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ABSTRACT: In this paper a thermodynamically consistent stress-based elastic anisotropic degradation unilat-
eral model is proposed and then applied to concrete modeling. The increases of the intrinsic secant compliances
cumulated under purely positive and purely negative stresses are adopted as the internal variables, and therefore
the hypothesis of strain equivalence or strain energy equivalence is no longer required. To describe the unilateral
effects, the newconsistentpositive and negative projection operators are proposed, and the secant constitutive
law is then established within the framework of irreversible thermodynamics. The rate formulations and the
corresponding tangent stiffness are also derived, which can be employed to develop standard structure of the
classical multisurface return mapping integration algorithm. Finally, the proposed model is verified by applica-
tion to concrete modeling.

1 INTRODUCTION
For quasi-brittle geomaterials such as concrete, rock,
ceramics, etc., it is reasonable to assume that in the
virgin undamaged material the distribution of mi-
crodefects is isotropic. However, due to the irre-
versible growth of the microdefects dominantly in the
direction perpendicular to the maximum tensile stress
(Krajcinovic 2003), this isotropy will be destroyed
during the loading history, which is generally referred
to as damage induced anisotropy and plays a crucial
role in the constitutive modeling.

Attributed to the pioneering work of Kachanov
(1958), continuum damage mechanics (CDM) and its
coupling with plasticity have become a powerful tool
in the constitutive modeling of many engineering ma-
terials. From the physically motivated viewpoint, the
damage is directly characterized as the degradation
of the stiffness or the increase of the compliance.
Therefore, the so-called elastic or inelastic anisotropic
degradation model which introduces the degradation
strain rate (Hueckel & Maier 1977) due to the degra-
dation of secant stiffness, was preferred in the mod-
eling of anisotropic damage and might be the most
widely adopted method in the literature.

In Ortiz (1985) an inelastic anisotropic degrada-
tion model was systematically proposed, in which
the remarkable limitation was that the damages due
to tensile and compressive stresses were controlled
by a single cumulated damage variable. The above

anisotropic degradation model was later developed
by others (Simo & Ju 1987, Ju 1989, Yazdaini &
Schreyer 1990, Neilsen & Schreyer 1992, Govind-
jee et al. 1995, Meschke et al. 1998, etc.). Carol et
al. (1994) summarized the plastic-like framework of
elastic degradation, and later in Carol et al. (2001) an
elastic orthotropic degradation model was proposed
based on the hypothesis of strain energy equivalence
(Cordebois & Sidoroff 1979). The above orthotropic
degradation model was further improved in Hansen
et al. (2001) by employing plasticity to describe the
unilateral effects and the nonlinear performances un-
der compressive stresses, however, the accompanied
stiffness degradation still could not be considered.

Despite the above substantial and noteworthy con-
tributions, the modeling of anisotropic degradation
still remains a challenging issue, among which the
key unsolved problem is the consistent description
of the unilateral effects that is of great significance
in the nonlinear analysis of concrete (Mazars et al.
1990) under cyclic loading history. In all the degra-
dation models considering the unilateral effects, none
of the employed projection operators are thermody-
namically consistent in the sense of non-zero energy
dissipations or generations upon fixed damage (Carol
& Willam 1996). Furthermore, developing the con-
cerned implicit numerical integration method is al-
most impossible and the time-consuming explicit nu-
merical integration scheme has to be employed. It was



not until recently, the implicit integration method for
the Ortiz’s model was suggested in Mahnken et al.
(2000); however, the derivations were rather complex
and the final expressions were terribly lengthy, which
heavily restrains its popularity.

