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ABSTRACT: We present a mesoscopic model for the analysis of tensile failure of concrete under impact load-
ing. Rate dependency is incorporated through viscosity terms in the constitutive formulation. The model is
applied to mesoscopic analyses of three-phase mesoscopic descriptions of concrete consisting of elastic aggre-
gates, inelastic bulk material and interfacial transition zones (ITZs). The tensile strength of the ITZ influences
the global strength and the shape of the final failure zone. Different aggregate distributions affect the diffuse
failure pattern but the change of the overall strength is less significant. The numerical responses are compared
with experimental results from a gravity driven Split Hopkinson bar test setup.

1 INTRODUCTION
Experimental observations have provided an insight
into the complicated fracture process of concrete in
statics and dynamics (Reinhardt and Weerheijm 1991;
Rossi et al. 1992). Concrete is a heterogeneous brittle
material that fractures via the formation, growth and
coalescence of microcracks. Furthermore, the failure
process is dependent on the loading rate. Micro in-
ertia of the material adjacent to propagating micro
cracks and moisture in the capillary pores characterise
the rate dependent behaviour of concrete. A represen-
tative computational model of concrete in dynamics
must include these features.

A more realistic description of fracture processes
ranging from diffuse failure to localisation and final
discrete failure can be described by means of an ex-
plicit model of the mesostructure. In dynamics the
modified inertia effect and the geometrical dispersive
characteristic are other consequences of the meso-
scopic model. For the constituents in the mesostruc-
ture we apply a rate dependent constitutive model.

Realistic homogeneous macroscopic models for
heterogeneous materials incorporate information
from the lower scales. A successful constitutive
theory is the microplane theory (Bažant and Prat
1988; Carol and Bǎzant 1997). This approach is ex-
tended including damage and plasticity formulations
by D’Addetta et al. (2002) and Kuhl et al. (2000).
Also enhanced continuum theories implicitly incor-
porate lower scale effects by introducing a length
scale parameter. An example of these theories is the
Cosserat continuum (M̈uhlhaus 1989) in which ro-
tational degrees of freedom are included to account

for the non-local effects due to the motion of the mi-
crostructures. Discrete models exist which are based
on Voronoi cell representations of the heterogeneous
structure. In these models, a beam lattice network is
used to model the cohesive and compressive forces
between the neighbouring cells (Bolander and Suku-
mar 2005; Nagai et al. 2004; Ibrahimbegovic and De-
laplace 2003; Schlangen and van Mier 1992). The co-
hesive crack methodology (Camacho and Ortiz 1996)
is also applied at a mesoscopic level (Maiti et al. 2005;
Tijssens et al. 2001; Carol et al. 2001).

The mesoscopic problem is solved here using an
embedded multiple scale approach. Therefore, the
different constituents are modelled explicitly and
we apply an idealised geometrical model for the
mesoscale consisting of matrix and aggregates sur-
rounded by an interfacial transition zone. The con-
stitutive model used for the constituents is based on
thermodynamics of chemically reactive porous me-
dia (Lackner et al. 2002; Sercombe et al. 2000; Ulm
and Coussy 1995). A viscoelastic model, coupled to a
viscoplastic damage model (Simone and Sluys 2004),
accounts for the strengthening effect associated with
the viscous phenomenon due to moisture. The vis-
coplastic part contributes to an additional rate effect
in the failure zone which is linked to inertia effects.

In this contribution, we focus on the influence of
aggregate distribution and strength of the interfacial
transition zone. A gravity driven Split Hopkinson Bar
test setup is employed to determine the moisture de-
pendent tensile strength (Vegt et al. 2006). A compari-
son is made between experimental results and numer-
ical estimations for different values of the parameter



governing the viscosity in the bulk material.

2 MATERIAL MODEL
The bulk material and the material in the ITZ obey
a viscoelastic viscoplastic damage model which is
briefly described next. We assume a strain decompo-
sition of the type

ǫ = ǫ
e + ǫ

ve + ǫ
vp (1)

where the strain tensor is split into the elastic, the
viscoelastic and the viscoplastic parts. Here we fol-
low Ju (1989) in coupling plasticity and damage and
by making use of the effective stress concept and the
hypothesis of strain equivalence. This approach does
not pose any restriction on the nature of the plas-
tic moduli, apart from the requirement of formulat-
ing the plastic moduli in the effective stress space.
Therefore, rate-dependent plasticity models, which
preserve well-posedness of the governing equations
in the softening regime, can be coupled to damage. A
quantity in the effective stress space will be denoted
by a superimposed tilde.

