
1 INTRODUCTION 

In the analysis of porous geomaterials such as con-
crete or rock, the pressure of the fluid filling the 
pores and the deformation of the porous medium are 
reciprocally affected, which is known as hydro-
mechanical (HM) coupling. An additional degree of 
coupling appears in fractured porous media, since 
besides opening or closing, the discontinuity may 
propagate due to the effect of fluid pressure. These 
discontinuities may naturally exist in the medium or 
may develop through hydraulic fracturing phenome-
na. A hydraulic fracture is a discontinuity that is 
propagated by a highly pressurized fluid. These fluid 
driven fractures can naturally appear in structures 
such as dams or can be human-induced in the injec-
tion of slurried wastes, in grouting operations, to in-
crease the productivity of petroleum reservoirs or to 
measure in-situ stresses in rock masses. HM pro-
cesses in fractured porous medium are of main con-
cern in aquifers, petroleum reservoirs, waste dispos-
al sites, tunnels or slope stability among others. 

From the numerical viewpoint, the solution 
schemes of the HM problem can be approached ei-
ther with a staggered or a fully coupled strategy. In 
the first case, two different codes for the mechanical 
and flow behavior can be used for each problem in 
the context of an iterative procedure. In the second 
(fully coupled) an entirely new code which solves 
simultaneously both systems of equations is used. 

Although extensive literature is available on the 
HM coupled formulation of porous media, HM 

models for fractured geomaterials are not so com-
mon (e.g. Guiducci et al. 2002), and even less com-
mon are the formulations that simulate hydraulic 
fractures in porous materials. In this case few totally 
coupled formulations exist (e.g. Simoni & Secchi 
2003), whereas in the case of staggered formulations 
it is common to combine a finite differences (FD) 
code for the flow problem with a finite element (FE) 
simulator for the mechanics analysis (e.g. Boone & 
Ingraffea 1990). 

This article describes a FEM formulation for the 
HM coupled problem in cracks and discontinuities 
provided the use of zero-thickness interface ele-
ments with double nodes, the use of which for me-
chanical analysis has been well established since 
some time already (Alonso & Carol, 1985; Gens et 
al. 1990; Carol et al. 2001), and for diffusion prob-
lems it has been recently proved to give reasonable 
results in standard problems (Segura & Carol 2004). 
The use of the same joint element for both flow and 
mechanical problems is numerically convenient. The 
article finishes with the numerical simulation of two 
problems: a hydraulic fracture case and a series of 
wedge splitting tests performed on concrete speci-
mens under the influence of pressurized water that 
penetrates into the crack (Brühwiler & Saouma, 
1995). 
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2 HM COUPLED EQUATIONS 

The problem of fluid flow in a deforming porous 
medium is extensively treated in literature (e.g. Lew-
is and Schrefler 1998) and it is briefly mentioned 
here. The FEM equations that describe the coupled 
behavior of discontinuities are schematically intro-
duced in this section. For a full and detailed descrip-
tion of the HM interface formulation the reader is re-
ferred to Segura and Carol (2007). Small-strain 
theory, isothermal equilibrium and negligible inertial 
forces are considered. Positive tension is assumed as 
in conventional continuum mechanics analyses.  

2.1 Mechanical equations 

The mechanical behavior of a saturated porous mate-

rial is described through combination of the linear 

momentum balance equation, the effective stress 

principle, the constitutive relationship for the solid 

phase, and the compatibility equation. 
The mechanical formulation of a saturated dis-

continuity is developed in its mid-plane considering 
the effective stress principle and the constitutive re-
lationship between the stresses and the relative dis-
placements of the discontinuity walls (normal and 
tangential), which give:  

mpd dp dJ mp mpD a m f   (1) 

where DJ is the constitutive matrix, a is the relative 
displacement vector, mmp is a vector that introduces 
the influence of fluid pressure in the normal direc-
tion, pmp is the fluid pressure at the mid-plane and 
fmp are force exchanges with the surrounding con-
tinuum medium per unit area of discontinuity. 

The constitutive relationship is an important as-
pect of the discontinuity formulation and its choice 
depends on whether it is a pre-existing discontinuity 
(rock mechanics, e.g. Gens et al. 1990) or a develop-
ing crack (fracture mechanics, e.g. Carol et al. 1997, 
Caballero et al. 2006). 

2.2 Hydraulic equations 

The mass balance equation for water is combined 
with the general form of Darcy’s law to describe the 
hydraulic behavior of the porous medium under the 
influence of the solid skeleton deformation. 

In the case of flow in a saturated discontinuity, 
the same equations are posed along its mid-plane, 
leading to: 
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which is an analogous formulation to the one devel-
oped in Segura & Carol (2004), and where pmp is the 
fluid pressure at the mid-plane, an is the joint aper-
ture, q+ and q – are leakage fluxes from the surround-

ing porous medium, and Tl is the longitudinal 
transmissivity tensor of the discontinuity, which is 
highly dependent on the aperture and can be approx-
imated through the cubic law (Snow, 1965). The cu-
bic law basically assumes that flow along a disconti-
nuity is laminar and occurs between a couple of 
smooth parallel plates, which makes the transmissiv-
ity proportional to the cube of the discontinuity aper-
ture: 
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where g is the gravity acceleration and  is the fluid 
kinematic viscosity. 

