Continuum-micromechanics approach for determination of autogenous shrinkage of cement-based materials

Ch. Pichler, R. Lackner, & H.A. Mang

Institute for Strength of Materials, Vienna University of Technology, Austria

ABSTRACT: Autogenous shrinkage is the term for the bulk deformation of a closed, isothermal, cement-based material system not subjected to external forces (Jensen and Freiesleben Hansen 2001). It is associated with the internal volume reduction of the cement/water mixture in the course of the hydration process. The question arising from engineering practice is the magnitude of the autogenous deformation of different cement-based materials, such as shotcrete employed in tunneling or high-performance concrete. Whereas autogenous shrinkage in shotcrete linings results in a significant reduction of compressive loading, restrained autogenous deformation in high-performance concrete may lead to cracking. In this paper, a multi-scale approach, allowing to consider induced strains at lower scales of observation, is presented. In addition to the theoretical work on multi-scale modeling, macroscopic shrinkage experiments on cement pastes were conducted at the Vienna University of Technology.

Keywords: early-age concrete, multi scale, homogenization, eigenstrain, capillary depression, pore structure

1 PHYSICAL ORIGIN OF AUTOGENOUS SHRINKAGE

Autogenous shrinkage is associated with the internal volume reduction of the cement/water mixture caused by the hydration process. The volumetric imbalance is depicted in Figure 1 [adapted from (Acker 2001)]; the specific volume of the reaction products [calcium-silicate-hydrates (CSH) and portlandite (CH)] is about 8% lower than the sum of the volumes of the reactants (water, cement, and additives), a behavior also referred to as Le Chatelier contraction. In Figure 1, \(\xi \) denotes the degree of hydration, with \(\xi = f_h / f_{h,\infty} \), where \(f_h \) is the volume fraction of hydration products and \(f_{h,\infty} \) is the respective quantity in case the entire amount of cement has been consumed by the hydration process. The volumetric imbalance of 8% results in a progressive increase of the pore volume filled with gaseous phase (see Figure 1). On the other hand, the relative pore volume occupied by the liquid phase, i.e., the liquid saturation, decreases in the course of the hydration process (see Figure 1). The stress state in the liquid phase follows the law of surface tension: the smaller the pore size, the larger the tension at the interface between liquid and gaseous phase. As the degree of liquid saturation (relative pore volume occupied by the liquid phase) decreases, the location of this interface moves into smaller pores, resulting in an increase of surface (capillary) tension in the liquid phase. This tension in the liquid phase causes a contraction of the solid phase (unhydrated cement and reaction products), which is macroscopically observable as autogenous-shrinkage strain (Acker and Ulm 2001). Experimental observations suggest that the magnitude of the capillary tension is mainly influenced by the water/cement-ratio, defining the pore structure of the cement paste (Acker 2001).

2 EXPERIMENTAL BASIS

2.1 Hydration kinetics

As mentioned in the previous section, the extent of the hydration process, i.e., of the chemical reaction between cement and water, is described by the degree of hydration \(\xi \), with \(0 \leq \xi \leq 1 \). A suitable evolution law for the hydration kinetics may be written in the form (Ulm and Coussy 1995):

\[
\dot{\xi} = A(\xi) \exp \left(- \frac{E_a}{RT} \right),
\]

(1)
where \(E_a, R, \) and \(T \) denote the activation energy of the employed cement, the universal gas constant, and the absolute temperature, respectively. The Arrhenius factor \(\exp[-E_a/(RT)] \) accounts for the thermal activation of the hydration reaction.

The normalized chemical affinity \(\tilde{A}(\xi) \) represents the driving force of the hydration process, depending only on the hydration extent (Ulm and Coussy 1995). For the types of ordinary Portland cements (OPC) considered in the experimental program, the chemical affinity was computed from experimental results obtained from differential calorimetry (Toni-CAL I, Toni Technik, Berlin, Germany). Hereby, the heat flux out of the sample, \(\dot{Q}(t) \) [\(\text{J/s} \)], is recorded, whereas the temperature in the calorimeter is kept constant (isothermal conditions).

