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ABSTRACT: In this contribution, a lattice model for the simulation of the load-carrying and the failure be-
haviour of Textile Reinforced Concrete (TRC) under monotonic and cyclic tensile loading is presented. A
special property of the mentioned composite TRC is that the reinforcement consists of heterogeneous multi-
filament yarns of alkali-resistant glass, which are not fully penetrated with matrix of fine-grained concrete. This
leads to complex bond conditions. The lattice model for the simulation consists of one-dimensional strands
of bar elements with limited tensile strength, which represent the matrix as well as the reinforcement. These
strands are connected with zero-thickness bond elements, which use non-linear bond laws as element character-
istics. These bond laws contain a damage algorithm to include a possible degradation of the bond quality due to
mechanical loading. This nonlinear problem is solved within a Finite Element Method formulation. Simulations
of tensile specimens are performed and compared to experimental data for both monotonic and cyclic loading.

1 INTRODUCTION

Concerning the strengthening and retrofitting of ex-
isting steel-reinforced concrete structures built during
the last century it is often desirable to apply additional
thin load-carrying layers. A possible approach, which
offers these properties are layers of Textile Rein-
forced Concrete (TRC) (Hegger 2001; Curbach 2003;
Hegger et al. 2006; Brameshuber 2006). This mate-
rial is a composite of textile-processed yarns of end-
less fibres as reinforcement and a fine-grained con-
crete as matrix. In this context fine-grained means a
much smaller maximum aggregate size, e.g. 1 mm,
than used for normal concrete. Textiles produced of
yarns, made of glass filaments or carbon filaments,
are typically embedded in the concrete matrix. Usu-
ally yarns of glass, which have to be alkali-resistant to
sustain long-term embedded in the concrete (Schorn
& Schiekel 2004), consist of up to 2000 filaments with
diameters of 10-30 microns.

Unlike Fibre Reinforced Plastics (FRP), the yarns
are not fully penetrated with matrix, because the
empty spaces in the filament bundles are too narrow
for the particles of the cement paste. Hence, there can
be found two different bond zones inside a yarn. In
the sleeve zone of the yarn where the filaments con-
tact the matrix adhesional bond is dominating. Sup-
posedly, the load transfer properties of the interface
between the matrix and the filaments are load depen-
dent, which can result in damage of the bond at higher
load levels. Almost no cement paste intrudes into the

core zone. Hence, only a frictional load transfer at the
contact areas of the filaments is possible. Addition-
ally, the concrete as well as the filaments have a lim-
ited tensile strength, which leads to a crack develop-
ment in the concrete and the failure of filaments or
whole yarns. Altogether, even under monotonic ten-
sile loading a complex structural behaviour is observ-
able.

A lattice approach is developed to simulate the
above-mentioned properties. Because only pure ten-
sile loads are regarded, the model has only degrees
of freedom in the load direction, which is called the
longitudinal direction in the following. The whole
concrete component is considered as homogeneous.
Thus, it can be modelled as a serial connexion of
elements. The yarn consisting of several filaments
not fully penetrated with cement slurry, as mentioned
above, cannot be assumed homogeneous. While the
longitudinal direction is also modelled as a serial con-
nexion of elements, the transverse direction is re-
garded by splitting the yarn component into a num-
ber of segments, which are also assumed to be ho-
mogeneous. These segments are regularly arranged
in a lattice scheme. Among themselves, the segments
are coupled with zero-thickness bond elements, which
act nonlinear according to bond laws. The adhesional
bond between the concrete and the filaments is sub-
ject to damage, which is applied to the bond law to
ensure a proper description of the behaviour. For the
core segments, which underlie only a frictional bond,
a constant bond stress is assumed. Besides that, lim-
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Figure 1. Typical specimen and test setup used by (Jesse 2004)
for tensile tests on TRC (dimensions in mm)

ited tensile strength is applied to the elements with
the consequence of propagating cracks. This highly
nonlinear problem is solved with a Finite Element
Method formulation. The model is able to repro-
duce the results of experiments performed under both
monotonic and cyclic tensile loading, as for exam-
ple experiments with unidirectional reinforced tensile
specimens. Thus, experimental results are used to ver-
ify the computational results and to identify possible
weaknesses of the model.

2 EXPERIMENTAL OBSERVATIONS

Textile Reinforced Concrete has a tensile structural
behaviour, which is in principle comparable with
other continuously reinforced composites as for in-
stance steel rebar reinforced concrete. The used multi-
filament reinforcement has to bear the tensile forces
after the concrete cracking. The concrete matrix has to
transfer the external tensile loads to the reinforcement
and has to carry compressive loads. Special charac-
teristics regarding the load-carrying behaviour arise
from the heterogeneous constitution of the multi-
filament yarns. It is for example observable that the
mean strength of a yarn is lower than the mean
strength of a single filament (Abdkader 2004). A
number of reasons are responsible for this behaviour
as for instance statistical effects (Daniels 1944), un-
equal loading of the filaments in a yarn (Chudoba
et al. 2006; Vǒrechovsḱy & Chudoba 2006) or dam-
aging of the yarns and filaments in the production and
treatment processes (Abdkader 2004).

