
1 INTRODUCTION 

Negative stiffness due to softening is a major 
problem in computational modeling of concrete 
fracture. It may lead to numerical instability and 
divergence of the incremental-iterative procedure. 
This holds especially for the analysis of medium- 
and large-scale structures. Cracks in structures are 
accompanied by dips, ripples, jumps and snap-
backs in the load-displacement response. This 
behavior is typical of un-reinforced structures (e.g. 
facades) where the amount of elastic energy stored 
in the structure is large compared to the fracture 
energy consumed in crack or crush propagation, 
but also of reinforced structures (e.g. tension-pull 
specimens or RC beams) where each primary crack 
gives a release or drop followed by a new 
ascending portion in the load-displacement curve. 
To try and solve such problems, users have to 
resort to arc-length or indirect control schemes, 
which are cumbersome and often inadequate when 
the peaks are irregular or the snap-backs sharp. 

As an alternative, this paper presents a 
sequentially linear saw-tooth continuum model, 
which captures the nonlinear response via a series 
of linear steps. The softening stress-strain curve 
with negative slope is replaced by a saw-tooth 
diagram of positive slopes, while the incremental-
iterative procedure is replaced by a scaled 
sequentially linear procedure (Rots, 2001). After a 
linear analysis, the critical element, i.e. the element 
for which the stress is closest to the current peak in 
the saw-tooth diagram, is traced. Next, the stiffness 
of that element is reduced and the process is 
repeated. The sequence of critical states governs 
the global load-displacement response, while the 
elements with reduced stiffness reveal the softened 
areas. The advantage is that there is no such thing 
as ‘negative incremental stiffness’, as the secant 
linear (saw-tooth) stiffness is always positive. The 
analysis always ‘converges’. Mesh-size objectivity 
is achieved by adjusting both the peaks and the 
ultimate strain of the saw-tooth diagram to the size 
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of the finite elements, keeping the fracture energy 
invariant (Rots & Invernizzi, 2003). 

The paper starts with a summary of the 
description of the model. Next, the procedure to 
achieve mesh-size objectivity is reviewed both with 
respect to the mesh size and the number of saw-
teeth, considering a notched beam in bending. 

Subsequently, the case of large-scale dog-bone 
specimens in direct tension is considered. It will be 
demonstrated that the sequentially linear model is 
capable of automatically providing the snap-back 
response. Bifurcations in these symmetric fracture 
specimens are circumvented in a natural manner as 
the scaling procedure always picks the ‘lowest’ 
equilibrium solution associated with the ‘most 
critical’ element, even for numerical round-off in a 
symmetric case. 

Finally, the model is improved to take into 
account the intrinsic anisotropy due to crack 
nucleation and softening. This is a crucial aspect in 
order to describe reinforced structures, in which the 
reinforcement (ties) is balanced against 
compressive struts that develop parallel to the 
crack directions. 

Two different reinforced structures are 
considered, namely the reinforced tension-pull 
specimen, and a slender reinforced concrete beam. 

In both cases, the response shows local peaks 
and snap-backs associated with the subsequent 
development of primary cracks starting from the 
rebar. Comparisons between incremental-iterative 
solutions and sequentially linear solutions are given 
and the behavior is interpreted in terms of crack 
spacing and crack width. 

2 ISOTROPIC SAW-TOOTH SOFTENING 

2.1 Global sequentially linear procedure 

The basic idea is to look for the equilibrium 
configuration via secant approximations with 
restarts from the origin. The softening diagram is 
approximated by a saw-tooth curve and linear 
analyses are carried out sequentially (Rots 2001). 
This is similar to procedures for fracture analysis 
on lattices (Schlangen & van Mier 1992, Beranek 
& Hobbelman 1995), where little beam elements 
are removed rather than continuum elements 
reduced.  

The global procedure is as follows. The structure 
is discretized using standard elastic continuum 
elements with assigned tensile strength. 

 Subsequently, the following steps are carried out: 

• Add the external load as a unit load. 
• Perform a linear elastic analysis. 
• Extract the critical element from the results. 