Integrating the field equation for the thermochemical problem (Ulm and Coussy 1995) over the volume of the test sample, specialized for isothermal conditions, one gets

\[
-L_\xi \dot{\xi}(t) = -\dot{Q}(t) \Rightarrow \dot{\xi}(t) = \frac{\dot{Q}(t)}{L_\xi}, \tag{2}
\]

where \(L_\xi \) [\(\text{J} \)] denotes the heat of hydration of the cement considered in the test sample. Inserting \(\dot{\xi} = \dot{Q}/L_\xi \) (Equation (2)) into Equation (1) yields the evolution of the the chemical affinity as

\[
\tilde{A}(t) = \frac{\dot{Q}(t)}{L_\xi \exp[-E_a/(RT)]} [1/s]. \tag{3}
\]

Combination of \(\xi(t) \) and \(\tilde{A}(t) \) as computed from Equations (2) and (3) gives access to the chemical-affinity function \(\tilde{A}(\xi) \). Figure 2 depicts \(\tilde{A}(\xi) \) obtained for ordinary Portland cement (OPC) characterized by a \(w/c \)-ratio of 0.42 and various Blaine (grinding) fineness. In Equation (3), \(L_\xi \) was computed from the amount of cement (in [\(\text{g} \)]) multiplied by 400 J/g [see, e.g., (Ballim and Graham 2003)], \(E_a/R \) was set equal to 4000 K (Freiesleben Hansen and Pedersen 1977), and \(T \) is set equal to the constant temperature of 303 K throughout the experiment.

\[\begin{align*}
&\text{Figure 1: Variation of volume fractions for} \quad \text{cement pastes with } w/c = w/c = 0.425 \\
&\text{[adapted from (Acker 2001)]}
\end{align*}\]

\[\begin{align*}
&\text{where } L_\xi \text{ denotes the heat of hydration of the cement considered in the test sample. Inserting } \\
&\text{ \(\dot{\xi} = \dot{Q}/L_\xi \) (Equation (2)) into Equation (1) yields the} \\
&\text{evolution of the the chemical affinity as} \\
&\text{\(\tilde{A}(t) = \frac{\dot{Q}(t)}{L_\xi \exp[-E_a/(RT)]} [1/s]. \) (3)}
\end{align*}\]

2.2 Autogenous-shrinkage measurements

Figure 3 depicts test results for the autogenous shrinkage strain \(\epsilon^a \) obtained from a uniaxial test setup proposed by (Jensen and Freiesleben Hansen 1995). For all shrinkage experiments, the temperature in the specimen was kept constant at 19\(^\circ\)C. The circle in Figure 3 marks the time instant of the percolation threshold, \(t_{00} \), also referred to as setting time, i.e., the time instant when the solid phases in the material become interconnected. For \(t < t_0 \), the cement paste can shrink freely and, hence, the Le Chatelier contraction is converted directly into a macroscopically observable shrinkage strain. In Figure 3, \(t = 0 \) refers to the time instant of water addition, whereas \(\epsilon^a \) is set equal to zero at \(t = t_0 \). All specimens show a small expansion period right after setting which is explained by suction of bleed water back into the specimen. Figure 4 shows \(\epsilon^a \) as a function of the degree of hydration \(\xi \). Hereby, the history of \(\xi \) was obtained from numerical integration of Equation (1), using \(\tilde{A}(\xi) \) depicted in Figure 2 and \(T = 292 \text{ K} \).

\[\begin{align*}
&\text{Figure 2: Normalized chemical affinity } \tilde{A}(\xi) \text{ of} \\
&\text{OPC obtained from differential calorimetry}
\end{align*}\]

\[\begin{align*}
&\text{Figure 3: History of autogenous-shrinkage strain} \\
&\text{of OPC with a Blaine fineness of 480 m}^2/\text{kg}
\end{align*}\]

\[\begin{align*}
&\text{obtained from uniaxial experiments}
\end{align*}\]
Figure 4: Autogenous-shrinkage strain as a function of ξ for OPC with a Blaine fineness of $480 \text{ m}^2/\text{kg}$

2.3 Pore structure and capillary depression

In this subsection, a model for the prediction of the pore size distribution of hardening cement paste is developed, giving access to the capillary depression in the pore liquid. In the context of multiscale modeling, the so-obtained capillary depression will be considered as loading in the liquid phase (see Subsection 3.3).

In partially-saturated cement pastes, the pressure difference along the liquid-gas interface, $\Delta p \ [\text{Pa}]$, is given by the generalized Young-Laplace equation (Gaydos et al. 1996):

$$\Delta p = \frac{1}{R_1} + \frac{1}{R_2} + C_H \frac{1}{R_1 R_2}; \quad (4)$$

where $R_1 \ [\text{m}]$ and $R_2 \ [\text{m}]$ are the principal radii of curvature of the liquid-gas interface and $\gamma_{12} \ [\text{N/m}]$ is the interfacial tension between two non-solid, immiscible substances. $C_H \ [\text{Nm/m}]$ is the flexural stiffness. Since the radii R_1 and R_2 depend on the pore size, experimental techniques are required for determination of the pore-size distribution of hydrating cement. In the past, three different experimental techniques were developed:

