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ABSTRACT : A redlistic method of analysis for the post-cracking behavior of newly-developed structural

synthetic fiber reinforced concrete beams is proposed. In order to predict the post-cracking behavior,
pullout behavior of single fiber isidentified by tests and employed in the model in addition to the realistic
stress-strain behavior of concrete in compression and tension. A probabilistic approach is used to calculate
the effective number of fibers across crack faces and to calculate the probability of non-pullout failure of
fibers. The proposed theory is compared with test data and shows good agreement. The proposed theory
can be efficiently used to predict the load-deflection behavior, moment-curvature relation, load-crack
mouth opening width (CMOD) relation of synthetic fiber reinforced concrete beams.

Keywords : structural synthetic fiber, post-cracking behavior, FRC beams, cracking, fiber pull-out test

1 INTRODUCTION

Fibers have been used in many areas of concrete
structures including tunnel linings, impact-
resistant structures, and repair/rehabilitation of
damaged structures. However, most important
application of fibers would be to prevent or
control the tensile cracking occurring in concrete
structures  (Gopalaratham and Shah 1985,
Soroushian & Lee 1990, Oh 1992, Ezeldin et &l.
1992, Bantia & Trottier 1994, Leung & Geng
1998, Li et al. 1998, Natargja et a. 1999, Oh
2002). It is, therefore, necessary to model
redlisticaly the post-cracking behavior of fiber-
reinforced concrete members.

Recently, structurally-efficient synthetic fibers
have been developed by authors and coworkers
(Oh, et a 2002). These synthetic fibers have
advantages compared to steel or other fibers in
that they are corrosion-resistant and exhibit high
energy-absorption capacity.

The purpose of the present study is to explore
experimentally and theoretically the cracking
resistance and post-cracking behavior of newly-
developed structural synthetic fiber reinforced
concrete beams. To this end, the pullout tests of
fibers were executed which simulate pullout
behavior of fibers a crack surfaces. The
arbitrarily-oriented fibers at the crack surface
have been considered by introducing a proba
bilistic concept. The load-deflection and moment-
curvature curves were generated from the theory
derived in this study and compared with test data.

2 MODELSFOR POST-CRACKING
BEHAVIOR

2.1 Concept of analysis

A fiber reinforced concrete beam as shown in
Figure 1 has been considered for the analysis of
post-cracking behavior. Figure 1 shows the
failure mode of a beam with the crack mouth
opening displacement. Figure 2 depicts the strain
and stress distributions along the depth of normal
reinforced concrete(RC) beam. These stress distri-
butions can be redrawn as shown in Figure 3 for
fiber-reinforced concrete(FRP) beams. In this
Figure 3, the pullout forces of fibers in tensile
region depend on the crack opening displace-
ments along the depth from neutral axis.

In order to obtain the post-cracking behavior of
FRC beams, the stress-strain relations of concrete
in compression and tension, and the stress-crack
width relation after cracking must be properly
defined. Thiswill be clarified in the next section.

2.2 Sress-strainrelation of concretein
compression

The Hognestad' s stress-strain relation(Equation 1
and Equation 2) of concrete in compression is
employed in this study, which is one of the most-
generally used eguation to model the constitutive
behavior of concrete. Figure 4 exhibits the typical
stress-strain relation of concrete in compression.
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Figure 2. Stress and strain relation of RC beam
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Figure 3. Schematic view of forces and stresses acting on

cracked section of FRC beam.
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concrete, & =the strain at peak stress(see Figure
4). The force C in compression zone can be
written asfollows.