For the investigation of the structural behaviour
of composites under uniaxial loading tensile speci-
mens are often used. For the case of Textile Rein-
forced Concrete such investigations were made for
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Figure 2. Typical stress-strain relation and associated crack pat-
terns for tensile specimens under monotonic loading as shown in
Figure 1

example by (Jesse 2004; Curbach 2003) and (Molter
2005), which show similar results. Hence, only a sub-
set of JESSE’s comprehensive experimental data will
be discussed here. In (Jesse 2004) results of spec-
imens investigated under monotonic tensile loading
are published. Besides these tests, JESSEmade also
experiments under cyclic loading, which are hitherto
unpublished. The specimens under consideration are
unidirectional reinforced with yarns of alkali-resistant
glass with reinforcement ratios varying between 1–
3 Vol. %.

In Figure 1, a typical specimen used by JESSE is
shown with its dimensions. During the test, the spec-
imen is fixed in a hydraulic testing machine with
clamping devices as indicated in Figure 1 as well. The
tensile loads are applied displacement-controlled with
a rate of about 0.015 mm/s. On a length of 200 mm,
the longitudinal displacements are measured on both
sides of the specimen, see Figure 1. In Figure 2, a typi-
cal stress-strain relation is shown where the measured
forcesF are related to the specimens cross-sectional
area leading to a mean stressσ and the measured
displacements are related to the measurement length
leading to a mean strainε.

The stress-strain relation starts with a linear in-
crease, principally according to the Young’s modu-
lus of the concrete, until the tensile strength of the
concrete is reached and the matrix cracks for the first
time. Upon this point, the yarn reinforcement has to
bear the applied tensile load at the crack. If a suffi-
cient amount of reinforcement with an ample bond
capacity is available, further cracks will develop un-
der increasing external tensile load. In the follow-
ing part of the stress-strain relation, this is associ-
ated with a decreased slope of the curve (Figure 2).
The crack development in the concrete continues un-
til the load transferred from the reinforcement to the
matrix between two cracks is too low to reach the ten-
sile strength of the concrete again. If the final crack



m
ea

n
 s

tr
es

s 
¾

 

mean strain "   

Figure 3. Typical experimental stress-strain relation under cyclic
loading for tensile specimens as shown in Figure 1

pattern is reached, the stress-strain relation increases
again until the tensile strength of the reinforcement
is reached too and the specimen finally fails, often in
a brittle manner. The slope of the stress-strain rela-
tion in this state is mostly influenced by the properties
of the reinforcement. Nevertheless, the concrete par-
ticipates of course in the load-carrying between the
cracks, which is well-known as tension stiffening.

In the case of cyclic loading, the stress-strain re-
lation of the monotonic loading case can be seen
as the envelope of the cyclic relation. The observed
unloading paths of the stress-strain relation are Z-
shaped. This means that the stress-strain relation de-
creases according to a steeper slope compared with
the loading path. In the middle part of the unload-
ing path, the slope becomes flatter and the stress-
strain relation decreases almost linearly. Near the ab-
scissa the slope of the stress-strain relation increases
again. This increase of the stiffness can probably be
explained with a compressional reloading of the con-
crete. It is also observable that during the unloading
the origin is not reached again. This effect can be con-
sidered as a macroscopic plastic deformation. With
reaching higher load levels the plastic deformation
also increases. The increase of the plastic deforma-
tion is more pronounced in the cracking state than in
post-cracking state, which can be caused by an ini-
tial stressless deformation of the reinforcement at the
cracks. The mean slopes of the unloading paths are
steeper at lower load levels than at higher ones. The
reloading is characterised by a steep increase of the
stress-strain relation, which passes into a flatter linear
slope and merges into the envelope curve. The mean
slopes of the reloading paths are also steeper at lower
load levels than at higher load levels. According to
the envelope curve, also the cyclic loaded specimen
finally fails reaching the tensile strength of the rein-
forcement.

sleeve

concrete

yarnsegmentsegment

c
s

c
l

¢u

hCR

hRR

hRR

reinforcement
element

concrete element

node

bond element

Figure 4. Geometrical model (top) and lattice discretisation in
the cross section (bottom left) and the longitudinal section (bot-
tom right)

3 MODELLING

3.1 Mechanical model

In the following, a lattice model used for the deter-
mination of the structural behaviour of Textile Rein-
forced Concrete will be described, which was partly
developed in previous contributions. In (Häußler-
Combe & Hartig 2006a) a one-dimensional mechan-
ical model for the determination of the load-bearing
and the failure behaviour of Textile Reinforced Con-
crete was developed. This model was enhanced in
(Häußler-Combe & Hartig 2006b) with a bond law
using a damage algorithm to include the degradation
of the bond quality between concrete and reinforce-
ment.