- Mercury intrusion porosimetry (MIP) is characterized by the quasi-static injection of a pressurized, nonwetting fluid (mercury) into the cement paste. All evaporable pore water is removed from the pores prior to the test. MIP provides the intruded volume as a function of the applied mercury pressure. Based on the assumptions of (a) a cylindrical shape of the intruded pores and (b) a decreasing pore size with increasing distance from the outer surface of the specimen (accessibility, see case (i) in Figure 5), the intruded pore diameter at a certain mercury pressure and, furthermore, the relative pore-size distribution can be computed from the intruded volume – mercury pressure relation. Unfortunately, assumption (b) cannot be confirmed by microscopic techniques (Diamond 2000). A great portion of larger capillary pores is located inside the specimen and can only be reached by mercury through a chain of smaller pores of various size and shapes (see cases (ii) and (iii) in Figure 5). Accordingly,

![Figure 5: Accessibility of pores by MIP](image)

these larger pores can only be intruded by mercury after applying a pressure which admits the intrusion of the smallest pore size encountered on that chain. The pore diameter corresponding to this pressure is referred to as “threshold” diameter. When passing the mercury pressure corresponding to the “threshold” diameter during MIP experiments, a steep increase of the intruded volume is observed. Despite the mentioned limitation of MIP, qualitative information can be extracted from experimental results, such as, e.g., the progressive refinement of the pore structure in the course of hydration (Diamond 2000). Moreover, once the pressure corresponding to the “threshold” diameter is exceeded, large capillary pores inside the specimen become filled and MIP gives the correct distribution for pore sizes smaller than the “threshold” diameter. In cement pastes characterized by low water content at an advanced state of the hydration process, the liquid-gas interface is located in this pore-size range.

Specialization of Equation (4) for a spherical-cap shaped meniscus, neglecting the flexural stiffness ($C_H = 0$), yields an expression for the principal radius of the mercury-gas interface:

$$R_{Hg} = \frac{2\gamma_{Hg,\text{gas}}}{\Delta p_{Hg}}, \quad (5)$$

with $\gamma_{Hg,\text{gas}} = 0.474 \text{ N/m}$. Accounting for cylindrical pores and the different contact angles of mercury and water with cement, α_{Hg}...
and α_w, respectively, the principal radius of the
the corresponding water-gas interface can be esti-
mated as (see Figure 6)

$$R_w = R_{Hg} \frac{\cos \alpha_{Hg}}{\cos \alpha_w} = \frac{2\gamma_{Hg, gas}}{\Delta p_{Hg}} \frac{\cos \alpha_{Hg}}{\cos \alpha_w}. \tag{6}$$

Since α_w is negligibly small [$\alpha_w \approx 0^\circ$, see, e.g., (Hua et al. 1995)], $2R_w$ can be set equal to the
pore diameter at the location of the liquid-
gas interface. Based on the given value of R_w

![Figure 6: Principal radii and contact angles at (a) mercury-gas and (b) water-gas interfaces](image)

[Equation (6)] for an intruded mercury vol-
ume equal to the gaseous volume of unprepared
partially-saturated cement pastes, the capillary
depression in these cement pastes can be com-
puted from Equation (4) as

$$\Delta p_I = \frac{2\gamma_{Hg, gas}}{R_w}, \tag{7}$$

where $\gamma_{Hg, gas} = 0.073 \text{ N/m}.$

- Nuclear magnetic resonance (NMR) [see (Hor-
 nak 2003) for a detailed description] is a phe-
 nomenon observed when the nuclei of certain
 atoms are immersed in a static magnetic field
 while exposing them to a second oscillating
 magnetic field. Under such magnetic-field con-
 ditions, some nuclei, including the protons of
 hydrogen in a water molecule, experience this
 phenomenon. One NMR measuring technique
 for the estimation of the pore size distribution
 exploits the decreasing freezing temperature of
 water embedded in capillary pores. Hereby, the
temperature of the cement specimen is contin-
uously reduced, while the NMR signal, which is
associated with the liquid part of the water,
is recorded. Finally, the known relationships
between the freezing point depression and the
pore size provide access to the pore-size dis-
tribution (Milia et al. 1998). Respective pore
size distributions for a cement paste character-
ized by a w/c-ratio of 0.43 and a curing time of
122 d are reported in (Jehng et al. 1996).

- Image analysis of scanning-electron-
 microscopy (SEM) micrographs is charac-
 terized by embedding thin slices of cement
 paste in low viscosity epoxy resin, polishing
 the surface, and detecting the epoxy filled pores
 in the backscatter electron images (Diamond
 and Leeman 1995). Coverage of these pores
 is based on the different gray level of epoxy
 resin and the solid phase. The lower limit of
detectable pores is bound to the SEM magni-
 fication and resolution of the micrographs. In
(Diamond and Leeman 1995) pore sizes down to
8×10^{-7} m are reported. Additionally, a
comparison of pore-size distributions obtained
from SEM micrographs and the respective
distributions from MIP measurements is
given in (Diamond and Leeman 1995). The
comparison clearly shows the aforementioned
underestimation of the portion of larger pore
sizes when employing MIP [see Figure 7(b)].

