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ABSTRACT: Applying the principles of the eXtended Finite Element Method a partly cracked cohesive element
is developed. The element is based on a double enrichment of the standard displacement field, which allows
the element to model equal stresses at the both sides of the crack in the crack-tip element. The formulation
is implemented for the 3 node constant strain triangle. A general stress calculation in the cracked elements
is presented, the principle is based on an area weighting of the stresses in the cracked elements, which gives a
continuous transition to the uncracked respectively the fully cracked element. The performance of the developed
element is tested in a Three Point beam Bending Test, where the partly cracked element gives a good over all
structural response. Furthermore the partly cracked element gives results without the often seen zigzag behavior
on the load-deflection curve.

1 INTRODUCTION

When analyzing discrete cohesive crack growth the
eXtended Finite Element Method (XFEM) (Be-
lytschko and Black 2003) is an effective tool with
its ability to contain a discrete jump in the displace-
ment field and thereby allowing crack growth without
remeshing. As pointed out by (Jirasek and Belytschko
2002) XFEM has some clear advantages compared to
the Embedded crack models, especially the ability to
model independent displacements and strains in the
separated parts.

Applying fully cracked XFEM elements the strains
are modeled independently on each side of the crack
except for the element containing the tip. In the tip-
element the displacement discontinuity must vanish at
the edge where the tip is located, see figure 1. This is
secured by setting the discontinuity degrees of free-
dom (DOF) equal to zero at this edge, leaving a re-
duced number of DOF’s for modeling of the strains in
the tip-element.

For the CST element only one DOF is active and
therefore the case where equal strains and stresses are
present at both sides of the crack cannot be modeled,
see figure 2(a). This lack of modeling capability in
the tip-element is inflicting on the stress distribution
in the vicinity of the crack tip. This causes a zigzag
crack pattern and also the overall load-displacement
response will suffer and the result is some zigzag be-
haviour, see e.g. (Asferg et al. 2006b). A partly rem-

edy for this problem is to apply a non-local concept
for the determination of the stresses.

(a) (b)

Figure 1: Discrete discontinuities in deformed finite
element meshes. a) Real deformations in plane stress
b) Deformations shown perpendicular to the unde-
formed element mesh

(a) (b)

Figure 2: Discontinuous displacement fields in tip el-
ement a) One enriched DOF b) Two enriched DOFs
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When e.g. applying an arclength procedure for the
solution of the nonlinear problem it is essential to
be able to determine a solution in equilibrium at any
stage on the load-displacement path. Therefore it is
necessary to be able to model the crack-tip at any po-
sition in the mesh and thereby the need for a partly
cracked XFEM element is evident.

A crack-tip element has been proposed by (Chen
2003), and further developed by (Zi and Belytschko
2003). In this work an appealingly simple displace-
ment field has been suggested however as for the fully
cracked element only one discontinuity DOF is ac-
tive when considering CST element. The element is
therefore not able to model equal stresses on both
sides of the crack. A direct handling of the lacking
modeling capabilities has been presented by (Asferg
et al. 2006a) for the CST element by suggesting a dis-
placement field based on an additional enrichment,
whereby the element is able to model the same stress
on both sides of the crack. By this approach a smooth
crack path and load-displacement curve is obtained.
The generalization of the work by Asferg to higher or-
der elements has turned out to be difficult. Therefore
a new approach is suggested in which the additional
enrichments appear in a more systematic way. The re-
sulting additional enrichments for the CST element
are identical for the work by Asferg and the present
formulation but the generalization to higher order el-
ements is more direct in the present formulation. In
the present formulation the element can be used both
as partly and as fully cracked.

2 CONCEPTUAL MODEL
2.1 Displacement field
The displacement field is defined in two parts a con-
tinuous and a discontinuous. The two contributions is
introduced in the standard FEM notation as

u(ζ) = Nc(ζ)vc + Nd(ζ)vd (1)

Where u is the displacement vector, Nc is the con-
tinuous interpolation matrix, Nd is the discontinuous
interpolation matrix, vc is the continuous DOF vector
and vd is the discontinuous DOF vector.