The critical element is the element for which 
the principal tensile stress is closest to its 
current strength. This principal tensile stress 
criterion is widely accepted in mode-I fracture 
mechanics of quasi-brittle materials. 

• Calculate the critical global load as the unit 
load times the current strength divided by stress 
of the critical element. 

• Extract also a corresponding global 
displacement measure, so that later an overall 
load-displacement curve can be constructed. 

• Reduce the stiffness and strength, i.e. Young’s 
modulus E and tensile strength ft of the critical 
element, according to a saw-tooth tensile 
softening stress strain curve as described in the 
following. 

• Repeat the previous steps for the new 
configuration, i.e. re-run a linear analysis for 
the structure in which E and ft of the previous 
critical element are reduced. 

• ……………. Repeat again, etc. ……. 

2.2 Saw-tooth softening model via stepwise 
reduction of Young’s modulus 

The way in which the stiffness and strength of the 
critical elements are progressively reduced 
constitutes the essence of the model. A very rough 
method would be to reduce E to zero immediately 
after the first, initial strength is reached. This 
elastic perfectly brittle approach, however, is likely 
to be mesh dependent as it will not yield the correct 
energy consumption upon mesh refinement (Bažant 
& Cedolin, 1979). In this study, the consecutive 
strength and stiffness reduction is based upon the 
concept of tensile strain softening, which is fairly 
accepted in the field of fracture mechanics of 
concrete (Bažant & Oh, 1983).  

The tensile softening stress-strain curve is 
defined by Young’s modulus E, the tensile strength 
ft , the shape of the diagram, e.g. a linear or 
exponential diagram, and the area under the 
diagram. The area under the diagram represents the 
fracture energy Gf divided by the crack band width 
h, which is a discretisation parameter associated 
with the size, orientation and integration scheme of 
the finite element. Although there is some size-
dependence, the fracture energy can be considered 
to be a material property. This softening model 
usually governs nonlinear constitutive behavior in 
an incremental-iterative strategy. Please note that 



here we adopt the curve only as a 'mother' or 
envelope curve that determines the consecutive 
strength reduction in sequentially linear analysis. In 
the present study, attention is confined to a linear 
softening diagram, but extension to any other shape 
of the diagram is possible. For a linear softening 
diagram, the ultimate strain εu of the diagram reads: 
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In a sequentially linear strategy, the softening 
diagram can be imitated by consecutively reducing 
Young’s modulus as well as the strength. Young’s 
modulus can e.g. be reduced according to: 
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with i denoting the current stage in the saw-tooth 
diagram, i-1 denoting the previous stage in the saw-
tooth diagram and a being a constant. When a is 
taken as 2, Young’s modulus of a critical element 
is reduced by a factor 2 compared to the previous 
state. N denotes the amount of reductions that is 
applied in total for an element. When an element 
has been critical N times, it is removed completely 
in the next step.  

The reduced strength fti corresponding to the 
reduced Young’s modulus Ei is taken in accordance 
with the envelope softening stress-strain curve: 
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being the tangent to the tensile stress-strain 
softening curve. Note that this is the softening 
curve in terms of stress versus total strain, i.e. the 
sum of elastic strain and crack strain of an 
imagined cracked continuum.  

The model always provides a solution: the secant 
saw-tooth stiffness is always positive, so that ill-
conditioning or divergence does not appear in 
sequentially linear analysis. An advantage of the 
model is that the regular notions of fracture 

mechanics, like the principal tensile stress criterion, 
the envelope strength and fracture energy are 
maintained which helps in reaching realistic energy 
consumption and toughness as observed in 
experiments. 
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Figure 1. Saw-tooth softening approximation scheme, the 
underestimated area is shown in gray. 