Noticing the above facts, in this contribution
a thermodynamically consistent stress-based elastic
anisotropic degradation unilateral model is proposed
and then applied to concrete modeling. The increases
of the intrinsic secant compliance under the purely
positive and purely negative stresses are adopted
as the internal damage variables, and the generally
adopted hypothesis of strain equivalence (Lemaitre
1971) or strain energy equivalence (Cordebois &
Sidoroff 1979) is no longer required. To consider the
unilateral effects, newconsistentpositive and nega-
tive projection operators are proposed, and the se-
cant constitutive law is then established within the
framework of irreversible thermodynamics. The rate
formulations and the corresponding tangent stiffness
are also derived, which can be employed to develop a
standard structure of the classical multisurface return
mapping integration algorithm. Finally the proposed
model is partially verified by application to concrete.

2 GENERAL FORMULATIONS
2.1 Elastic degradation model
To avoid distracting, from now on we pay our atten-
tions only on the cases in absent of irreversible de-
formations which can generally be considered by the
coupling of plasticity. As is known, for an initially
isotropic material the undamaged complianceC0 and
stiffnessS0 respectively read as two constant fourth-
order symmetric isotropic tensors, i.e.

C0 =
1

E0

[

(1 + ν0)I � I − ν0I � I

]

, S0 = C−1
0 (1)

where E0 and ν0 respectively denote the Young’s
modulus and the Poisson’s ratio, andI signifies the
second-order identity tensor. Once damaged, the ma-
terial secant complianceC will increase and, the se-
cant stiffnessS will be degraded, i.e.

C = C0 + Λ, S = C−1, C : S = I (2)

where,Λ signifies the increased secant compliance
due to the damage (microvoids or microvoids) evo-
lution. For an elastic degradation material, the un-
loading path always linearly points to the origin, and
during the unloading-reloading histories the material
compliance (or stiffness) remains constant and equal
to its current secant value.

For the classical Green elastic (or hyperelastic) ma-
terial, there exists a well-defined energy potential.
Correspondingly, the Gibbs free energyψ depends on

the current stress and the damage states. Under such
circumstance,ψ is generally assumed as

ψ =
1

2
σ : C : σ =

1

2
σ : C0 : σ +

1

2
σ : Λ : σ (3)

Confining the attention to the purely mechanical pro-
cess, the Clausius-Duhem inequality takes the form

ψ̇− ǫ : σ̇ ≥ 0 (4)

for any admissible process. By taking the time deriva-
tives of Equation 3, substituting into Equation 4, one
obtains the stress-strain relation as follows

ǫ =
∂ψ

∂σ
= C : σ, σ = S : ǫ (5)

2.2 Degradation strain
The rate form of constitutive relation can then be ob-
tained from Equation 5 as

ǫ̇ = C : σ̇ + Ċ : σ = ǫ
r + ǫ

d (6)

σ̇ = S : ǫ̇ + Ṡ : ǫ = S : (ǫ̇− ǫ̇
d) = S : ǫ̇

r (7)

where the relationṡS = −S : Ċ : S from the time
derivatives of Equation 2(3) are called for in the above
derivations. In Equations 6 and 7,ǫ̇

r is the resisting
strain rate that would be obtained by preventing the
microcracks from evolution further, anḋǫd denotes
the degradation strain rate due to the increase of se-
cant compliance (or degradation of the secant stiff-
ness), respectively with the following expressions

ǫ̇
r = C : σ̇, ǫ̇

d = Ċ : σ (8)
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Figure 1:Definitions of the degradation strain and resist-
ing strain rates under 1-D stress.

The above defined resisting and degradation com-
ponents of the strain rate can be referred to Figure



1, where the 1-D stress-strain diagram in terms of a
differential loading increment is illustrated. It can be
easily seen that, the resisting partǫ̇

r is just the strain
increment that would produce the stress incrementσ̇

while the current secant complianceC remains un-
changed, i.e. the damage would not develop further,
and correspondingly the degradation componentǫ̇

d

signify the strain increment that would be obtained
while the current secant complianceC increases un-
der the current stress.

The degradation strain rate defined in Equation 8
first appeared in Hueckel & Maier (1977), and was
later adopted by Ortiz (1985) and summarized in
Carol et al. (1994).

