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ABSTRACT: The propagation of a single crack in a disordered material is theoretically investigated. Restrictin
first our analysis to perfectly brittle materials, we show within the framework of the linear elastic fracture
mechanics that a crack is described by two independent equatiopath/&qguation, that gives the trajectory
followed by the crack within the disordered material, anmdaéion equation providing the local velocities along

the crack front during its propagation. Theoretical predictions resulting from the path equation are found i
good agreement with the statistical properties of experimental rough fracture surfaces resulting from perfec
brittle fracture. The motion equation is then studied and predictions for the crack growth velocity dependen
with the applied stress intensity factor are given. The path and the dynamics of a crack propagating in a qua
brittle material is also discussed using a natural extension of the previous description that takes into account
effects of damage and microcracks.

1 INTRODUCTION of elasticity.
Recent experimental results suggest in fact the exis-

The fracture of disordered media represents an iMgnee of second class in failure problems: Fracture
portant applied problem, with intriguing theoretical

aspects of the failure of heterogeneous media (Rou; : N
& Herrmann 1990: Bouchaud et al, 1993). In par_?ﬁvolvmg non-linear processes such as damage and

! microcracks in quasi-brittle materials was suggested
ticular, the morphology of rough fracture surfaces as reqyit in rougher fracture surfaces with= 0.75 as

well as the spatio-temporal evolution of an interfacialfOr mortar (Mourot et al. 2005) and wood (Morel et al
crack front are found to exhibit scaling laws charac- ' '

terized by exponents the value of which depends very, thié article, we extend a model (Bonamy et al.

weakly on the materials (Bouchaud et al. 1990; Mal@Y,qn6 pased on Linear Elastic Fracture Mechanics

et al. 1992; Ponson et al. 2006a; Ponson et al. 2006b; -, Iy
Maloy et al. 2006). For example, the height-height?LEFM) originally proposed to reproduce the statisti

X : cal properties of fracture surfaces resulting from brit-
_ - 2\1/2 R .
correlation functiom\i = ((h(z + Az) — h(2))%). tle fracture of heterogeneous materials (Section 2).

computed on fracture surfaces perpendicularly 10 the\, jyterpretation of the morphology of broken quasi-
direction of crack propagation is observed to scale agjie material surfaces is then proposed. Then we in-

~ AsC i . . .
Qh NAZ \;vhere Fge roughn$ss exp_olner%thls found tq e gtigate theoretically the dynamics of the crack front
¢ = 0.75 for ap’l\” € ranghe 0 matelr(ljads. ebse Fr’]mp' Section 3). In particular, a relation between the mean
erties suggest that one theory could describe the Staz, o, growth velocity to the applied stress intensity

tistical properties of a crack propagating in any disor, oo i proposed for a perfectly elastic material. The
dered material. This theoretical description should b ;<o o guazi-brittle ma?erials é then discussed. The

able to depict the competition between two antagonisky herimental investigation of such a relation is cur-

aspects that govern such a phenomenon. The structuignyy nder progress and the results will be published

and the microstructural material properties that are ing|sawhere.

homogeneous and the stress field that follows the law



2 PATH EQUATION sion withk > —1 (Irwin 1958)

117

In this section, the path followed by a single crack ¢;; = Z g;J(e) +Tp/§;j(9) +Apl;',j(0)\/?+
propagating in a disordered material is theoretically p—1 V21T
investigated. At first, we will focus on perfectly brittle (1)

material so that the theoretical framework of LEFM Where K,(M) (stress intensity factors),,(M) (-

can be used. We restrict the following analysis to thestress) andi, (1) are depending on the remote load-
case where the crack speed is small enough coning, the geometry of the sample, the shape of the
pared to the sound speeds — speed of longitudicrack front, and the coordinateof the pointM. The
nal, transverse and Rayleigh waves — in the materidlunctionsg? (), k7 (¢) andl?/ (9) are universal. Even
so that the quasi-static approximation is relevant. Athough we "focus here on adomlnantly mode | loading
pure mode | loading is considered. The crack frontsituation,K’;; andK;;; are not equal to zero. The per-
(oriented along the-axis) is thus confined roughly turbationsh and f of the crack shape induce a small
to a plane(z, z) perpendicular to the tensile forces shearing loading around the crack front.