C=af,'be €

where a = the factor for average stress, b = width
of beam, and ¢ = the depth of neutral axis from
the top face of a beam. The factor o can be
considered as a conversion factor from actual
stress-strain curves to a rectangular stress block.
This can be obtained by equating the area under
actual stress-strain curve to the area under
rectangular stress block as follows(Park & Paulay
1975)
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Figure 4. Hongnestad's stress-strain curve for concrete in
compression



2.3 Sress-strain relation of concrete in tension

2.3.1 Tensile behavior before crack occurrence
The tensile behavior of concrete can be
reasonably assumed as linear elastic before
cracking. The elastic modulus is generaly
described as

Eg =5500,/ fc' (MPa) (6)

2.3.2 Post-cracking behavior of concrete after
tensile strength

The cracking starts to occur right after the tensile

stress reaches the tensile strength and the tensile

stress decreases as the crack width increases. The

strain at first cracking, €, can be obtained as

follows.

f
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ct

in which f, = tensile strength of concrete, E; =
elastic modulus before cracking.

The stresses after cracking depend on the
widths of cracks. It is reasonably written here
based on the Gopalotratham & Shah's model
(1985)[ see Figures].
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Figure 5. Tension softening curve after cracking (Shah's
model)
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inwhich O, = the tensile stresses after cracking,
k = empirical constant = 60.8, w = crack
width(in mm), A = empirical constant = 1.01.

2.4 Calculation of sectional forces and
deflections of FRC beams

The deformation of concrete beams without
reinforcing bars is usually localized at central
position as shown in Figure 1. The cracked
portion at central location acts as a plastic hinge.

The distribution of compressive strain at extreme
fiber of the beam, &, is shown in Figure 1(b). The
displacement A, a compression face can be
obtained from this compressive strain distribution
&

Jexdx= e =
Ay=|edx=¢€c— 9
0= 1&x of | €)
The slope(rotation angle) of beam, dB, may also
be obtained from Figure 1.
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The deflection at central position is obtained from
the slope of the beam as follows.

dd = dﬂ% (11)

The crack mouth opening displacement (CMOD)
at the bottom surface is also written as

dCMOD = 2[dé(h - c)] (12)

The internal resisting moment, M, of the beam
can be derived from the stress distributions of
concrete in compression and tension zones and
aso the pullout forces of al the fibers across the
crack plane as shown in Figure 3(Equation 13 and
14).
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From the moment of Equation 14, the applied
load on the beam, P, is obtained as follows.

_6Me
L

P (15)

The pullout force f; of the fiber of i layer in
Equation 14 should be obtained from the relation
of bond stress and bond dip of a fiber and they
directly depend on the crack widths of the
beam(see Equation 16).

CMOD

The fibers are randomly distributed at the crack
plane as shown in Figure 6 and this effect must be
considered appropriately to calculate the fiber



forces. Banthia(1994) reported that the average
number of fibers per unit area of crack plane
follows normal distribution and can be
summarized depending on the fiber contents as
shownin Table 1.

Fig. 6 Orientation and embedded length of randomly
distributed fibers

Table 1. Average number of fibers according to
fiber content

Fiber content, percent of volume 0.75% 1.50%
Average, fibers per 4cm? 7.922 15.173
Standard deviation, fibers per 4cm? 6 8.9
Samplesize, n 448 493

On the other hand, Soroushian and Lee(1990)
proposed the number of fibers per unit area, Ny, as
follows.

Vf
Nl =g —

A,

where, a= fiber orientation factor, V; = fiber
content, and A; = cross-sectional area of fibers.

The orientation factor a can be considered as
the effective factor that an arbitrary-oriented fiber
is perpendicular to the crack plane(see Figure?).

(17)

=0.405 (18)

If the boundary of the structure restrains the
arbitrary orientation of the fibers, the orientation
factor for a specified direction becomes larger.
Soroushian and Lee(1990) reported the
orientation factor for two-side-restrained case as
follows.
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Figure 7. Three-dimensiona fiber orientation

The tensile force(F;) resisted by fibers at each
layer of tensile zone of the beam can be obtained
by multiplying the fiber force f; of that layer by
the number of fibers. The force f; of single fiber
can be derived from the bond stress-slip relation,
which is aso dependent upon the crack width w;
of i"™ layer(see Figure 3). This bond stress-dlip
relation of structural synthetic fiber will be
directly obtained by tests, which will be described
in the following section.