2.3 Consistent projection operators
Just as pointed out in Mazars et al. (1990), the uni-
lateral effects, i.e., the stiffness changes during the
microcrack-closure-reopening (MCR) process, is of
great significance for the modeling of concrete like
quasi-brittle materials. To rationally describe the uni-
lateral effects, many methods was proposed in the lit-
erature, while most continuum damage models adopt
the spectral decomposition of a second-order tensors
(the stress, the strain or effective stress) and introduce
the fourth-order projection operators originated in Or-
tiz(1985) and later developed in Simo & Ju (1987) and
Carol & Willam (1996).

Due to its concept simplicity, the method of in-
troducing projection operators is also employed here.
However, new thermodynamically consistent projec-
tion operators which guarantee zero energy dissipa-
tion and generation, are proposed herein. Correspond-
ingly, the nominal Cauchy stress tensorσ is decom-
posed into its positive and negative components, i.e.

σ = σ
+ + σ

− (9)

where the positive and negative componentsσ
± are

expressed as

σ
+ =

∑

i=1

〈σ(i)〉n(i) ⊗n
(i), σ

− = σ −σ
+ (10)

whichσ(i) is ith eigenvalue ofσ with the correspond-
ing eigenvector represented byn

(i), and〈·〉 denotes
the McAuley bracket. Introducing the the positive and
negative projection operatorsP± originated in Ortiz
(1985), Equation 10 can be rewritten into

σ
± = P± : σ, P+ + P− = I (11)

whereI is the symmetric fourth-order identity tensor.
However, the expressions ofP± are not unique, and

to guarantee zero spurious energy dissipation or gen-
eration upon fixed damage (Carol & Willam 1996),
only the ones satisfying the following condition

Ṗ± : σ = 0 (12)

can be used in the modeling of anisotropic degrada-
tion. Combining Equation 11 with Equation 12, yields

P± : σ̇ = σ̇
±, P+ + P− = I (13)

In another word, thermodynamically consistent pro-
jection operators are those specific expressions of
P± which simultaneously satisfy the conditions ex-
pressed in Equations 11 and 13.

In Faria et al. (2000) and Wu et al. (2006) the fol-
lowing expressions which satisfy Equation 13, were
derived

P+ =
∑

i

H(i)
σ

N(ii) + T, P− = I − P+ (14)

whereH(i)
σ denotes the Heaviside function ofσ(i). In

Equation 14, the symmetric fourth-order tensorT is
expressed as

T = 2
∑

i=1,i>j

〈σ(i)〉 − 〈σ(i)〉
σ(i) − σ(i)

N(ij) (15)

where the fourth-order tensorN(ij) = N
(ij)

� N
(ij)

with the second-order symmetric tensorN
(ij) reading

N
(ij) = N

(ji) =
1

2

(

n
(i) ⊗n

(j) + n
(j) ⊗n

(i)
)

(16)

It is interesting to note that, the first term in Equation
14 is just the expression originated in Ortiz (1985),
and one can easily verify thatT : σ = 0 . Also, it can
be proved that, for a class of unified expressions of
projection operators, Equation 14 is unique. There-
fore, P± expressed in Equations 14–16 are also the
projection operators of the stressσ, i.e., they are ther-
modynamical consistent in concerned with the re-
quirement of zero energy dissipation, and can be em-
ployed in the modeling of unilateral effects.

2.4 Considering unilateral effects
With the proposed consistent projection operators, the
Gibbs free energyψ considering the unilateral ef-
fects, is here defined similar to that originated in Ortiz
(1985), i.e.