2.3 Mesh regularization 

The concept of smeared crack basically assumes 
that the localized crack is distributed over a 
continuum finite element, provided that the crack 
opening δ is equal to the element strain ε times the 
so called crack band width h (for lower-order 
elements often equal to the element size). In order 
to achieve mesh-size objectivity, the ultimate strain 
εu in smeared crack models is usually adjusted to h 
according to Eq. (1) for linear softening, Bažant & 
Oh (1993). In previous works (Rots & Invernizzi, 
2003), it appeared that such adjustment is not 
sufficient to guarantee mesh-size objectivity for the 
case of the sequentially linear model. In fact, due to 
the saw-tooth approximation of the softening 
curve, the dissipated energy is always less than the 
theoretical one, i.e. the one referring to the smooth 
'mother' softening curve. Moreover, the 
underestimation of the dissipated energy depends 
not only on the number of teeth, but also on the 
mesh size, since the ultimate strain depends on the 
crack band width. When finer meshes are 
considered, i.e. for a small value of h, the slope of 
the linear softening branch decreases and the area 
underestimation becomes more important.  

In order to provide a correct regularization 
procedure and achieve mesh independence, it is 
first of all necessary to provide a useful expression 
for the actual area beneath the saw-tooth curve. 



Referring to the scheme in Fig. 1, the formula is the 
following: 
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where the index i refers to the triangular 
decomposition of the whole area. 

The parameter bi varies depending on the saw-
tooth approximation method. In the case of 
stepwise Young's modulus reduction, it is the 
following: 
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The basic idea, thus, is to update the tensile 
strength, or the ultimate strain, or even both, in 
order to keep the dissipated energy invariant. In 
other words, the area A*, under the updated 
constitutive law, becomes invariant and equal to: 

h
G
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Eq. 8 shows clearly that not only the number of 
teeth, but also the mesh size (i.e. the crack band 
width h) comes into play. 
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Figure 2. Regularization scheme with both the ultimate strain 
and the tensile strength update, keeping constant the softening 
modulus D. 

Although in principle different approaches can 
be followed, it has been proved that the most 
effective technique is to update both the tensile 
strength and the ultimate strain. Therefore, the 
updated strength ft

* and the ultimate strain εt
* will 

be determined as follow: 
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where k can be determined numerically in such a 
way that the new area satisfies Eq. 9 (see Fig. 2). 
After some analytical manipulation of Eq. 8, a 
closed form expression for the parameter k can be 
obtained: 
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2.4 Notched beam 

A symmetric notched beam of total length 500 mm, 
span 450 mm, height 100mm, thickness 50 mm and 
notch depth 10 mm was selected for analysis. The 
distance between the loading points in the 
symmetric four-point loading scheme is 150 mm. 
Five different meshes were used (Fig. 3). These 
meshes have a symmetric center crack band of 20 
mm, 10 mm, 5 mm, 2.5 mm and 1.25 mm width 
respectively. Four-node linear elements were used.  

 
Figure 3. Meshes considered in the analysis, respectively 
referred in the following as very coarse, coarse, medium, fine 
and very fine. 



Load displacement curves are shown in Fig. 4, 
for each mesh when a ten teeth approximation is 
adopted. It is evident that the sequentially linear 
results are in good agreement with the nonlinear 
analysis regardless the mesh size. When a larger 
number of teeth is chosen, the resemblance 
becomes even better. A detailed analysis can be 
found in Rots & Invernizzi (2003). 
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Figure 4. Load displacement diagrams, five different meshes, 
ten teeth. All the curves are coherent and closely resemble the 
reference peak load (continuous line). 

3 LARGE-SCALE DOG-BONE SPECIMENS 
IN DIRECT TENSION 

The case study concern direct tensile tests carried 
out on large-scale dog-bone concrete specimens 
(van Vliet, 2000). In order to prove the ability of 
the saw tooth model to capture the structural snap-
back, we considered the largest size among the 
entire series, denominated as type F (D=1600 mm; 
r=1160 mm). Experimental load-displacement 
curves, shown in Figure 5, were obtained under 
indirect displacement control, adopting a gauge 
length that was sufficiently short. The mechanical 
parameters obtained by the test were adopted for 
the numerical analysis, i.e. a nominal tensile 
strength ft=2.31 N/mm2 and a fracture energy 
Gf=0.1411 N/mm. A linear softening tail was 
assumed. 

3.1 Smeared crack nonlinear analysis 

Prior to the sequentially linear analysis, a standard 
nonlinear analysis was performed. Linear 
isoparametric plane stress elements were used to 
discretize both the plain concrete and the steel 
platens. The two element rows at top and bottom of 
Figure 6a represent the steel platens. 