The development length L of a fiber required
for not to be pulled out at the crack plane may be
derived as shown in Equation 23.

fi

=— 23
L s (239)

in which 5= perimeter of afiber, and t,= bond
strength of a fiber. Therefore, the actua embed-
ment length of fibers should be larger than the
required development length in order not to be
pulled out.

Figure 8 summarizes the fiber forces, required
anchorage lengths, and the probabilities of non-
anchorage failure for various layers of cracked
section of a beam. The probability of non-
anchorage(or non-pullout) failure P, can be
derived as follows by two cases.



(1) Case 1 : Required anchorage length < the
half of fiber length(L¢ < 11/2)

Figure 9 represents the cracked region of a
beam. This is the case that the half of the actua
fiber length(the region B in Figure 9(a)) is larger
than the required anchorage length(the region A
in Figure 9(a)). This can be written in a
formalized equation as follows.

_ areaof B 1 areaof A
total area Aand B total area Aand B

o , L (24)
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(2) Case 2 : Required anchorage length > the

half of fiber length(Ls > 1¢/2)

This is the case of Figure 9(b) that the required
anchorage length is larger than the half of actual
fiber length. This can be expressed as the
following eguation.
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Fig. 8 Fiber force, required anchorage length, and probability
of non-anchorage failure

Y4

(h-0)

Fig. 9(a) Relation between required anchorage and embedded
fiber length (Ls < 14/2)

(h-0)

-
x

I L(
I, 12

Fig. 9(b) Relation between required anchorage and embedded
fiber length (L > 11/2)

Finally, the tensile forces resisted by fibers can
be obtained from the number of fibers at each
layer, effective orientation factor a, and the
probability of non-anchorage failure P,. The flow
diagram for the flexural analysis of synthetic
fiber-reinforced concrete beams is summarized in
Figure 10.
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Figure 10. Flowchart for the analysis of synthetic FRC beams

3 TESTSFOR POST-CRACKING
BEHAVIOR OF STRUCTURAL
SYNTHETIC FRC BEAMS

3.1 Pullout test for single fiber

The authors developed recently new structural
synthetic fibers which are of crimped type with
the length of 50mm. Figure 11 shows the pullout
test specimen specially prepared for obtaining the
pullout load-dlip relation. Figure 12 shows the
photograph for actual pullout test arrangement.

Figure 13 depicts the average pullout load
versus dlip relation obtained from the present
tests. The bond load-slip equation obtained from
the tests may have the following form.
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where a, b, ¢, and d are the constants to be
obtained from test data, and Fy= pullout load(kN),
S=dlipin mm unit.
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Figure 11. Pullout test specimen

Figure 12. Phatograph of pullout test
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Figure 13. Load-dlip relation for crimped-type synthetic fiber

3.2 Flexural testsfor structural synthetic fiber
reinforced concrete beams

The concrete beams reinforced with structural
synthetic fibers have been tested to obtain the
flexural behavior including the load-deflection
behavior, load-CMOD relations, and moment-
curvature relations. The mixture proportion of
concrete is summarized in Table 2. The water-
cement ratio was 0.45 and the fiber content was 1
percent of total concrete volume. The mixture was
designed to accommodate the use for tunnel
shotcrete lining structures.

Table 2. Mixture proportion for test specimens

- - 3 -
WIC Unit Weight(kg/m®) Fiber
(%) Cement | Water | Sand | Gravel Content
(1%)
45 453 204 1115 487 9

Figure 14 exhibits the arrangement for flexura
tests of fiber reinforced concrete beams in four-
point loading condition. Figure 15 show special
measuring device for central deflection of the
beam. This device alows to measure exact
relative displacements between the supports and
center point.

100mm
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Figure 14. Schematic view of flexural tests
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Figure 15. Devices for displacement measurement

The dimension of the beam was 100x100x400mm
and the span length was 300mm. The load was
applied in displacement control manner with the
rate specified in the static testing standard.