ψ =
1

2
σ : C : σ =

1

2
σ : (C0 + Λ

+ + Λ
+) : σ (17)

=
1

2
σ : C0 : σ +

1

2
σ

+ : Λ̄
+

: σ
+ +

1

2
σ

− : Λ̄
−

: σ
−

whereΛ
± denote the increases of the actual compli-

ances under general stress state, with expressions as

Λ
± = P± : Λ̄

±
: P±, Λ = Λ

+ + Λ
− (18)



and Λ̄
± signify the increases of the intrinsic secant

compliances under the purely positive and purely neg-
ative stresses, which are selected as the internal vari-
ables. Correspondingly, the secant strain–stress rela-
tion considering the unilateral effects is expressed as

ǫ =
∂ψ

∂σ
= C : σ, σ = S : ǫ, S = C−1 (19)

where the secant complianceC reads

C = C0 + P+ : Λ̄
+

: P+ + P− : Λ̄
−

: P− (20)

Besides the above secant constitutive law, the sec-
ond thermodynamics principle also leads to the fol-
lowing damage dissipation inequality

Π̇ = (−Y+) :: ˙̄
Λ

+ + (−Y−) :: ˙̄
Λ

− ≥ 0 (21)

where the thermodynamical forces conjugate to the
selected damage variablesΛ̄

±, i.e. the damage energy
release rates−Y± are expressed as

− Y± =
∂ψ

∂Λ̄
±

=
1

2
σ

±
� σ

± (22)

It is then appropriate that the evolution laws for the to-
tal added secant compliance is postulated resembling
that for the plastic irreversible strains, i.e.

˙̄
Λ

± = λ̇±Ψ
± (23)

where,λ̇± ≥ 0 denote the damage consistency param-
eters, and to inherently guarantee the non-negative of
the overall damage dissipation, the evolution direc-
tionsΨ± should be non-negative definite fourth-order
symmetric tensors.

Therefore in Equation 8, the rate of secant compli-
anceĊ is expressed as

Ċ = 2P+ : Λ̄
+

: Ṗ+ +2P− : Λ̄
−

: Ṗ− + ˙̄
Λ

+ + ˙̄
Λ

− (24)

and the degradation strain rateǫ̇
d becomes

ǫ̇
d =

(

λ̇+
Ψ

+ + λ̇−Ψ
−
)

: σ = λ̇+
Γ

+ + λ̇−Γ− (25)

where, the evolution directions of the degradation
strainΓ± are expressed as

Γ
± = Ψ

± : σ (26)

2.5 Continuum Tangent Stiffness
Neither the rate constitutive law nor the numerical
consistent tangent modulus were derived in nearly
all the anisotropic degradation models which intro-
duced the projection operators to describe the unilat-
eral effects. To the authors limit knowledge, only in

Mahnken et al. (2000) the implicit integration scheme
and the consistent tangent modulus were obtained in
concerned with the model of Ortiz (1985), however,
the derivations were rather complex and the final ex-
pressions were terribly lengthy, comparing to the ones
to be demonstrated as follows.

To determine the damage states, the following dam-
age criterionF± are postulated in terms of the stress
σ and of the previous historyr±, i.e.

F±(σ, r±) = f±(σ)− r±(λ±) ≤ 0 (27)

where damage thresholdsr± are functions of the
cumulative damage measureλ± =

∫ t

0
λ̇±dt, and the

damage loading/unloading conditions can be ex-
pressed as

λ̇± ≥ 0, F± ≤ 0, λ̇±F± = 0 (28)

Upon damage loading, i.e.λ̇± > 0, λ̇± can be deter-
mined by the damage consistency conditionsḞ± = 0,
i.e.