The discontinuous part of the displacement field
is defined on the basis of the known continuous dis-
placement field, which automatically makes it fulfill
the general compatibility rules. A further restriction
is introduced. The discontinuous part is not allowed
to have any contributions on the element boundary to-
wards non enriched elements. This restriction makes
the group of enriched elements compatible with the
surrounding standard elements, and ensures that only
enriched DOFs are needed in cracked elements.

To fulfill the zero condition on the boundary for
the discontinuous displacement field, a modification

is needed. This is introduced through the Heaviside
step function. If an element is divided into two parts
by a crack, the Heaviside function HND for the re-
spective node ND is defined to be zero on the same
side of the crack as the node. The discontinuous inter-
polation is introduced in a node wise multiplication
of the continuous interpolation with such Heaviside
functions

Nd(ζ) =
∑
ND

HND(ζ)Nc
ND(ζ) (2)

Thereby the discontinuous displacement field be-
comes zero on the boundary. This can be visualized
in one dimension, as shown in figure 3.

× =

(a) (b) (c)

Figure 3: Introduction of a discontinuity in one di-
mension; (a) the standard displacement field, (b) the
Heaviside step function, (c) the discontinuity with the
value of zero at the outer boundary

2.2 Double enriched triangular element
When a partly cracked element is introduced it is im-
portant that the element can model two independent
stresses at the crack-tip, see figure 2(b). Furthermore
the formulation for the fully and the partly cracked
element should be compatible. This will allow the
crack to propagate with a continuously growing DOF-
vector.

As mentioned, the fully and partly cracked tip ele-
ments by (Zi and Belytschko 2003) had only one dis-
continuous DOF to model the stress state at the crack-
tip when considering CST elements, see figure 2(a).
In order to model equal stresses at both sides of the
crack at the crack-tip a further enrichment of the dis-
placement field is needed, see figure 2(b).

This is introduced by an additional triangle defin-
ing a second discontinuous displacement field. This
principle is shown in figure 4, where the discontinu-
ous displacement field is composed of contributions
from the two triangles D1 and D2. The partly cracked
case is shown where only two discontinuity DOFs are
active. The displacement field is now seen to be able
to give equal stresses at both sides of the crack at the
crack-tip.

The two introduced discontinuity triangles and the
discontinuity itself is sketched in figure 5, where a
systematic numbering is introduced.

Each of the two discontinuity triangles have their
own set of discontinuity DOFs. In general the two
discontinuity triangles gives six shape functions. The
fully cracked case is now considered, meaning that
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D1

D2

+
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Figure 4: Principle of the double enriched displace-
ment field for the partly cracked CST element.

Figure 5: Part and numbering for the partly cracked
CST element

part 1,2 and 3 in figure 5 is collapsed. Figure 6 shows
the six shape functions, where each of the discontinu-
ity DOFs are set to unity. When the element is fully
cracked it is necessary to define on which side of the
crack the discontinuity DOF in node 7 is. In this case
the same side as node 1 is chosen.

(11)

(12)

(13)

(21)

(22)

(23)

Figure 6: The six shape functions for the double en-
riched CST-element

Two sets of the presented shape functions are seen
to be dependent, meaning that two of them should be
cancelled. In this case 22 and 23 are cancelled. The
four remaining shape functions are all independent. A

closer look at 12, 13 and 21 shows that they are side
local, while 11 gives contributions on two boundaries.
The four shape functions can be seen as a basis for the
discontinuous displacement field i.e. a combination of
them will still represent the same basis. Therefore 11
is redefined by subtracting 21 from 11. A new side
local basis has now been defined for the discontinuous
displacement field, which is shown in figure 7.