Figure 7(a) shows typical data obtained from MIP
and image analysis of vacuum mixed cement pastes,
characterized by no initial porosity, i.e., $f_g(\xi = 0) =
0$. Taking into account that MIP measurements pro-
vide reliable results for small pore sizes and image
analysis is limited to greater pore-size ranges, a
line approximating the respective ranges of the pore
size is introduced [see Figure 7(b)]. Based on ex-
perimental data of cement pastes characterized by
various values of the w/c-ratio and ξ (Cook
and Hover 1999; Diamond and Leeman 1995), the slope
of the line was identified as $k = 0.2/\log_{10}(3 \times
10^{-7}/1 \times 10^{-8}) = 0.135$, starting from a pore di-
meter of 2.5×10^{-9} m. According to (Bye 1999),
the latter corresponds to the smallest pore size, at
which menisci can form. The linear approximation
of the cumulative pore-size distribution allows to
determine the pore radius at the liquid-gas interface
for a given volume fraction of the gaseous phase
$f_g(\xi, w/c)$ [see Figure 7(b)]. For the so-obtained
value of $2R_w(f_g)$, the capillary depression of the
pore liquid can be computed from Equation (7).

This approach was assessed by four different data
sets reported in the open literature (Acker 2001;
Hua et al. 1995; Cook and Hover 1999; Jehng et al.
1996). Figure 8 shows the comparison of these test
data and the model prediction based on $k = 0.135$.
The model result for Δp_I as a function of the
w/c-ratio and ξ were obtained from the calculation
scheme outlined in Table 1.

3 CONTINUUM MICROMECHANICAL
MODEL
The framework of continuum micromechanics is
proposed to predict autogenous-shrinkage strains at
the macroscale. After identification of the material
phases at the different scales of observation, the elastic properties and, finally, the autogenous-shrinkage deformations will be upscaling.

3.1 Representation

First, the different phases in a representative volume element (RVE) need to be identified. A phase in terms of continuum micromechanics constitutes a material domain with constant material properties at a given length scale. In this work, three length scales are considered. The phases at the different length scales are identified as follows:

- At the cement-paste scale, water, yet unhydrated (anhydrous) cement, reaction products, and capillary pores, either filled with liquid or gas, are forming a polycrystal.
- At the aggregate scale, aggregates are represented as spherical inclusions in the cement paste.
- Finally, at the macroscale, concrete is treated as a continuum.

The three length scales obey the separability of scale condition, i.e., they are separated one from another by at least one order of magnitude.

3.1.1 The cement-paste scale

The volume fractions \(f_i \) at the cement-paste scale are defined as functions of the \(w/c \)-ratio and the degree of hydration \(\xi \) (Acker 2001) (see Figure 1):

\[
\begin{align*}
 f_c(\xi) &= (1 - \xi) \times f_c(\xi = 0), \\
 f_h(\xi) &= 2.16 \times [f_c(\xi = 0) - f_c(\xi)], \\
 f_g(\xi) &= 0.18 \times [f_c(\xi = 0) - f_c(\xi)] + f_{g0}, \\
 f_l(\xi) &= f_c(\xi = 0) \times w/c \times \rho_c/\rho_t \\
 &- 1.34 \times [f_c(\xi = 0) - f_c(\xi)] \geq 0, \\
\end{align*}
\]

with \(f_c(\xi) + f_h(\xi) + f_g(\xi) + f_l(\xi) = 1 \). \(f_c, f_h, f_g \) and \(f_l \) denote the volume fractions of cement, hydrates, the gaseous phase, and the liquid phase, re-

![Figure 8: Capillary depression of the pore liquid as a function of the \(w/c \)-ratio and \(\xi \) (Acker 2001)](image)

Table 1: Determination of \(\Delta p_l \) for specific values of the \(w/c \)-ratio and \(\xi \)

<table>
<thead>
<tr>
<th>(\xi) [-]</th>
<th>(w/c)=0.2</th>
<th>(w/c)=0.3</th>
<th>(w/c)=0.4</th>
<th>(w/c)=0.5</th>
<th>(w/c)=0.6</th>
<th>(w/c)=0.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
</tr>
</tbody>
</table>

1. Determination of \(f_c \) and \(f_h \) on the basis of the linear relations given in Figure 1 (see also Subsection 3.1).