In the context of a numerical procedure, the stress
update relation at the end of a time step for the com-
bined model reads

σn+1 = (1− ωn+1) σ̃n+1 (2)

whereσ is the Cauchy stress tensor andω (0≤ ω ≤ 1)
a damage variable which is updated through

ωn+1 = α
(

1− e−βκ̃n+1
)

. (3)

α and β are parameters regulating the asymptotic
value of damage and the slope of the damage evolu-
tion law, respectively, whileκn+1 is a measure of the
deformation cumulated in the plastic regime.

The viscoelastic strain contribution is expressed in
a rate form as

ǫ̇
ve = χ̇b, (4)

whereχ is the equivalent viscoelastic strain andb is
defined as

b = s̃/ |s̃| , (5)

with s̃ the deviatoric stress tensor. The equivalent
viscoelastic strain obeys the relation Sercombe et al.
(2000, eq. (56))

η1

∂χ

∂t
= |s̃| −E1χ, (6)

whereE1 is the viscoelastic spring stiffness, andη1

is the viscosity in the Kelvin element. The right-hand
side of (6) can be interpreted as the macroscopic rep-
resentation of the viscous effect due to moisture in
nano- and micro-pores. It is similar to the hardening

force in plasticity, which represents micro cracking
controlled by the equivalent plastic strain.

The viscoplastic strain contribution is expressed
according to the formulation proposed by Perzyna
(1966). When the yield criterion is violated in the ef-
fective stress space, i.e. wheñf ≥ 0 with f̃ the yield
function, the viscoplastic strain rate is expressed in
the associative form as

ǫ̇vp =
1

τ2

φ̃ f̃σ, (7)

whereτ2 = η2/E2 is the viscoplastic relaxation time,
η2 is the corresponding viscosity of the damper ele-
ment, f̃σ̃ = ∂f̃/∂σ̃ and the overstress functioñφ is
given by the following power-law form

φ̃
(

f̃
)

=

(

f̃

ft

)N

, (8)

with ft the initial tensile strength andN (N ≥ 1) a
real number.

Another important component of our model is the
hardening forceq which defines the elastic domain of
the material and is made a function of both the equiv-
alent plastic and equivalent viscoelastic strains as

q (κ,χ) = ft g (κ)h (χ) . (9)

The functiong is defined here as an exponential soft-
ening curve function of the equivalent plastic strainκ
in the effective space:

g (κ) = (1 + a) exp (−bκ)− a exp (−2bκ) , (10)

with the parametersa and b governing the residual
and the slope. The second function is defined by

h (χ) =

{

1 + χa log

(

χ

χs

)}

, (11)

where, by using thelog function, small values of the
equivalent viscoelastic strain result in an increase of
the tensile strength. This is particularly useful in dy-
namics where the viscous strain decreases with in-
creasing loading rate. From a physical standpoint, this
represents the retardation effect in the nano-pores due
to the Stefan effect – the Stefan effect is an increase
of tensile strength due to adhesive forces between
moisture and skeleton.χs is the maximum value of
the equivalent viscoelastic strain when the Stefan ef-
fect is activated. When the equivalent measure of
the viscoelastic strains exceeds this value (no Ste-
fan effect) thelog term is negative and the strength
is multiplied with a term lower than one and plas-
ticity is activated earlier. Here, we add an additional
rate effect to the viscosity terms. The two viscosity
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Figure 1: Model of the Split Hopkinson bar test setup (di-
mensions in mm).

terms reflect microscale processes as the Stefan effect
and distributed microcracking. These micromechan-
ical effects are rate dependent. The idea is to incor-
porate the following rate dependent viscosity relation
in the model, similar to what is done in mantle rhe-
ology (Becker 2006) and in rate dependent frictional
sliding problems (Coker et al. 2005):

ηi = η0

i

(

1 + (ǫ̇eq)
1−n

n

)

. (12)

In the above relation,ǫeq is the equivalent measure
of the strain tensor andη0

i (i = 1,2) are the viscosi-
ties in the elastic and plastic part in case of static
loading conditions. In Equation (12)n is a real value
(0 < n ≤ 1). The mesoscopic representation com-
bined with the rate dependent constitutive model is
applied to reproduce the results from a Split Hopkin-
son Bar test.