The discontinuous DOFs are organized in nodes on
the sides of the triangle. Each of these nodes repre-
sents a discontinuous shape function as shown in fig-
ure 7. When the crack propagates from one element
to another only the discontinuity DOFs on the cur-
rent side activates. This actually shows that the system
DOF vector grows continuously.

(2)

(1) (3)

(4)

Figure 7: Discontinuous shape functions for the CST
element using a side local basis

2.3 Shape functions
In each of the triangles the shape functions are the
usual CST shape functions

f1 = ζ1 f2 = ζ2 f3 = ζ3 (3)

These are determining the displacement contribu-
tion in each of the three triangles 123, 237 and 236
shown in figure 5.

2.4 Discrete Cohesive Crack
A discrete cohesive crack is running through the
structural domain Ω with the boundary Γ defined in
the usual right-handed rectangular coordinate system
(x,y,z), in this case a plane stress problem in the xy-
plane, as shown in figure 8. A set of definitions are
needed. The crack is running from S to T . The gen-
eral curve from T to S defines the local crack orien-
tation s as tangent to the crack curve and n defines
the normal to the crack, where n is set so (n,s,z) is a
usual right handed coordinate system. Positive n co-
ordinates defines the positive side of the crack.

At the crack faces the stress state constitutes a
normal stress σn and a shear stress τns, with corre-
sponding opening ∆un = u+

n − u−n and tangential slip
∆us = u+

s − u−s .
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Figure 8: Notation for the implementation of the co-
hesive crack in a finite element model. Visualized
with vanishing shear stresses on the crack faces.

Having the cohesive crack in the FEM model leaves
a part of the virtual internal work to be performed in
the the crack. This work is done by σn with ∆un and
σs with ∆us. This leaves the variational formulation
as described below.

2.5 Generalized Stresses and Strains
By looking at the incremental virtual internal work of
the uncracked part of the structure the usual format is
found

δW i = σxδεx + σyδεy + τxyδγxy

= σδε (4)

Defining the generalized stress and strain vectors as

σ =

[
σx

σy

τxy

]
ε =

[
εx

εy

γxy

]
(5)

For the crack the incremental internal virtual work
is formulated as

δW i = σnδ∆un + τxyδ∆us

= σcrδεcr (6)

Defining the generalized stress σcr and strain εcr

vectors in the crack as

σcr =

[
σn

τxy

]
εcr =

[
∆un

∆us

]
(7)

2.6 Tangent stiffness matrix
Using the expression for the virtual work a direct
formulation of the tangent stiffness matrix for the
cracked element can be written.

The total DOF-vector for the element is organized
with the continuous DOFs followed by the discontin-
uous DOFs

v =
[

vc vd
]

(8)

For the continuous part of the element the incre-
mental virtual internal work can be formulated as

W i
cont =

∫

Vcont

δεT σdV (9)

= δvT

∫

Vcont

[ Bc Bd ]
T DT [ Bc Bd ]dV v

= δvT

[ ∫
Vcont

BcDT BcdV
∫

Vcont
BcDT BddV∫

Vcont
BdDT BcdV

∫
Vcont

BdDT BddV

]
v

= δvT

[
kcc

T kcd
T

kdc
T kdd

T

]
v

Where DT is the continuous material tangent stiff-
ness, kcc

T is the element tangent stiffness contribution
from continuous DOFs, kdd

T is the element tangent
stiffness contribution from discontinuous DOFs and
kcd

T and kdc
T is the element tangent stiffness contribu-

tion from the interaction between the continuous and
discontinuous DOFs.