2. Use of linear relationship in Figure 7(b), defined by the computed values for \(f_g + f_l \) at \(2R_w = 2.5 \times 10^{-3} \) m and the slope \(k = 0.135 \) = const., for determination of \(2R_w,_{max} \) and \(2R_w(f_g) \) from

\[
 k = \log_{10}\left(\frac{2R_w(f_g)}{2R_w,_{max}}\right) - \log_{10}\left(\frac{2R_w}{(2.5 \times 10^{-3})}\right) \\
 \frac{1}{2R_w(f_g)} = \frac{1}{2R_w} + k \\
 \frac{1}{2R_w} = 10^k - \frac{1}{2R_w,_{max}} \\
 \frac{1}{2R_w(f_g)} = \frac{1}{2R_w} + k \\
 \frac{1}{2R_w} = 10^k - \frac{1}{2R_w,_{max}} \\
\]

3. Determination of \(\Delta p_l \) from \(2R_w(f_g) \) using Equation (7)
spectively. In Equation (8), \(\rho_c/\rho_l\) is the ratio of cement to liquid density, with \(\rho_c/\rho_l = 3.15\) (Acker 2001), the numbers 2.16, 0.18, and 1.34 were computed from \((1 + w/c \times \rho_c/\rho_l) \times (100\% - 7.7\%)\), \((1 + w/c \times \rho_c/\rho_l) \times 7.7\%\), and \(w/c \times \rho_c/\rho_l\), where 7.7\% represents the volumetric imbalance in the course of hydration (Le Chatelier contraction) and \(w/c = 0.425\) (Acker 2001). \(fi\) denotes the volume fraction of the gaseous phase introduced during the mixing process (entrained air). Figure 1 shows the evolution of the volume fractions given in Equations (8) as a function of \(\xi\). Depending on the \(w/c\)-ratio, three cases are distinguished:

- Cement pastes characterized by \(w/c = \overline{w/c} = 0.425\) hydrate completely, i.e., all cement clinker is consumed. No water is present at \(\xi = 1\) (see Figure 1).
- Pastes with \(w/c < \overline{w/c}\) cannot hydrate completely. The chemical reaction stops by the time all liquid has been consumed. Accordingly, \(\xi\) remains smaller than one.
- Pastes characterized by \(w/c > \overline{w/c}\) hydrate completely. The larger the \(w/c\)-ratio, the more liquid is present at \(\xi = 1\).

3.1.2 The aggregate scale

The volume fractions \(f_a\) at the aggregate scale are defined as follows:

- \(f_p\) denotes the volume fraction of the cement paste.
- \(f_a\) is the volume fraction of aggregates.

The sum of \(f_p\) and \(f_a\) must be equal to 1.

3.2 Localization & homogenization of elastic properties

For determination of macroscopic elastic properties of early-age concrete, a recently published homogenization scheme by (Bernard et al. 2003) is employed. Whereas four scales of observation below the macroscale were introduced in (Bernard et al. 2003), requiring four homogenization steps for the upscale of elastic properties, only two homogenization steps are required when using the material representation introduced in Subsection 3.1. Similar to (Bernard et al. 2003), homogenization at the cement-paste scale is performed using the generalized self consistent scheme (Hershey 1954; Kröner 1958), whereas the Mori-Tanaka scheme is used for homogenization of the cement paste / aggregate compound, finally providing the macroscopic elastic properties. The intrinsic properties of the different material phases employed in this paper are listed in Table 2.

<table>
<thead>
<tr>
<th>phase</th>
<th>cement paste scale</th>
<th>homogenization of autogenous-shrinkage deformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>anhydrous cement</td>
<td>(k = 117)</td>
<td>(\mu = 54)</td>
</tr>
<tr>
<td>liquid phase</td>
<td>(k = 2.3)</td>
<td>(\mu = 0)</td>
</tr>
<tr>
<td>gaseous phase</td>
<td>(k = 0)</td>
<td>(\mu = 0)</td>
</tr>
<tr>
<td>hydrates</td>
<td>(k = 14)</td>
<td>(\mu = 9)</td>
</tr>
</tbody>
</table>

Table 2: Bulk modulus \(k\) and shear modulus \(\mu\) for the single phases [average values taken from (Acker 2001)].