Ḟ± = Υ
± : σ̇ − λ̇±h± = 0 (29)

where Υ
± denote the stress gradient of the dam-

age criterion surfacesF±, and h± are the soften-
ing/hardening functions, respectively expressed as

Υ
± =

∂F±

∂σ
=
∂f±

∂σ
, h± =

∂F±

∂λ±
=
∂r±

∂λ±
(30)

Calling for the relations presented in Equations 7
and 25, the damage consistency parametersλ̇± can be
obtained under different loading cases, and the rate
form of the constitutive relation reads

σ̇ = Stan : ǫ̇ (31)

where the tangent stiffnessStan are expressed as

• If F+ < 0, F− < 0

λ+ = λ̇− = 0, Stan = S (32)

• If F+ = Ḟ+ = 0, F− < 0

λ+ =
Υ

+ : S : ǫ̇

h+ + Υ
+ : S : Γ+ , λ̇− = 0 (33)

Stan = S − S : (Γ+ ⊗Υ
+) : S

h+ + Υ
+ : S : Γ+ (34)

• If F+ < 0, F− = Ḟ− = 0

λ̇+ = 0, λ− =
Υ

− : S : ǫ̇

h− + Υ
− : S : Γ−

(35)

Stan = S − S : (Γ− ⊗Υ
−) : S

h− + Υ
− : S : Γ−

(36)



• If F+ = Ḟ+ = 0, F− = Ḟ− = 0

[

λ̇+

λ̇−

]

=
1

∆

[
(

h22Υ
+ − h12Υ

−
)

: S : ǫ̇
(

h11Υ
− − h21Υ

+
)

: S : ǫ̇

]

(37)

Stan = S − 1

∆
S :

[

Γ
+ ⊗ (h22Υ

+ − h12Υ
−)

+ Γ
− ⊗ (h11Υ

− − h21Υ
+)

]

: S (38)

with the factorshij and∆ respectively expressed
as

h11 = h+ + Υ
+ : S : Γ+, h12 = Υ

+ : S : Γ−

h21 = Υ
− : S : Γ+, h22 = h− + Υ

− : S : Γ−

∆ = h11h22 − h12h21 (39)

Noted that, the tangent stiffness will be generally
asymmetric unless the associated evolution laws for
the degradation strain (i.e.Υ± = Γ

±) are adopted.
Equations 32–38 actually constitute the classical

problem of multisurface degradation, which is readily
solved by the standard multisurface return mapping
integration algorithm (Simo & Hughes 1998).

3 APPLICATION TO CONCRETE MODELING
In this section, the above proposed stress-based elastic
anisotropic unilateral degradation model is applied to
capture the typical nonlinear features of concrete, by
specialization of the presented formulations.

3.1 Damage evolution laws
Concrete is known to behave as a quasi-brittle ma-
terial that contains numerous microcracks and mi-
crovoids. From experimental observations, damage in
concrete is inherently an anisotropic and continuous
process that initiates at very low level of the applied
loading. Here, the evolution directions for the intrin-
sic added secant compliancesΛ

± are postulated as

Ψ
± =

1

E0

[

(1 + ν0)I
±

σ
� I

±

σ
− ν0I

±

σ
� I

±

σ

]

(40)

Correspondingly, one obtains

Γ
± =

1

E0

[

(1 + ν0)
(

I
±

σ

)2 − ν0I

]

·σ± (41)

where second-order tensorsI
±

σ
= σ

±/
√

σ± : σ± are
the unit tensors ofσ±.

The evolution laws for the damage thresholdsr±

can be determined by mapping the proposed consti-
tutive law into the uniaxial stress states. Considering
that the amount of damage that takes place at very low

stress levels may be considered insignificant and sig-
nificant damage appears only beyond a certain stress
threshold, the following functions are postulated in
this contribution for the damage thresholdsr±

r+ =
f+

0

(1 + λ+)ã+
, r− =

1 + ã− ln(1 + λ−)

1 + λ−
f−

0 (42)

where ã± are the parameters respectively control-
ling the softening/hardening shapes of the obtained
uniaxial stress-strain curves;f±

0 are the elastic limit
strengths (positive values) upon which the nonlinear-
ity under uniaxial tensile and compressive states be-
come evident, are respectively expressed as

f+
0 = ft, f−

0 =
1

ã−
fc exp

(

1− 1

ã−

)

(43)

with ft andfc denoting the uniaxial tensile and com-
pressive strengths.
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Figure 2: Positive threshold-cumulative damage curves
for variable values ofa+.
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Figure 3:Negative threshold-cumulative damage curves
for variable values ofa−.