Analogous the incremental virtual internal work
done in the crack can be formulated as

W i
cr =

∫

cr

δεcr
T σcrds (10)

= δvT

∫

cr

[0 Bdd]
T Dcr

T [0 Bdd]dsv

= δvT

[
0 0
0

∫
cr

BddDcr
T Bddds

]
v

= δvT

[
0 0
0 kcr

T

]
v

Where Dcr
T is the crack tangent stiffness matrix and

kcr
T is the element tangent stiffness contribution from

the crack.
By summation the total incremental internal virtual

work can be found

W i = δvT

[
kcc

T kcd
T

kdc
T kdd

T + kcr
T

]
v (11)

= δvT KT v

Where KT is the element tangent stiffness matrix.
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2.7 Inner nodal forces
The internal nodal forces Q corresponding to a given
displacement state v has to be formulated in order to
solve the nonlinear equations.

In general this is done using the actual stress level
σ which here is a function of the displacements. The
only nonlinear contribution is from the cracked ele-
ments where the cohesive stresses in general have a
nonlinear behavior. The nodal forces can for an ele-
ment be calculated as

q =

∫

el

BT σdΩ (12)

For the cracked elements this is formulated using
the terms and organization from the previous section
as

q =

[ ∫
el

BT
c σdΩ∫

el
BT

d σdΩ +
∫

cr
BcrσcrdS

]
=

[
qc

qd

]
(13)

3 IMPLEMENTATION
3.1 Algorithm
With the definition of the nonlinear problem through
KT and Q a general solution strategy can be chosen.
In the present work the orthogonal residual procedure
by (Krenk 1999) is used. It is presented in the seudo
algorithm below.

initial state: v0, R0,∆v0 = 0,Eref
load increments n = 1,2, . . . , nmax

∆v1 = K−1
n−1∆Rn

∆v = min(1, vmax/‖∆v1‖)∆v1

if ∆vT
0 ∆v < 0 then ∆v = −∆v , ∆Rn = −∆Rn

iterations i = 1,2, . . . , imax

∆Q = Q(vn−1 + ∆v)−∆Rn−1

ξ = ∆QT ∆v/∆RT
n ∆v

r = ξ∆Rn −∆Q
Kn−1 = K(v + ∆v)
δv = K−1

n−1r
δv = min(1, vmax/‖δv‖)∆v
∆v = ∆v + δv
Ei = 1

2
rT δv

stop iterations when Ei < εpEref
vn = vn−1 + ∆v
Rn = Rn−1 + ξ∆Rn

∆v0 = ∆v
stop load incrementation when (‖Rn‖ > Rmax) or n = nmax

Where v is the system dof vector, R is the system
load vector, K is the system stiffness matrix, Q is the
system internal nodal forces, ξ is the residual scaling
factor and Ei is residual energy.

As convergence criterion an energy criterion has
been applied using the energy in the initial load step
as reference Eref . The equilibrium iterations are per-
formed using a general Newton Raphson algorithm.
Each time the crack propagates the system stiffness
matrix is changed. The stiffness change is so radical
that equilibrium cannot be achieved without updating
the tangent stiffness.

3.2 Stress calculations
In general the FEM solution does not give a continu-
ous stress distribution in the structure, i.e. stress dis-
continuities will exist over element borders. Consider-
ing the implementation of a cohesive crack in a finite
element model these stress discontinuities will play a
certain role.

Consider a crack propagation in a structure. The
restriction for how long the crack will propagate is
determined by the tip stress being equal to the ten-
sile strength, ft. Therefore stress discontinuities could
give an undefined solution over an element border.

In order to get a clearly defined crack propagation
in the finite element model, a stress average has to be
introduced.

3.3 Nodal mean stresses
Using CST elements a weight function is introduced
using nodal mean stresses. These nodal mean stresses
gives a well defined stress distribution without any
discontinuities, and is therefore a suitable weighting.

This leaves the stress state to vary linearly between
the three element nodes. The stress interpolation fol-
lows the displacement shape functions for the ele-
ment. This is a general way of weighting the stresses
in the structure in order to achieve stress continuity.

3.4 Nodal Contributions from Elements
Calculating nodal mean stresses is straight forward
in the continuous elements using the general relation
σ = Dε.