 

 
Figure 5. Scheme of the dog-bone specimen and experimental 
load-displacement curves (van Vliet, 2000). 

The boundary condition was carefully taken into 
account modeling the central hinges at top and 
bottom used to de-constrain the structure. The 
influence of the boundary condition on post peak 
behavior is crucial (van Vliet, 2000), both from an 
experimental and numerical point of view. The 
outcome of the numerical simulation depends on 
the control parameter. If the simulation is 
performed under load control, only the pre-peak 
branch of the load displacement curve can be 
traced. If the simulation is carried out with 
displacement control, on the other hand, the load 
displacement curve can be traced a bit further, till 
the snap-back phenomenon take place. After that 
the analysis can be continued, but there is a sudden 
jump on the lower equilibrium path (i.e. snap-
back). The third possibility is to adopt an indirect 
load control, e.g. with the arc-length methods 
(Crisfield 1984, de Borst 1987). In this case, it is 
finally possible to obtain the whole load 
displacement curve. 

 ε1 

 
 (a) (b) 
Figure 6. Mesh of the dog bone specimen (a); deformed mesh 
and principal tensile strain contour referring to the last 
sequentially linear step (b). 

Unfortunately, although in principle it is possible 
to get the solution, the choice of load steps or of 



the arc-length options and indirect control 
parameters, is usually cumbersome, and difficulties 
increases with increasing the size (i.e. the 
brittleness) of the structure. 

Another problem with the nonlinear analysis is 
the bifurcation. In fact, as soon as the peak load is 
reached, due to the symmetry of the structure, two 
different equilibrium paths arise. The symmetric 
path is unstable, and is not encountered 
experimentally, while the non-symmetric stable 
path is characterized by crack propagation from 
one side only of the dog-bone specimen. 
Consequently, a negative pivot arises, in the LDU 
scheme, due to the bifurcation of equilibrium, and 
it is necessary to introduce a perturbation of 
symmetry (geometrical or material) in the model, 
in order to get a solution. 

3.2 Isotropic sequentially linear analysis 

The same mesh and the same mechanical 
parameters were adopted for the saw tooth analysis 
(Figure 6a). The analysis was carried out with a ten 
teeth approximation. The load displacement curve 
is depicted in Figure 7, and shows a very good 
agreement with the smeared crack nonlinear 
analysis. It is worth noting that both curves 
compare well with experimental results. The 
advantage of the sequentially linear analysis is that 
the system is always positive definite, so that a 
solution is always found at each step. The sequence 
of linear solutions automatically provides the snap-
back. 
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Figure 7. Snap-back in the load displacement curve. 

When the solution is considered to be too coarse, 
showing an irregular spiky pattern, it is sufficient to 
refine the discretization, i.e. decreasing the mesh, 
or to increase the number of teeth.  

Another advantage is that the scaling process 
mentioned in Section 2.1 involves that the 
numerical round-off implicitly breaks the 
symmetry of the model. There is no need to add 
imperfections to the model in order to follow the 
stable equilibrium path. At the same time, the 
indirect control of the structure is not required any 
more, since the effective control parameter is the 
propagating damage itself. 

The sequentially linear simulation provides not 
only the correct load displacement curve, but also 
the correct damage localization in the central part 
of the sample, induced by the dog-bone shape of 
the specimen, as shown in Fig. 6b. 

4 ANISOTROPIC SEQUENTIALLY LINEAR: 
FIXED CRACKING 

Although the isotropy assumption taken above 
allows for the simulation of cracking of plane 
concrete in direct tension or bending (i.e. when the 
phenomenon is basically driven by a localized 
crack in a one-dimensional stress field), a 
substantial improvement is necessary when dealing 
with reinforced concrete. In fact the isotropic 
reduction of stiffness is a rather rough 
approximation, and does not represent the 
compressive struts that develop parallel to the 
cracks. 

Therefore, in analogy to the pioneering approach 
of Rashid (1968), the initial isotropic stress-strain 
law can be replaced by an orthotropic law upon 
crack formation, with the axes of orthotropy being 
determined according to a condition of crack 
initiation. As far as the present work concerns, the 
crack plane is kept constant after the crack is 
nucleated. Moreover, only one crack per element is 
considered. 