(along they-axis) and propagates along theaxis. The path chosen by the crack in M is the one
In a homogeneous material, the crack would propfor which the local stress field is of mode | type
agate at spatially uniform velocity within a plane, ("criterion of local symmetry”) (Gol'dstein & Sal-
the plane(z,z). But the heterogeneities of the ma- ganik 1974; Cotterell & Rice 1980; Hogdon & Sethna
terial induce bothn-plane f(z,t) andout-of-plane ~ 1993). In other words, the net mode Il stress in-
h(x = o + f(2,t), 2) perturbations in the crack front. tensity factorK;; should vanish in each location
Schematic views of the in-plang(z,t) and out-of- along the crack front and any positienof the mean
planeh(z = xo + f(z,t), z) displacements are shown line, the effect of the mode Il on the crack path be-
in Figure 1. For simplicity, the out-of-plane pertur- ing here neglected. To first order iz, z), six con-
bations have been represented for a crack front withtributions should be taken into account in the eval-
outin-plane perturbationg'(z, ) = 0). The morphol- uation of K;;. The four first contributions are in-
ogy of fracture surfaces is then a direct measuremerftuced by the out-of-plane perturbatiohsz,z) of

of the out-of-plane perturbations(x, z). For small the crack and have already been calculated (Ball &
enough perturbations, the out-of-plane displacementsarralde 1995; Mochvan et al. 1998) in the limit
are independent of the in-plane displacements so th&f small perturbationg(z, z). The fifth contribution
the shape of the fracture surface can be predicted irgrises from inevitable imperfections in the loading
dependently of (z,t). On the other hand, this implies system or the crack alignment so that the applied
that the dynamical properties of the crack — the localoading is not in pure mode | and a small exter-
velocities of the crack frongf (>, ¢) — investigated in hal mode Il loadingK 7y < K7 is applied to the

Section 3 are decoupled from the crack piath, z). experimental sample. The sixth contributions is due
to the heterogeneous nature of the material and is

_ _ modelled by a quenched uncorrelated random field
Let us consider a poinfi/ of the crack front f, — _ get/on; o p)written, without loss of gen-
characterized by its positiow = zo + f(2,%),y =  erality, as the sum of two uncorrelated random fields

h(x,z),z). The local stress field aroundl/ deter- 1) prext :
mines its trajectory. The stress at a distanahead ggﬁplgWitﬁfpéizs(ggE]Z,é]%t;né(ﬁéxg)gl[sﬂna”y’ for a

of the pointM in the directiord can be written as the
sum of the contributions of each of the three fracture Kext

K?Xt —3v x,2)
modes, each mode being developed a&/aexpan-  Kir = ~5—58 — 525 [ b (Z Zh( dz' + AR
+\/5Arh(z,2) + Kt — =4 KP (g2, h) + m(z,2)
(@ vt ¢ (b) ) (2)

One can show that the third and fourth contributions
are negligible (Larralde & Ball 1995; Ponson 2006d)

z so that the criterion of local symmet#y;; = 0 leads
* f(Z,t) * h(X,Z) to
oh h(z')—h(z)
Figure I Geometry of perturbed cracks subject to mode | Ioad-% - A”/ (z’ _ 2)2 dz’ + UQ(’Z’ h) + nt(z’ x) +Fo
ing (large arrows indicating the direction of macroscopiad- (3)
ing). (a): In-plane perturbations. (b): Out-of-plane pebations.  where A, = 71722 W and Fy = 2K/ K < 1 are

The shape of the fractpre surface is effectively the histdthe  constants. In other words, the morphology of the frac-
out-of-plane perturbations of the crack front. ture surfaceh(z,z) is given by the motion of the



elastic stringh(z) that "creeps” — ther coordinate local toughness<;. = K? — n(z, f(z,t)), Equation
playing the role of time — within a random poten- (4) yields to

tial 1j4(z, h) due to the "thermal” fluctuationg(z, ). o

Thus, the line — and so the fracture surface — is self- a5 (Ko — K9) + KQIW I f(z(,t)—f(z,w ds

affine so that its height-height correlation function Sz fe) 2 —z)? (5)

scales as\h ~ Az¢ where the exponent depends
only on the range of the elastic interactions along the Tp¢ morphology of the crack front as well as the

line. They are long-ranged, characterized by a kergiagistical properties of its local velocities have been

nel decreasing ab/r?. Therefore, one gets~ 0.39  \idely studied both from the experimental (Schmit-
(Rosso & Krauth 2002; Vandembroucq & Roux 2004;,|'g, Malgy 1997; Malay et al. 2006) and the the-