3 SPLIT HOPKINSON BAR TEST
The Split Hopkinson bar apparatus consists of an in-
cident bar (∼ 5 m), the test specimen (0.1 m), and the
output bar (∼ 5 m). In the computational model the
length of the incident and output bars is 250 mm.
We apply material based absorbing boundary con-
ditions, see Figure 1. SG 1 refers to the position
for strain measurement of the incoming tensile wave
while SG 2 indicates the points where the transmit-
ted load pulse is measured. The values forEs and
ρs are adjusted to obtain comparable results at SG 1
with respect to the experiments (Es = 4572 MPa, ρs =
182910−11N s2/mm4). Identical acoustic impedances√

Eρ of the materials is necessary to avoid spuri-
ous waves in the response. A detailed description of
the experiments can be found in (Rossi et al. 1992;
Vegt et al. 2006). For a mesoscopic analysis, an
accurate and realistic geometrical model is neces-
sary: the shape, size and distribution of the aggre-
gate particles must resemble real concrete in a sta-
tistical sense. There exist specific algorithms for gen-
eration of random aggregate structures taking into ac-
count the size, shape and spatial distributions (Häfner
et al. 2006; Wriggers and Moftah 2006). Here, we
use HADES (HADES 2006), a discrete element pack-
age that allows for the simulation of granular ma-
terials. The individual particles are generated in a
non-overlapping way in a region. This region can be

tablenameTable 1: Model parameters.

E2 38500 MPa
ν 0.2
ρ 2200 10−12 N s2/mm4

ft 3 MPa (matrix)
τ2 0.08 s
b 500
a 0
α 1
β 1800
E1 60000 MPa
η1 10000 MPa s
χa 0.2
χs 0.00001
n 0.3
N 1
∆t 10−8 s

defined by periodic boundaries, rigid boundaries or
partly periodic and partly rigid boundaries. Each par-
ticle is given an random initial linear and angular
velocity. The particles are iteratively displaced to a
position that is obtained by integrating the velocity
over a small time period. Similarly, the velocity of
a particle at the next iteration is calculated by inte-
grating the force or torque that acts on each particle.
Gravitational forces, paste friction and contact forces
between particles have been implemented. Next, the
boundaries can be moved according to user-defined
functions. In this way, a number of experiments can
be reproduced. Dense packings can be obtained in
this way, but it is also possible to move the periodic
or rigid walls of the container increasing the volume
density of the mixture. In this way arbitrary densities
can be obtained up to the maximum density. The out-
put of a two-dimensional simulation can be used to
create a distribution of aggregates as shown in Fig-
ure 2 and 3.

There are clear differences in the spatial distribu-
tions of the aggregates. Three realisations are shown
in Figure 2. For realisation (2) the aggregates are con-
centrated in the middle of the specimen. In the other
distributions (1,3), several aggregates are placed close
to the free boundaries, and create therefore, poten-
tial positions for damage initiation. In realisation (1)
particles to the left are closely arranged in a column
and failure can develop and propagate in this weak
zone. In average, 28000 linear triangular elements are
used for the discretisation and a Courant number of
approximately0.75 is ensured with a time step size
∆t = 10−7s.
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Figure 2: Different realisations of the test specimen. Parti-
cle density is 30%.

Figure 3: Detail of the finite element discretisation num-
ber 3. Light grey is the matrix, the aggregates in dark grey
surrounded by the white interfacial transition zones.

ft = 1.0 MPa

ft = 2.0 MPa

ft = 3.0 MPa

Figure 4: Fracture planes corresponding to a different
strength of the interfacial transition zone. Configuration3
is analysed. Black corresponds to damage parameterω = 1.

4 APPLICATIONS

We test the influence of the tensile strength of the
interfacial transition zone and the consequences of
different distributions on the overall dynamic tensile
strength. Furthermore, the rate dependent properties
of the bulk material are changed to examine the influ-
ence on failure patterns and the global strength.

4.1 Strength of ITZ

In concrete a gradient in water cement ratio devel-
ops around the aggregate particles during casting, re-
sulting in a different microstructure of the surround-
ing hydrated cement paste. Therefore, the ITZ con-
tains a gradient of porosity and a gradient of proper-
ties which is here neglected. Instead we restrict our-
self to variations (1.0,2.0 and3.0 MPa) of the tensile
strength of the ITZ. When the matrix and ITZ have
identical strength the global strength is obviously
higher compared to situations with lower strength of
the ITZ, see Figure 5. However, it is important to
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Figure 5: Time-strain curves at the upper bar (SG2). Trans-
mitted pulse and a measure of the strength of the material.
The fracture planes are shown in Figure 4.

note the relatively high impact of the ITZ strength on
the global strength comparing the number of ITZ ele-
ments to the total number of elements in the simula-
tions. Therefore, the most critical points are the ITZs
and the mutual connection between ITZs. The exper-
imental result (normal saturation level) is reported in
Figure 5. In the mesoscopic model the aggregates are
elastic and therefore no direct contribution to the rate
effect is present. The fracture planes, represented by
the damage parameterω are shown in Figure 4.