Referring to the plane stress situation, and to a 
local coordinate system oriented parallel to the 
crack plane, the following constitutive relation is 
assumed: 
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where n is the normal to the crack, t the crack 
plane, Ei the reduced Young modulus according to 



the sequentially linear scheme, and β the so-called 
shear retention factor. The equation can be 
rewritten in compact form as follow: 

ntntnt εDσ = . (15) 

In addition to Young’s modulus, also the shear 
retention factor and the Poisson ratio decrease with 
increasing crack opening. In the present 
implementation a stepwise reduction is assumed: 
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where i is the current tooth, and N the number of 
teeth adopted in the discretization. Given the 
following transformations for the strain and stress 
vectors: 
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eq. 14 can be easily transposed in terms of global 
stress and strain components by pre- and post-
multiplication with the transformation matrices: 

xynsxy εTDTσ )()(1 φφ εσ
−= . (18) 

The above improved constitutive law was 
implemented in the general sequentially linear 
scheme. 

4.1 Reinforced tension-pull specimen 

A long-embedment tension-pull specimen is 
considered (Gijsbers & Hehemann, 1977). The 
steel is modeled by truss elements, and the concrete 
by axis-symmetry elements.  
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Figure 8. Load-displacement curves: experimental (Gijsbers & 
Hehemann, 1977), nonlinear (Rots, 1985) and sequentially 
linear analysis. 
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               (a)             (b)             (c)                    (d) 
Figure 9. Long-embedment tension-pull specimen. Nonlinear 
cracking (a), nonlinear deformed mesh (b). Sequentially linear 
compressive struts (c) and deformation (d). 

Perfect bond between steel and concrete was 
assumed. The strength of the concrete was assigned 
via a random generation of tensile strength (mean 
ft=3.0 N/mm2, standard deviation equal to 0.5 
N/mm2). 

In Fig. 8, results from nonlinear smeared analysis 
and experiments are compared with the load-
displacement curve for the anisotropic sequentially 
linear model. Although the behavior is more brittle, 
the sequentially linear analysis is in good 
agreement with the nonlinear results, being able to 
describe snap-back and snap-through behavior. In 
Fig. 9, the comparison is made in terms of crack 
localization and resulting deformed meshes. Four 
primary cracks emerge. In particular, Fig. 9c shows 
how compressive struts arise in the anisotropic 
saw-tooth analysis. With the former isotropic 
version of the model, the struts (compressive cones) 
could not develop and an incorrect crack evolution 
was obtained. 

 

4.2 Reinforced concrete beam 

In this example we investigate the performance of 
the anisotropic saw tooth model with respect to a 
practical engineering problem, namely a reinforced 



beam which fails in bending and which was tested 
by Walraven (1978). The finite element 
idealization for the beam is shown in Fig. 10. 
Eight-noded plane-stress elements were used to 
represent the concrete and three-noded truss 
element for the reinforcement. Perfect bond was 
assumed between the concrete and reinforcement. 

 
Figure 10. Finite element idealization of the RC beam. 
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Figure 11. Load-displacement curves: Experimental (Walraven, 
1978), nonlinear (Rots, 1985) and sequentially linear analysis. 

Both a nonlinear smeared crack and anisotropic 
sequentially linear analysis were performed. The 
results are shown in Fig. 11, were a good 
agreement between the sequentially linear and 
nonlinear or experimental data is found. The 
sequentially linear analysis cannot yet take into 
account the yielding of the reinforcement; on the 
other hand it is numerically stable and able to 
emphasize the brittle behavior of the final part of 
the load displacement curve. 

5 CONCLUSIONS 

The saw-tooth sequentially linear model has been 
reviewed in order to emphasize its ability to 
capture snap-back and snap-through instabilities 
automatically, without numerical problems. The 
model has thus been improved taking into account 
the damage anisotropy induced by cracking. The 
effectiveness of the model to capture basic features 

of reinforced structures has been evaluated by two 
examples: the long-embedment tension-pull test, 
and a slender RC beam in bending.  
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