Kolton et al. 2006). This result is in fairly good agree- 5 atical point of view (Schmittbuhl et al. 1995). Ac-

ment with experimer)tal observations of fracture sur- ording to Equation (5), the projection of the front on
faces reported for brittle glass ceramics (Ponson et ajhe mean crack plane is expected to display a self-

2006¢) and sandstone (Boffa et al. 1998). affine geometry characterized by the roughness expo-
Let us now discuss the morphology of fracture sur-pent ¢, — 0.39. Until now, experimental investiga-
faces of quasi-brittle materials that are characterizeg,5 mainly performed on interfacial cracks in Plexi-

by a higher roughness exponegnt- 0.75. Inthis lat- ¢35 and crack front in metallic alloys have led to a
ter case, the material cannot be considered as line rger value¢ ~ 0.5 — 0.6. However, the relevance

elastic anymore. In front of the main crack, the pro-o¢ the Jinear elasticity to model crack propagation in
cess zone made of various microcracks modifies thg,ch materials can be questioned. Here, we will fo-

main crack path and so the geometry of the resulty,q on the averaged velocity of the crack front that is

ing fracture surface. It appears natural to COnjecturgy higher interest for direct engineer applications. In-
that the induced "porosityscreens thle.laSt'C INter-  geed, from the motion equation (Eq. (5)), it is possible
actions making the elastic kerngl-**" in Equation 5 gerive the relation between the applied stress inten-

H 2 _ K . .
(3) decreasing faster than the oe™ (« = 1) €~ gjty factor K and the main crack growth velocity
pected for sane linear elastic materials (Bonamy et al. of

2006). An "arbitrary” valuey ~ 1.5 — 1.7 would then ek = ()t , .
aIIow)to account fgr the value af ~ 0.75 (Tanguy From the Equation (5), one can show (Barabasi &

. Xt
et al. 1998) observed for quasi-brittle materials. Un-itgﬂliecgll\?jﬁ ’ KF T?riaglfi)28zggag;;%’kr?frsor:tai!ergitnhr?end
derstand!ng hovv_damage screening can select suph %9 the microstructural obstacles of the material while
effective interaction range in crack problems provide

She crack front propagates withac > 0 for K&t >
S : o ¢
a significant challenge for future investigations. K + AK}, (The cUnvevgaa K ) is represented in

dashed line in Figure 2). This so-called depinning
3 MOTION EQUATION , , . transition from a pinned to a moving state only occurs
We focus now on the dynamical properties of a sin-gt zer0 temperature. Fat > 0, crack propagation is

gle crack propagating in an heterogeneous _rnaterlaE|WayS possible even at [0 — K . In that case,

At first, let us address the case of an elastic matemq jine can overcome energy barriers through thermal
rial. As mentioned in Section 2, dynamics and tra-actjyation. Taking in consideration both the geometry
jectory are decoupled according to linear elastic fracys the line at finite temperature as well as the "energy

ture mechanics. In other words, the time evolution Oflandscape” one can show (Nattermann 1990) that the

the crack is given by its in-plane deformatiffiz,t)  |ine creeps through the disordered media with a ve-
while its trajectoryh(z, z) is set by Equation (3). To locity:
derive a motion equation of the crack, one can there- Co 1

fore neglect its out-of-plane perturbation so that a Verack~ € | FPER”

(6)
crack propagating through a 3D material and an inter- o ]
facial crack propagation correspond to the same phyé’yhere the exponentis given by (Kolton et al. 2006):

ical situation. The latter case has already been studied 1—a+2(
(Gao & Rice 1989) and the elastic interactions along = = (7)
the crack front were shown to be long-ranged (with @ = Geg

a = 1) 50 that the local stress intensity factor is glVenHere,oz is the range of the elastic interactions along

by the line @ = 1 for a linear elastic material) and, is

K& (1) — f(z,0) the roughness exponent at equilibrium giverchy=
Ki(z,t) = K+ 2; / EEE dz' (4) 2 (Nattermann & Rujan 1989). Thus, one gets:

Starting from the natural motion equation= ‘?)—f ~ 3 -« 8)