4 ANALYSISOF TEST RESULTSAND
COMPARISIONS WITH THEORY

Figure 16 shows the load-deflection curves
obtained from the present tests for the beam with
structural synthetic fiber volume of 1 percent.
Figure 16 also compares the test data with the
theory proposed in the previous section. It can be
seen that the theoretical predictions fairly well
agree with test data even after post-cracking
ranges.

The sdient feature of the post-cracking
behavior of structural synthetic fiber reinforced
concrete beams is that the resisting load drops
down right after first cracking, probably due to
initial slip of fibers at crack plane, and then starts
to increase due to structurally effective synthetic
fibersin tensile region. Figure 17 aso exhibits the



similar behavior of structura synthetic fiber
reinforced concrete beam for fiber volume of
15%. It is seen again in Figure 17 that the
proposed theory agrees very well with the
measured data, even up to the large deflection of
the beam.
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Figure 16. Load-deflection curve for structural synthetic fiber
concrete beam (fiber content: V¢ = 1.0% by volume)
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Figure 17. Load-deflection curve for structural synthetic fiber
concrete beam (fiber content: V¢ = 1.5% by volume)

Figure 18 shows the comparison of load-
deflect-ion behavior for two different fiber
volume contents. Figure 18 indicates that the FRC
beam with larger volume of fiber content(namely
15% by volume) exhibits higher resistance
especially after larger deflection.

Figure 19 describes the load-CMOD relations
for two different fiber volume contents. It is noted
here that, at the same loads after cracking, the
FRC beam with larger volume of fibers exhibits
much smaller CMOD values. This is indeed a

great beneficial effect of structural synthetic fibers.

Figure 20 shows the relation between CMOD and
central deflection of FRC beam. These relations
are very much similar for different fiber volume
contents. Therefore, this relation of CMOD versus
central displacement may be regarded as a
material property for structural synthetic fiber
reinforced concrete beam.

Figure 21 shows the change of neutral axis
depth according to central deflection. It is seen
that the neutral axis depth continuously decreases,
which reflects the crack growth according to the
increase of applied load. Figure 22 describes the
moment-curvature relations for FRC beams with
two different fiber volumes. These curves are very
similar to load-deflection curves previously
described for synthetic fiber reinforced concrete
beams
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Figure 18. Effect of fiber content on load-deflection curves
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Figure 19. Effect of fiber content on load-CMOD relation
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Figure 20. Relation between CMOD and deflection
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5 CONCLUSIONS

The post-cracking behavior of concrete beams
reinforced with recently-developed structural
synthetic fibers is investigated in the present
study. In order to develop a realistic model for
post-cracking behavior of structural synthetic
FRC beams, the randomness of orientation of
fibers and the effective number of fibers at the
crack plane were first considered and then new
concept of the probability of non-pullout failure
of fibers at the crack plane was introduced and
derived in this study.

In order to calculate the pullout forces of
structural synthetic fibers at the crack plane, the
pullout tests for fibers were also conducted and an
appropriate relation between bond forces and dlips
was derived. All these models were incorporated
to formulate a method for flexural anaysis of
structural synthetic FRC beams.

The present tests for structural synthetic FRC
beams indicates that the resisting load drops down
right after the peak load and then starts to increase
continuously due to the resistance of structural
synthetic fibers. The theory developed in this
study describes well these phenomena observed in
the tests.

The load-CMOD relation, CMOD-deflection,

and moment-curvature relation were also
reasonably predicted by the proposed theory. The
present study indicates that the FRC beams with
larger amount of fibers exhibits much smaller
CMOD vaues at the same applied loads, which is
one of the great beneficial effects of newly
developed structura synthetic fibers. The present
study also indicates that the relation between
CMODs and central displacements is almost same
for the beams with different fiber volumes and,
therefore, this relation can be regarded as a
material property for structural synthetic fiber
reinforced concrete members.

The present study allows more redlistic analysis
and application of recently-developed structural
synthetic fiber reinforced concrete beams.
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