetic fibers is investigated in the present 
study. In order to develop a realistic model for 
post-cracking behavior of structural synthetic 
FRC beams, the randomness of orientation of 
fibers and the effective number of fibers at the 
crack plane were first considered and then new 
concept of the probability of non-pullout failure 
of fibers at the crack plane was introduced and 
derived in this study. 

In order to calculate the pullout forces of 
structural synthetic fibers at the crack plane, the 
pullout tests for fibers were also conducted and an 
appropriate relation between bond forces and slips 
was derived. All these models were incorporated 
to formulate a method for flexural analysis of 
structural synthetic FRC beams. 

The present tests for structural synthetic FRC 
beams indicates that the resisting load drops down 
right after the peak load and then starts to increase 
continuously due to the resistance of structural 
synthetic fibers. The theory developed in this 
study describes well these phenomena observed in 
the tests. 

The load-CMOD relation, CMOD-deflection, 

and moment-curvature relation were also 
reasonably predicted by the proposed theory. The 
present study indicates that the FRC beams with 
larger amount of fibers exhibits much smaller 
CMOD values at the same applied loads, which is 
one of the great beneficial effects of newly 
developed structural synthetic fibers. The present 
study also indicates that the relation between 
CMODs and central displacements is almost same 
for the beams with different fiber volumes and, 
therefore, this relation can be regarded as a 
material property for structural synthetic fiber 
reinforced concrete members. 

The present study allows more realistic analysis 
and application of recently-developed structural 
synthetic fiber reinforced concrete beams. 
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