A fluid pressure drop between the two discontinu-
ity walls (i.e. transversal to the discontinuity) is also 
considered. This pressure drop is related to a trans-
versal flow through a transversal conductivity coef-
ficient Kt (Segura & Carol, 2004): 

t tq K p   (4) 

where p is the pressure drop between both sides of 
the discontinuity. 

2.3 FEM formulation 

The HM coupled equations are discretized in space 
using the FEM and considering the nodal displace-
ments (u) and nodal fluid pressure (p) as the main 
global unknowns. Standard finite elements are used 
for the continuum porous medium, and zero-
thickness interface elements with double nodes are 
used to properly discretize and represent the HM be-
havior of each pre-existing discontinuity or develop-
ing crack (i.e. discrete crack approach). 

In order to extend the formulation of the interface 
element from the mid-plane to the real element 
nodes located at the walls, it is assumed that the flu-
id pressure in the mid-plane of the joint is the aver-
age of the fluid pressure at the boundaries: 
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where the subscripts u and l stand for upper and 
lower discontinuity walls. This assumption has 
proved to be reasonable in a standard diffusion prob-
lem in Segura & Carol (2004) in comparison with 
other interface elements for flow problems, although 
in some special occasions a triple-nodded interface 
element (Guiducci et al. 2002) would be necessary. 

Following standard FEM procedures one can 
reach similar expressions for the continuum and the 
interface elements. After assembly, the following 
equation is obtained (Segura & Carol, 2007): 
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where u and p are the displacements and fluid pres-
sure at nodes, E is the permeability matrix, Q is the 
coupling matrix, S is the compressibility matrix, K 
is the stiffness matrix, and fu and fp are the right 
hand side force and flow vectors that include the 
gravity action as well as the influence of distributed 
loads and flows at the domain boundaries. 

This set of equations is discretized in time using 
the finite differences method; the values of u and p 
are linearized within a time step: 
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where the value of θ determines the time integration 
scheme. The following equation is reached, which 
determines the nodal displacements and fluid pres-
sure at a given time step n+1 relative to their values 
at previous time-step n: 
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3 NUMERICAL STRATEGIES 

As already mentioned in the introduction, several 
numerical techniques can be employed to solve the 
system of equations (8). One option is to solve it 
simultaneously, what is known in the literature as a 
monolithic or fully coupled strategy. Due to the 
highly non-linearity introduced by the dependence 
of the permeability matrix on the cube of the dis-
placements, advanced iterative techniques may be 
needed. 

The staggered procedure splits the system of 
equations (8) into two equations to be solved in a 
staggered manner: 
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where (un+1)
k and (p n+1)

k are the predictors of the 
solution at iteration k. Of course (un+1)

k is the last 
solution available of (9) , and (p n+1)

k is the last 
available solution of (10). Provided the introduction 
of the appropriate coupling loops, the solution of the 
coupled system is obtained by iteratively solving 
equations (9) and (10) with a geomechanical code 
and a fluid flow simulator respectively until a certain 
tolerance on the solution is satisfied for each time 
step. 

4 APPLICATIONS 

The features and capabilities of the formulation are 
illustrated with two examples: a hydraulic fracture 

problem and a series of wedge splitting tests per-
formed on concrete specimens and that introduce the 
effect of fluid pressure on the propagating crack 
(Brühwiller & Saouma, 1995). 

The staggered strategy makes use of the codes 
DRAC and DRACFLOW developed at the UPC Ge-
otechnical Engineering Department and which fol-
low the discrete crack approach to respectively solve 
the mechanical and the hydraulic problems in frac-
tured medium. A new code, based on the two previ-
ously named, has been built up to solve the system 
of equations (8) simulataneously (i.e. fully coupled 
approach). 

The following predictor (Saetta et al. 1991) is 
used for the pressure field in the staggered proce-
dure: 

 1 1     where    0 1k k k kp = p p p       (11) 

where the subscript k stands for iteration. 
Interface mechanical behavior is reproduced by 

means of a work-softening elasto-plastic constitutive 
law that incorporates two fracture energies Gf

I and 
Gf

IIa. This constitutive model is described and ana-
lyzed in detail in Carol et al. (1997), and has been 
used in many other analyses (e.g. Carol et al. 2001, 
Caballero et al. 2006) involving 2D and 3D crack 
opening and propagation. Fluid flow behavior along 
the opening discontinuity is assumed to follow the 
cubic law. 