3.3 Homogenization of autogenous-shrinkage deformation

Homogenization of elastic properties (Subsection 3.2) is characterized by the assumption that each hydrate formed in the course of the hydration process contributes equally to the macroscopic elasticity tensor \(C(\xi)\) by its intrinsic stiffness properties (see Table 2). At the macroscopic scale, the stress-free formation of hydrates [the hydrates are not loaded when they are formed (Bažant 1979)] is standardly considered by an infinitesimal stress-strain law [see, e.g., (Sercombe et al. 2000; Lackner et al. 2002)], reading

\[
d\sigma = C(\xi) : d\varepsilon ,
\]

where \(C(\xi) = C_{\text{hom}}(\xi)\) is the elasticity tensor of the material at the macroscopic scale of observation. At this scale, autogenous shrinkage is considered by extending Equation (9) to

\[
d\sigma = C(\xi) : \left[d\varepsilon - d\varepsilon^s(\xi) \right],
\]

where \(e^s(\xi)\) represents the yet unknown macroscopic autogenous-shrinkage strain tensor corresponding to a situation free of macrostress. Accordingly, no macrostress is applied in the subsequent determination of \(e^s(\xi)\) by means of homogenization. However, the hydrating cement at finer scales of observation becomes loaded, resulting from the capillary depression of the liquid phase. Similar to the infinitesimal approach at the macroscopic scale of observation [see Equations (9) and (10)], newly-formed hydrates do not affect the autogenous-shrinkage strains developed so far at finer scales of observation. Within the framework of continuum micromechanics, this situation is accounted for by an infinitesimal approach, continuously introducing additional hydrate phases, \(df_h\) (see Figure 9). Each hydrate phase is loaded exclusively by changes in the capillary depression, \(d(\Delta p_h)\), occurring after formation of the respective phase. In the context of this infinitesimal approach, the stress-strain law in the liquid phase \(V_l\) at the cement-paste scale takes the form

\[
V_l : d\sigma = C_l : (d\varepsilon^0 + d\varepsilon_l - d\varepsilon_l) ,
\]
Eshelby (1957) showed that in case of an ellipsoidal
inclusion \(V_i \), \(S_i \) and, hence, \(\varepsilon_i \) is constant in \(V_i \). Consideration of Equation (13) in the stress-strain
laws (11) and (12),
\[
V_i :
\begin{align*}
 C_i & : [d\varepsilon^0 + S_i : d\varepsilon_i^* - d\varepsilon_i] \\
 C_{hom}^I : [d\varepsilon^0 + (S_i - I) : d\varepsilon_i^*] \\
\end{align*}
\]
yields an expression for \(d\varepsilon_i^* \) in the form:
\[
d\varepsilon_i^* = \frac{[C_i - C_{hom}^I] : [S_i + C_{hom}^I]^{-1}}{[C_i - C_{hom}^I]} : [d\varepsilon^0 + (S_i - I) : d\varepsilon_i^*].
\]

The infinitesimal stress-strain law in the remaining
phases \(r \), with \(r \in \{c, g, h\} \), is given as
\[
V_r : d\sigma = C_r : (d\varepsilon^0 + d\varepsilon_r).
\]

Consideration of \(d\varepsilon_r = S_r : d\varepsilon_r^* \) in Equation (16)
yields
\[
d\varepsilon_r^* = \frac{[(C_r - C_{hom}^I) : S_r + C_{hom}^I]^{-1}}{[C_r - C_{hom}^I]} : [d\varepsilon^0 + (S_r - I) : d\varepsilon_r^*].
\]

Based on \(\langle \sigma \rangle_r = 0 \), which follows from \(\langle \sigma \rangle_r \) \(V = 0 \)
in the situation free of macrostress, one gets
\[
V : 0 = \int_{V} C_{hom}^I : [d\varepsilon^0 + (S_r - I) : d\varepsilon_r^*] \\
+ \int_{V} C_{hom}^I : [d\varepsilon^0 + (S_g - I) : d\varepsilon_g^*] \\
+ \int_{V} C_{hom}^I : [d\varepsilon^0 + (S_h - I) : d\varepsilon_h^*] df_h.
\]

Considering Equations (15) and (17) in Equation
(18), the constant part of the strain tensor \(d\varepsilon^0 \)
is obtained as a function of \(d\varepsilon_i \); the form
\[
d\varepsilon^0 = -A^{-1} : \Gamma_i : d\varepsilon_i,
\]

where the fourth-order tensors \(A \) and \(\Gamma_i \) contain the
volume fractions \(f_i \), the Eshelby tensors \(S_i \),
and the elasticity tensors of the different phases as
well as the homogenized material tensor (see Appendix).
The infinitesimal macroscopic total strain tensor \(d\varepsilon_{hom}^0 \) for an infinitesimal increase of the
hydrate phase, \(df_h \), is obtained from the volume average of the strain field \(d\varepsilon^0 + d\varepsilon \), reading
\[
d\varepsilon_{hom}^0 = \int_V (d\varepsilon^0 + d\varepsilon) dV =
\begin{align*}
 & \int_V d\varepsilon^0 + \int_V d\varepsilon \Psi_i V_i \\
+ & \int_V f_i (d\varepsilon_i) V_i + \int_V f_g (d\varepsilon_g) V_g + \int_V f_h (d\varepsilon_h) V_h \\
= & \int_V d\varepsilon^0 + \int_V f_i S_i : d\varepsilon_i^* + \int_V f_g S_g : d\varepsilon_g^* \\
+ & \int_V f_h S_h : d\varepsilon_h^* \\
= & (I + \Xi) : d\varepsilon^0 + \Theta_i : d\varepsilon_i,
\end{align*}
\]