4.2 Different distributions
In Figure 7 the final fracture patterns are shown for
different distributions of the aggregates. The tensile
strength of the ITZ is1.0 MPa. In the three distribu-
tions the final failure consists of 1-2 fracture planes.
For realisation (2) damage initiates at the notches,
whereas for (1) and (3) failure is initiated between
aggregates and the free boundary. These possible
fracture planes can be compared to experimental re-
sults (Vegt et al. 2006) for the fracture zone. Fig-
ure 8 shows a picture from an optical microscope,
where the specimen (impregnated with a fluorescent
epoxy) is studied to examine possible microcracks.
Figure 6 shows that there is no significant variation of
the global tensile strength for different distributions of
the particles. The overall tensile strength is obtained
by multiplying the strain measurement, see Figure 5,
with the Young’s modulus of the upper bar.

4.3 Influence of viscosity in bulk material
The previous analysis proved that the initial strength
of the interfacial transition zone is an important pa-
rameter for the global response of the model. The key
parameters in our model are the two viscosity param-
eters. Next, we fix the material properties for the ITZ
and focus on the behaviour of the bulk material by
changing viscosity parameterη1. This parameter re-
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Figure 6: Tensile strength of the concrete specimen as a
function of the tensile strength of the ITZ.

flects the Stefan effect and is related to the microstruc-
ture via the moisture content and the pore size distri-
bution. The influence ofη1 for the bulk material on
the global strength is not significant as shown in Fig-
ure 9. We use a wide range of the viscosity parame-
ter to reproduce the different moisture contents from
the experiments. An explanation for the less signifi-
cant influence of the viscoelastic contribution is that
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Figure 7: Fracture planes for different realisations. Tensile
strengthft = 1 MPa. Black corresponds to damage param-
eterω = 1.



Figure 8: Microscopic picture of the fracture plane from
experiment (Vegt et al.2006).
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Figure 9: Time-strain curves at the upper bar (SG2) for dif-
ferent viscositiesη1.

only the viscosity for the matrix material is varied.
However, the failure initiates in the weak ITZ ele-
ments, where the same viscosity parameter is used for
all analyses. Therefore, the weak zones and paths are
the same as in the previous analysis and the global
strength is not clearly affected by only changing the
surrounding bulk material. However, an increase of
viscosity in the bulk material reduces the diffusion of
damage around the aggregates as a consequence of
the increased strength of the material, see Figure 10.

4.4 Influence of viscosity in bulk material and ITZ

We now change the viscosity in the viscoelastic part
for both the bulk material and the ITZ. The time strain
response is reported in Figure 11. We can compare
these results to Figure 9. A clear difference is the in-
creased dependency of the global tensile strength on
the viscosity parameterη1. Therefore, it is important
to properly change the material properties of the ITZ
elements as they are the first active elements in the
localisation process while the surrounding bulk ma-
terial is predominantly unloading. However, the over-
all tendency in the failure process does not change if
we compare the final fracture planes in Figure 10 and
Figure 12.

η1 = 103 MPa s

η1 = 104 MPa s

η1 = 106 MPa s

Figure 10: Fracture planes corresponding to different val-
ues of the viscosity. Here only the bulk material is changed.
Black corresponds to damage parameterω = 1.
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Figure 11: Time-strain curves at the upper bar (SG2) for
different viscositiesη1.



η1 = 103 MPa s
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Figure 12: Fracture planes corresponding to different val-
ues for the viscosity. Both the material for the bulk and ITZ
is changed. Black corresponds to damage parameterω = 1.

5 CONCLUSIONS
The influence of the heterogeneous mesostructure of
concrete on the impact response is analysed. The ge-
ometrical model consists of aggregates, interfacial
transition zones and a matrix. With this lower level
model a more in-depth study on failure mechanisms
and inertia effects is possible. The ITZ between ag-
gregate particles and bulk paste plays a major role
in the material behaviour of cementitious compos-
ites. We observed that the strength of the interfacial
transition zone significantly influences the overall ten-
sile strength. Different fracture planes are observed
as a consequence of changing the distribution of the
aggregates. A small increase of the overall tensile
strength was found when changing the rate dependent
properties of the bulk material alone. However, when
we change the viscosity both for the ITZ and the bulk
material a more significant increase of the global ten-
sile strength was observed. Therefore, the rate effect
of the material is strongly related to the weakest part
of the material, where failure is initiated.
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