4.1 Hydraulic fracture phenomenon 

The first problem analyzed (Boone & Ingraffea 
1990) consists of injecting fluid along an incipient 
crack located at the lower left corner of the domain 
(Fig. 1). This produces the propagation of a fracture 
along the lower boundary, where the zero-thickness 
interface elements have been inserted. As a prelimi-
nary analysis to the transient case, the problem is 
studied in steady-state conditions, i.e. analyzing 
which would be the ultimate length of a fracture for 
a given flow injection that is progressively in-
creased. 

 
 

 
 
 
 
 
 
 
 

 
 

Figure 1. Scheme of the hydraulic fracture problem. 
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The two numerical strategies (staggered and fully 
coupled) are used, reaching very similar results. 
However, it has to be noted that the convergence of 
the staggered procedure needs considerable itera-
tions in advanced stages of the analysis. Therefore, a 
fully coupled formulation of the problem would 
seem more desirable. 

Figure 2 shows the development of the crack as 
the injected fluid flow is increased. Figure 3 shows 
how once the fracture has reached a sufficient de-
velopment, the pressure profiles at the injection zone 
change and the fluid enters the porous medium along 
all the open fracture length. At the same time, and in 
connection to that, the fluid potential drop along the 
open fracture is very low. 
 

 
 

 
 
 
 
 
 
 
 

Figure 2. Fracture propagation (deformed mesh). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Hydraulic head (m) profiles. 

 

4.2 Fluid pressurized wedge splitting tests 

The fully coupled approach is used to reproduce a 
series of wedge splitting tests under the effect of 
pressurized fluid within a developing crack shown in 
Brühwiller & Saouma (1995). This series of tests 
was continued and further studied by Slowik & 
Saouma (2000), who take into account the influence 
of other factors such as the loading rate. 

This work concentrates on the former experi-
ments by Brühwiller & Saouma (1995), but a more 
extensive discussion including also comparison with 

the experimental results by Slowik & Saouma 
(2000) can be found in Segura & Carol (2007). 

The experiment consists in simultaneously apply-
ing two independent loads in the concrete specimen: 
a mechanical splitting force (F), and an internal wa-
ter pressure (σw) applied through the injection of 
fluid at the mouth of the notch. This experiment has 
its application on dam engineering, and it reproduces 
the effect of the external hydrostatic water pressure 
acting on the upstream face of a dam (F) and the ef-
fect of the fluid pressure that penetrates into the 
crack (σw). The fluid pressure at the notch is kept 
constant during the experiment at σw0. The concrete 
specimens geometry is shown in Figure 4. 

 
 
 
 
 
 
 
 
 

Figure 4. Experiment geometry for the wedge splitting tests 
(Slowik & Saouma, 2000). 

 
 
The experimental results depicted in Figure 5 show 
that as the fluid pressure at the notch is increased, 
the maximum splitting force values (Fs,max) and the 
corresponding crack mouth opening displacement  at 
Fs,max both decrease as it would be expected, since 
the fluid pressure is helping to split the specimen. 
The descending branch is also steeper as the fluid 
pressure is increased. The real fracture properties are 
determined from the reference curve (i.e. with no 
fluid pressure). The remaining curves provide appar-
ent fracture toughness and fracture energy, which 
decrease as the applied fluid pressure increases. 
These apparent properties could be used in a purely 
mechanical analysis to account in an indirect manner 
for the effect of fluid pressure. However, if a cou-
pled analysis is performed, the reference properties 
of the material should be used, and the effect of wa-
ter pressure should be naturally captured by the hy-
dro-mechanical coupled model. 
 

 
 

 
 
 

 
 
 
 
 

Figure 5. Splitting force against CMOD experimental curves as 
function of hydrostatic pressure (Slowik & Saouma, 2000) 
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Figure 6 shows the numerical results obtained with 
the HM coupled approach described in previous sec-
tions. Comparing these results with Figure 5, we can 
see how the model captures the effect of fluid pres-
sure on the mechanical failure of the specimen. 
 
 
 
 

 
 
 

 
 
 
 
 
 

Figure 6. Splitting force against CMOD numerical curves as 
function of hydrostatic pressure. 

5 CONCLUDING REMARKS 

The HM coupled problem in jointed or susceptible 
of fracturing porous materials has been formulated 
by means of the Finite Element Method with inter-
face elements of “zero-thickness” and double nodes 
to discretize and describe the HM behavior of dis-
continuities. Poro-elasticity is assumed in the porous 
medium, which is discretized with standard finite el-
ements. The main unknowns for both types of ele-
ments (continuum and interface) are the fluid pres-
sure and the displacements at the nodes. The double-
node interface element also incorporates a transver-
sal potential drop trough the discontinuity. 

Two different numerical strategies are analyzed 
to solve the system of equations that govern the 
problem: the fully coupled and the staggered ap-
proaches. 

Preliminary results on fluid-driven fracture have 
been obtained, which satisfactorily reflect the phys-
ics of the process. The fully coupled approach has 
been used to properly describe the failure of con-
crete specimens under the influence of fluid pres-
sure. 

More details on the work described herein, as 
well as additional examples may be found in Segura 
& Carol (2007). 
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