To be used in the post-peak nonlinear finite element
computations of concrete structures, the above evolu-
tion laws forr± have to be regularized either employ-
ing the crack band theory (Bazant & Oh 1983), the



non-local methods (Bazant & Pijaudier-Cabot 1988)
or the gradient models (de Borst et al. 1995). If the
crack band theory is adopted, parametersã± should
be determined in terms of the Mode-I and Mode-II
fracture energies per unit volumeG+

f /lch andG−

f /lch,
with lch denoting the characteristic length of the fi-
nite element. By integrating the area under the uniax-
ial tensile and compressive stress–strain curves (refer
to Section 3.3), one obtains

ã+ =
a+ + 1

2a+ + 1
, ã− =

√
1 + 8a− − 1

2
(44)

a± =
[ G±

f E0

lch(f
±

0 )2
− 1

2

]

> 0 (45)

The evolution laws for the damage thresholdsr± rep-
resented against with the cumulative damagesλ± for
variable values ofa± are illustrated in Figure 2 and 3.

3.2 Loading functions
For concrete like quasi-brittle materials the following
damage loading functionsf± are adopted

f+(σ) =
(

σ
+ : Θ+ : σ

+
)

1

2 (46a)

f−(σ) =
(

σ
− : Θ− : σ

− + c2σ+ : Θ+ : σ
+
)

1

2 (46b)

where the parameterc =
√

3fc/(2ft) is introduced to
describe the cross “tensile-compressive softening” ef-
fect of the tensile stress on the lateral compressive
nonlinearity, and the two symmetric isotropic fourth-
order tensorsΘ± are expressed

Θ
± =

(

1 + υ±
)

I � I − υ±I � I (47)

with two parametersυ± determined as follows.
Denoted the strength under equi-biaxial tension by

fbt, the following relation can be obtained

ft =
√

2(1− υ+)fbt =⇒ fbt =
ft

√

2(1− υ+)
(48)

It is obvious that, ifυ+ takes the value of the Poisson’s
ratio (between 0.15 and 0.25),fbt/ft lies in the ranges
of 0.767–0.816, which fits the test data (Kupfer et al.
1969) very well. Therefore, if there is no support of
experimental data,υ+ = ν0 andΘ

+ = E0 · C0 can be
adopted.

Similarly, if the strength (positive value) under
equvi-biaxial compression are signified byfbc, one
obtains

fc =
√

2(1− υ−)fbc =⇒ υ− = 1− 1

2

( fc

fbc

)2

(49)

From the test data of typical concrete material, the ra-
tio of fbc/fc generally ranges in 1.10–1.20 (Kupfer et
al. 1969), which leads toυ− lying between 0.587 and
0.653. In the present paper, the value offbc/fc is taken
as 1.16, implying thatυ− = 0.6284.

3.3 Application examples
In this subsection, the numerical concrete tests with
the material properties ofE0 = 3.0 × 104MPa,ν0 =
0.20, ft = 3.0MPa,fc = 30.0MPa, andfbc/fc = 1.16,
are analyzed.

Firstly, considering the uniaxial tension (σ1 >

0, σ2 = σ3 = 0), i.e. all the other components of̄Λ
±

are zero only except the non-zero componentΛ̄
+
1111 =

λ+/E0, we obtain the stress-strain relation can be ex-
pressed as

σ1 =











f+
0 ǫ̃

+
0 (0 ≤ ǫ̃+0 ≤ 1.0)

f+
0

( 1

ǫ̃+0

)1+ 1

a
+

(ǫ̃+0 ≥ 1.0)
(50)

where, the normalized straiñǫ+ is expressed

ǫ̃+0 =
ǫ1
ǫ+0
, ǫ+0 =

f+
0

E0
(51)

The above stress-strain diagram is illustrated in Fig-
ure 4 for different values ofa+. It is apparent that, for
the higher value of parametera+, the decays ofσ1 are
the slower, while for progressively lower finite values
of a+, softening is more pronounced.
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Figure 4:Uniaxial tensile stress-strain curves for different
values ofa+.