The enriched displacement field allows the element
to produce three independent stress answers i.e. one
from each of the two discontinuous enrichments and
one from the continuous displacement field. Combi-
nations of those gives the stress answers in each of
the six parts shown in figure 5.

In order to obtain a consistent stress calculation
when the crack propagates over element borders, a
suitable weighting has to be used in the partly cracked
element. Thus the stress answer from the partly
cracked element will have to converge to the level for
the continuous element when the crack length tends
to zero. Further, the stress evaluation will have to fit
the other limit case, where the partly cracked element
approaches the fully cracked case.

For the CST element, a single stress answer is cal-
culated from each element, even though the enriched
displacement field in general allows more than one
stress state. The weighting is done using the areas of
each part (A1, . . . ,A6).

When the partly cracked element approaches the
fully cracked case the dominant areas are 4-6 which
is the definition of the fully cracked element. When
the crack is entering a new element, it is the areas 1-2
that are dominant. Areas 1-2 only contains continuous
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w1 =
A1
A

w2 =
A2
A

w3 =
A3
A

w4 =
A4
A

w5 =
A5
A

w6 =
A6
A

Figure 9: The two limit cases for the partly cracked el-
ement - converge against the continuous element and
converge against the fully cracked element

contributions i.e. when the crack enters the new ele-
ment the stress evaluation is based on the continuous
stress answer as shown in figure 9.

3.5 Solution strategies
The crack propagation is based on the tangent stiff-
ness in the previous converged state. Setting the crack
to propagate perpendicular to the first principal stress
direction, the load increment df will result in a new
stress state with a new tip coordinate extrapolated
along the crack propagation line as shown in figure
10.

f f + df
ft ft

α

Figure 10: Principle of the crack length extrapolation
based on the tangent stiffness in a load step.

Estimating the new tip coordinate as described
above does not necessarily give the correct crack
length for the applied load increment. After updat-
ing the system stiffness with the new crack geome-
try a new equilibrium state is found by solving the
nonlinear equations. This will in general lead to a tip
stress different from the estimated ft level. It is here
convenient to introduce the three dimensional coordi-
nate (f,α,σT ), where f represent the load vector, α the
crack length and σT the tip stress.

Solving the system equations gives equilibrium but
in general a non physical solution with a tip stress dif-
fering from the tensile strength. This is solved by in-
troduction of a tip stress iteration. This tip stress iter-
ation is done either using the crack length or the load
factor as iteration parameter.

4 EXAMPLE
One structural example is considered. The purpose
is to verify the developed XFEM element. The cho-
sen example is the Three Point Beam Bending Test
(TPBT).

The structural example shows the capability of
modeling a crack running partly through elements.

Furthermore the example proves that the element is
capable of capturing the correct overall structural be-
haviour.

4.1 Geometry and Materials
The geometry of the test specimens has chosen to be
in accordance with RILEM recommendations for the
TPBT.

Parameters used in this chapter are listed in table
1 and fits a high quality concrete. A linear-traction-
separation law has been used in the calculations.

ft = 3.50 [MPa] h = 150.00 [mm]
Gf = 160.00 [Nm/m2] l = 500.00 [mm]
ν = 0.20 [ ] w = 150.00 [mm]
E = 37.40 [GPa]

Table 1: Geometric and material parameters used for
the structural example

4.2 Three point beam bending test
The TPBT is considered in two cases, namely a refer-
ence specimen without a notch and the standard spec-
imen with a 25 mm notch. The geometry, support and
load conditions are shown in figure 11.