where \(f_r \) are replaced by \(C_{hom}^r \), constant eigen-
strains \(d\varepsilon_i^* \) are introduced in the inclusions
reading
\[
d\sigma = C_{hom}^I : (d\varepsilon^0 + d\varepsilon_i - d\varepsilon_i^* - d\varepsilon_i),
\]

where the strain tensor is composed of a constant part \(d\varepsilon^0 \) and a variable part \(d\varepsilon_i \). In Equation (11),
the strain tensor \(d\varepsilon_i \) is introduced in order to account
for the applied load in consequence of capillary de-
pression, with \(d\varepsilon_i = -1d(\Delta P_h)/(3\beta_h) \), where \(\Delta P_h \)
is obtained from the degree of hydration as outlined in
Table 1. Within the self-consistent scheme, the mate-
rial tensor \(C_i \) for the liquid phase in Equation (11)
is replaced by the homogenized material tensor \(C_{hom}^I \),

\[
\sum_r f_r(\xi + \xi) = 1 \text{ with } f_r(\xi + \xi) = f_r(\xi) + df_r(\xi).
\]

Figure 9: Change of phase composition resulting from
infinitesimal change of hydration products, \(df_h \), allowing to account for stress-
free formation of hydrates at the cement-paste
scale

Figure 10: Equivalent inclusion: material tensors
\(C_r \) are replaced by \(C_{hom}^r \), constant eigen-
strains \(d\varepsilon_i^* \) are introduced in the inclusions

\[
\begin{align*}
V_i : & \quad C_i : [d\varepsilon^0 + S_i : d\varepsilon_i^* - d\varepsilon_i] \\
& \quad = C_{hom}^I : [d\varepsilon^0 + (S_i - I) : d\varepsilon_i^*],
\end{align*}
\]
where the expressions for Ξ and Θ_I are given in the Appendix. Considering Equation (19) and $d\varepsilon_t = -1d(\Delta p_t)/(3k_I)$ in Equation (20), one gets

$$d\varepsilon^I_{hom} = [(1 + \Xi)A^{-1}: \Gamma_I - \Theta_I] : 1d(\Delta p_t)/(3k_I). \tag{21}$$

![Figure 11: Comparison of results obtained from continuum-micromechanical model with experimental data](image)

Accounting for the isotropic character of the capillary depression in the liquid phase and, hence, of the prescribed strain $d\varepsilon^I_{hom}$, Equation (21) can be written in volumetric form as

$$d\varepsilon^I_{hom} = [(1 + \Xi)A^{-1}: \Gamma_I - \Theta_I] : 1d(\Delta p_t)/k_I. \tag{22}$$

Ξ, Λ, Γ_I, and Θ_I are given in the Appendix and $S = 1/3(1 + \varepsilon^I_{hom})/(1 - \varepsilon^I_{hom})$ (see Appendix). Homogenization of autogenous shrinkage strains at the aggregate scale is performed by prescribing shrinkage strains $d\varepsilon^I_{hom}$ in the cement-paste phase following the procedure outlined in (Pichler et al. 2003).

4 COMPARISON WITH EXPERIMENTAL RESULTS

The multi-scale model presented in the previous section was employed for re-analysis of one-dimensional autogenous-shrinkage experiments conducted at Vienna University of Technology. In the respective testing program, three types of cement characterized by various Blaine fineness with varying w/c-ratios were considered. Figure 3 shows the obtained histories for the uniaxial strain. Combination of these data with the chemical affinity $A(\xi)$ computed in Subsection 2.1 gives access to the autogenous-shrinkage strain as a function of ξ. From comparison of the so-obtained material function $\varepsilon^I(\xi)$ with the prediction of the multi-scale model $\varepsilon^I_{hom}(\xi)/3$, the following conclusions can be drawn: Whereas the described homogenization approach is capable to qualitatively describe autogenous shrinkage of cement-based materials, the magnitude of autogenous-shrinkage strains is underestimated. This may be explained by the underlying elastic behavior of the single constituents assumed in the employed homogenization approach. Experimental results [see, e.g., (Acker 2001)], as well as theoretical considerations [see, e.g., (Bažant et al. 1997)] suggest to extend the proposed homogenization approach to creep. Future work will include the identification of the governing creep process in the hydrate phase. The proposed infinitesimal homogenization scheme will allow to incorporate these results, accounting for the different load histories of hydrate phases formed at different instants of time.