Secondly, under the uniaxial compression (σ1 =

σ2 = 0, σ3 < 0), all the other components of̄Λ
±

will
be zero only except the non-zero componentΛ̄

−

3333 =
λ−/E0. Under such condition, the uniaxial compres-
sive stress-strain relation can also be obtained as

σ3 =











f−

0 ǫ̃
−

0 (0 ≤ ǫ̃−0 ≤ 1.0)

f−

0 ǫ̃
−

0 exp
(1− ǫ̃−0

ã−

)

(1.0 ≤ ǫ̃−0 )
(52)

where the negative normalized strain under uniaxial
compression is represented by

ǫ̃−0 =
ǫ3
ǫ−0
, ǫ−0 =

f−

0

E0

(53)



The obtained stress-strain relation for different values
of a− is then illustrated in Figure 5. It can be seen
that, the higher value parametera− takes, the slower
the decays ofσ3 are.
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Figure 5: Uniaxial compressive stress-strain curves for
different values ofa−.

The evolution of cyclic stressσ1 = σxx along
the loading directionx against the prescribed strain
ǫ1 (O→A→B→O→C→D→O→B→E→O), is illus-
trated in Figure 6, with parameters ofa+ = 0.50, a− =
6.00. It is clearly seen that, the stiffness degrada-
tion and the unilateral effect during the microcracks
closure-reopening, can be well described by the pro-
posed model.
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Figure 6: Stress-strain curves under cyclic uniaxial
tension-compression.

Finally, the obtained strength envelope under bi-
axial stress states (σ2 = 0) is referred to Figure 7
which agrees fairly well with the one obtained from
the experimental data (Kupfer et al. 1969): not only
the strength enhancements under biaxial compressive
confinement, but also the strength decays due to the
lateral tensile stresses, can be well predicted by the
proposed model.
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Figure 7:Strength envelope obtained under biaxial stress.

In above illustrative applications, the predicted
damages evolute only in the loading directions and
the damages in the lateral perpendicular directions re-
main zero. However, for an isotropic damage model
the damages in all the directions will be same. There-
fore, though the uniaxial and biaxial applications are
very simple, they actually demonstrate the capability
of the proposed elastic anisotropic degradation uni-
lateral model for describing most of the nonlinear
performances of concrete, such as strength softening,
stiffness degradation, decays of compressive strength
due to the lateral tensile stress, strength and ductility
enhancement under lateral compressive confinement,
unilateral effects and damage induced anisotropy, etc.

4 CONCLUSIONS
In this contribution a thermodynamically consistent
stress-based elastic anisotropic degradation unilateral
model is proposed and then applied to concrete mod-
eling. The increases of the intrinsic secant compliance
under the purely positive and purely negative stresses
are adopted as the internal damage variables, and
therefore the hypothesis of strain equivalence or strain
energy equivalence is no longer required. To consider
the unilateral effects, new consistent positive and neg-
ative projection operators are proposed, and the se-
cant constitutive law is then established within the
framework of irreversible thermodynamics. The rate
formulations and the corresponding tangent stiffness
are also derived, which can be employed to develop
standard structure of the classical multisurface return
mapping integration algorithm. Finally, the proposed
model is verified by application to concrete modeling.

The numerical algorithm, and more complex appli-
cations, e.g. the Willam’s test (Willam et al. 1987), the
mixed fracture controlled tests of Nooru-Mohamed,
Hassanzadeh and others (di Prisco et al. 2000), will
be discussed later.
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