250 250

150

P

Figure 11: Geometry and support conditions for the
TPBT, the point force is split up in two nodal forces
applied symmetrically on the center element - the ap-
plied mesh is shown in figure 15

4.3 Reference specimen without notch
A reference calculation has been performed on the
TPBT without the notch. To avoid influence of other
parameters the crack propagation has been forced in
a vertical direction. The global structural response is
shown in figure 12. In the solution strategy the crack
length has been predefined to propagate 1/5 of the el-
ement length through three elements approximately
located half way up in the beam. A zoomed view of
this domain is shown in figure 13.
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Figure 12: Load-deflection response for the TPBT in
the reference case without notch, showing the point
load versus the midpoint deflection.
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Figure 13: Zoomed view of the load-deflection re-
sponse, showing the solutions for the crack length in
jumps of 1/5 of the element length through three ele-
ments approximately located at the midpoint at 1/2 of
the beam height

The partly cracked solutions are seen to fit the gen-
eral structural response in this area. This is one of the
primary goals of this work, and shows the capability
of modeling continuous crack growth in a finite el-
ement model using a partly cracked element with a
simple enrichment.

4.4 TPBT Standard Specimen 25mm Notch
TPBT is one of the most used test examples in the
literature. Work done by (Asferg et al. 2006a) shows
that the solution from the commercial finite element
program DIANA, using standard interface elements
along a predefined crack, can be accepted as a suffi-
ciently accurate solution. This DIANA computation,
is therefore used as a reference for the XFEM model-
ing.

In figure 14 the reference case without the notch
is plotted as well. This is done to verify that the
two models converges asymptotically when the crack
propagates and gets stress free at the end of the notch.

Comparison with the DIANA solution shows a sim-
ilar structural response. The present solution exceeds
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TPBT 21x24
TPBT 21x24 notch = 25mm
DIANA lin 48 el

Figure 14: Load-deflection response for the TPBT,
showing the point load versus the midpoint deflection.

the peak value with approximately 10-15%. This is
mainly explained in the lacking accuracy of the CST
element. More elements are needed to provide accu-
rate results, but it is acceptable in the context of test-
ing the general implementation and performance. Us-
ing the nodal mean stresses for the tip stress calcula-
tions, will typically also overestimate the peak value.
This is due to averaging in the surroundings of the
crack-tip where the stresses generally are smaller than
the tensile strength, whereby the estimated tip-stress
is lowered.

Figure 15: Deformed systemplot, verifying the sup-
port and load conditions for the TPBT

When using the provided solution strategy, diver-
gence is typically found when there is approximately
5 uncracked elements left above the crack tip. Using
the nodal mean stresses, it will be difficult to fulfill
the tip stress criterium when the stress change over
the element length becomes too large. The stress state
around the crack-tip is shown in figure 16 for the last
converged load step.

Based on the computations done in the present
work, a general convergence problem is seen when
the crack faces at the bottom of the beam reaches the
point of being stress free. Around this point the step
size reduces see figure 14, leaving the crack to propa-
gate in small steps through the element. These numer-
ical problems are believed to be caused by the large
change in stiffness on the linear traction-separation-
law, when the stress free crack faces starts to propa-
gate from the bottom of the beam.
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Figure 16: Zoomed view of the principal and crack
stresses around the crack tip for the TPBT

5 CONCLUSION
In the present work a double enriched cohesive crack
element has been developed based on concepts of the
eXtended Finite Element Method (XFEM).

The considered formulation is in plane stress, and
is implemented for the CST element. The enriched
CST element is formulated generally so it covers both
the fully and partly cracked case. Using the double
enriched displacement field, both the fully and partly
cracked element is capable of modeling equal stresses
at the crack-tip.

The developed element is tested in structural ex-
ample consisting of the Three Point beam Bending
Test. A good overall structural response is achieved
by comparing the TPBT with results from a reference
solution. The peak value is exceeded with approxi-
mately 10-15%. This is mainly explained by the rather
coarse mesh combined with the accuracy of the CST
element. A higher order implementation is needed to
get more accurate results still keeping a reasonable
low number of elements.

When testing the partly cracked element, it can be
concluded that it gives a continuous description of the
points between two fully cracked cases on the load-
deflection response, which was one of the goals with
the general formulation of the cracked element.

The systematic formulation of the displacement
field in the present work is believed to be applicable
to higher order elements.
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