K; — K., and assuming local fluctuations Within the H= 2a



Nv

crack

dynamics characterized by scaling laws. We have pro-
posed here a description based on two decoupled
equations: Apath equation that describes the out-of-
plane perturbations of the crack — and therefore to
the geometry of the fracture surface — anthation
equation that predicts its in-plane perturbation that
rules the dynamical properties of the whole crack. The
case of crack propagation in brittle materials was first
treated and linear elastic fracture mechanics was used
to derive these two equations. The case of quasi-brittle
> materials was then discussed and the main physical
differences with the elastic case were pointed out. The

KIUC KI|]¢'+ AKIC

_ o _ _main results of this work can be summed up as the fol-
Figure 2 Variation of the mean velocity of the crack front with lowing:

respect to the applied external stress intensity factoni fiem-
peraturel’ > 0. The dashed curve corresponditc= 0.

For a perfectly brittle materialsy(= 1), Equation
(8) yields top, = 1 so that the crack growth velocity
Cq

. . T KEeXT_ 0

is expected to increase agack ~ ¢ 1 “re. These
variations are represented in Figure 2 in solid line. Ex-
perimental works performed on brittle ceramics and
rocks are currently in progress to test this relation. Let
us note that this formula could have interesting en-
gineer applications because life-time of structure are

(i) In brittle materials, for a slow crack propagation

under mode | loading, the out-of-plane pertur-
bations of the crack are given by a creep equa-
tion of an elastic line with long-ranged elastic
interactions (Eq. (3)). The resulting roughness of
fracture surfaces is self-affine, characterized by
a roughness exponeqt= 0.39 in good agree-
ment with the experimental results reported on
surfaces of broken brittle materials (Boffa et al.
1998; Ponson et al. 2006c).

often directly linked with the growth velocities of pos- (ii) The in-plane perturbations of the crack are de-

sible cracks.

Let us now discuss the case of quasi-brittle materi-
als. In Section 2, we have suggested that the presence
of damage and microcracks ahead of the main crack
could screen the elastic interactions yielding to ef-
fective elastic interactions decreasing faster along the
front (« ~ 1.5 — 1.7) than in the elastic casex (= 1).

This effect may also be relevant to describe the role
of damage on the in-plane perturbatignand thus
the dynamics of the crack. Indeed, the observation
interfacial cracks with a roughness characterized by
¢ ~ 0.5 — 0.6 is much closer to predictions of models
with shorter range interactions. In the case of screened
elastic interactions, one expects therefore, according
to Equation 7, lower values @f ~ 0.4 — 0.5. In addi-

tion with its evident practical interest, measuring the
variation of the crack growth velocity with the exter-
nal stress intensity factor for brittle and quasi-brittle
materials may be a way to probe the range of the elas-
tic interactions along the crack front. An experimental
study of the creep motion of cracks in concrete speci-
men is currently under progress in this direction.

scribed by a pinning/depinning equation (Eg. 5)
which also sets the local velocities of the front.
We go further than previous analyses (Schmit-
tbuhl et al. 1995) and derive the relation between
the mean crack growth velocity,x and the ex-
ternal applied loading<®". This relation (Eq.
(6)) is a stretched exponential characterized by
the exponent: = 1 for the case of brittle failure.

O@ii) The case of crack propagations in quasi-brittle

materials has been discussed. The screening of
the elastic interactions caused by the presence
of damage and microcracks ahead of the main
crack front is proposed to be the mechanism re-
sponsible for the differences observed with the
linear elastic case. Changing the range of the in-
teractions along the crack accounts for the higher
roughness exponegt~ 0.75 observed on frac-
ture surfaces of quasi-brittle materials. More-
over, we conjecture that the relation between
verack and K is still valid, but with ; ~ 0.4 —

0.5 to take into account the change in the range
of the elastic interactions.

4 CONCLUSIONS An experimental study performed on both brittle
The behavior of a single crack propagating in a disorsandstones and quasi-brittle concretes is currently un-
der material represents an interesting challenge bottier progress to test the proposed relation between
from the fundamental and applied point of view. Con-crack growth velocity and applied loading. The exper-
trary to the case of an homogeneous material, themental investigation of crack dynamics in disordered
crack is observed to deviate from a straight line resultmaterial is of great interest because it could validate
ing in rough fracture surfaces and intermittent crackthe pinning/depinning description of front motion, but



because also this could provide an efficient theoretical
tool to predict crack growth velocity in materials and
therefore life-time of structures.
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