5 CONCLUDING REMARKS AND OUTLOOK

Starting with the identification of the pore structure, a linear relationship between the accumulative pore space and the pore diameter in logarithmic scale was introduced [similar to (Koenders and van Breugel 1998)]. Surprisingly, this rather simple approximation defining the pore size distribution and, hence, the capillary depression at various extents of the hydration process showed good agreement with experimental data, accounting for the large scatter present in such experiments. Even though an infinitesimal homogenization approach was chosen for upscaling autogenous-shrinkage deformations, accounting for the stress-free formation of new hydrates at finer scales of observation, the experimental results obtained from uniaxial shrinkage tests were still underestimated. This was explained by the underlying assumption of linear elastic material behavior of the different material phases. Future work will be devoted to the extension of the proposed homogenization scheme to finer-scale creep of hydrates; respective experiments are in progress.

Before the obtained material function for autogenous shrinkage may be used in the context of macroscopic analyses accounting for chemomechanical couplings (Ulmann and Coussy 1996; Hellwich et al. 1999; Lackner et al. 2002; Pichler et al. 2003), verification of the second homogenization step from the aggregate scale to the macroscale is required. For this purpose, the uniaxial autogenous-shrinkage experiments conducted with cement pastes will be extended to mortar.

Hence, finally the prediction of the influence of autogenous shrinkage on the response of real-life structures will become possible. The optimization of concrete mixtures for specific applications, aiming at a reduction of the deformations caused by autogenous-shrinkage represents the far-goal of this research.
ACKNOWLEDGMENT
The authors are indebted to E. SCHÖN and R. FRIEDLE (LAFARGE Centre Technique Europe Central GmbH, Mannersdorf, Austria) for providing the cements employed in the experiments and for helpful comments on the experimental program. The authors thank R.A. COOK and K.C. HOVER for communication of data of MIP experiments (Cook and Hover 1999). Financial support by the Austrian Science Fund (FWF) via project P15912-N07 is gratefully acknowledged.

APPENDIX
For the sake of clarity of the description of the micromechanical model, the following symbols were introduced:

\[
\begin{align*}
\Lambda &= 1 + f_t(S_t - 1) [(k_l - k_{l_{\text{hom}}})S + k_{l_{\text{hom}}} - k_l]^{-1} + f_s(S_s - 1) [(k_c - k_{c_{\text{hom}}})S + k_{c_{\text{hom}}} - k_c]^{-1} + f_g(S_g - 1) [(k_g - k_{g_{\text{hom}}})S + k_{g_{\text{hom}}} - k_g]^{-1} + f_h(S_h - 1) [(k_h - k_{h_{\text{hom}}})S + k_{h_{\text{hom}}} - k_h]^{-1} \\
\Xi &= f_t S_t [(k_l - k_{l_{\text{hom}}})S + k_{l_{\text{hom}}} - k_l]^{-1} + f_s S_s [(k_c - k_{c_{\text{hom}}})S + k_{c_{\text{hom}}} - k_c]^{-1} + f_g S_g [(k_g - k_{g_{\text{hom}}})S + k_{g_{\text{hom}}} - k_g]^{-1} + f_h S_h [(k_h - k_{h_{\text{hom}}})S + k_{h_{\text{hom}}} - k_h]^{-1} \\
\Theta_t &= f_t S_t [(k_l - k_{l_{\text{hom}}})S + k_{l_{\text{hom}}} - k_l]^{-1} k_l \\
\Gamma_t &= f_t (S_t - 1) [(k_l - k_{l_{\text{hom}}})S + k_{l_{\text{hom}}} - k_l]^{-1} \\
\end{align*}
\]

In Equations (27) to (30), \(S \) denotes the remaining part of the Eshelby tensor \(S \), specialized for spherical inclusions (see, e.g., (Nemat-Nasser and Hori 1993))

\[
S_{ijkl} = \frac{5\nu_{\text{hom}}^l - 1}{15(1 - \nu_{\text{hom}}^l)} \delta_{ij}\delta_{kl} + \frac{4 - 5\nu_{\text{hom}}^l}{15(1 - \nu_{\text{hom}}^l)} (\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}),
\]
giving \(S = S_{ii} = 2S_{ij} = 1/3 (1 + \nu_{\text{hom}}^l) / (1 - \nu_{\text{hom}}^l) \), where \(\nu_{\text{hom}}^l \) denotes Poisson’s ratio of the homogenized material.

REFERENCES