The model is in principle a combination of strands
of bar elements for the constituents of the compos-
ite, which are each assumed to be homogeneous. The
concrete as well as the reinforcement elements have
prescribed limited tensile strengths, which can lead to
cracking while loading. The strands are connected at
the nodes with zero-thickness bond elements, which
act according to bond laws. The heterogeneity of the
reinforcement is considered by segmentation into sev-
eral strands as it is shown in principle in Figure 4. The
segments are arranged in a lattice scheme, which sim-
plifies the computational implementation. Depending
on the resolution, in one segment several filaments or
yarns are pooled, which are assumed to be homoge-
neous with effective material properties.

As mentioned before, the bond elements act accord-
ing to bond laws formulated as bond stress-slip rela-
tions. Experimental investigations for the determina-
tion of the bond properties between single filaments
and concrete were made for instance by (Banholzer
2004) and (Zhandarov & M̈ader 2005). Such experi-
mental results are used to estimate the magnitude of
the bond force, but are not directly applicable for bond
laws of a whole yarn or parts of it. The bond stress-
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Figure 5. Bond stress-slip relationhCR for the case of concrete-
sleeve interaction in the initial state

slip relationhCR used in the model for the interac-
tion between the concrete and the sleeve segments is
shown in Figure 5 in its initial state. The bond law
implements a combination of damage and plasticity
to take into account bond degradation due to load-
ing. The algorithm for the degradation evolution of
the bond stress is schematically shown in Figure 6 us-
ing an arbitrarily chosen loading path. Figure 6 in-
cludes also the state diagram with the starting point
(•) of the algorithm and all possible state transitions.
The numbers of the states in the state diagram corre-
spond to those in the bond stress-slip relation.

The bond lawhCR for the concrete-sleeve interac-
tion starts with an increase until the maximum value
of the bond stressτ ini

max corresponding to the slipsini
max

is reached. This peak point is the maximum possible
value of bond stress that can be transferred. After this
peak, the bond stress-slip relation decreases until the
residual bond stressτ ini

res corresponding to the slipsini
res

is reached. With larger slip values thansini
res only a

frictional load transfer is assumed with a bond stress
valueτres. This bond stress value can be kept constant
or can further decrease with increasing slip.

If a slip reduction occurs after the peak point in
the softening state 1 (Figure 6), where the bond is de-
graded to a certain amount, the initial maximum bond
stress necessarily cannot be reached again. A reduc-
tion of the slip value can occur for instance due to
cracking resulting in a local stress relocation. An un-
loading path (state 3) different from the loading path
(state 0) is used in the bond lawhCR to avoid a trace
back to the initial peak. Therefore, the bond stress
τact,1 corresponding to the currently largest reached
slip sact,1 is stored and used as new maximum value
τact,1
max . The unloading path (state3(1)) is modelled as

linear decrease of the bond stress and the slip accord-
ing to the slope between the origin of the coordinate
system and the initial peak point(sini

max, τ
ini
max). The

value of the bond stress is limited to the negative abso-

lute value of the currently largest bond stress−τact,1
max .

This point is reached with the chosen load path in Fig-
ure 6 via the state3(1) and the state4(1). A further
reduction of the slip will decrease the absolute max-
imum bond stress value, which is the case in Figure
6 where the slip decreases tosact,2′

max with the corre-
sponding bond stress−τact,2

max . At this point, the load
in association with the slip as well as the bond stress
increase again (Figure 6). Thus, the state 1 will be
reached again via the states4(2) and3(2). While the
slip in state 1 further increases, the bond stress de-
creases until the residual bond stressτ ini

res is reached,
which is equivalent with a purely frictional load trans-
fer.

For the interaction between the sleeve and the core
zone of a yarn pure friction is assumed. The corre-
sponding bond lawhRR is in principle the same as
hRR but has no peak valueτ ini

max at sini
max. A constant

bond stress of 3 N/mm2 for both τ ini
max andτ ini

res is as-
sumed.

The interpolation between the supporting points
of the bond stress-slip relations can be performed
according to several approaches. A multi-linear ap-
proach is used for example by (Richter & Zastrau
2006) in conjunction with an analytical modelling ap-
proach. In numerical simulations, the discontinuities
of the derivatives on the transition between the inter-
vals of the multi-linear relations lead possibly to nu-
merical problems during computations. This can be
avoided using special cubic polynomials, which show
monotonicity and continuity in the first derivatives be-
tween consecutive intervals. As underlying algorithm,
the Cubic Hermite Interpolating Polynomial Proce-
dure (PCHIP) by (Fritsch & Carlson 1980), which is
also published in (Kahaner et al. 1989), is used. It en-
sures a smooth, shape preserving interpolation of the
bond stress-slip relation given by a number of data
points without producing additional bumpiness or os-
cillations as it could be the case for example with a
spline interpolation (de Boor 1978). As supporting
points for the bond lawhCR (Figure 5) the origin
of the coordinate system, the peak point, the residual
point and an end point are used.

3.2 Numerical model

The lattice model presented in the previous section
is the basis for a numerical model formulated within
the Finite Element Method (FEM). In longitudinal di-
rection, the concrete and the yarn strand are discre-
tised with one-dimensional bar elements of a length
of 0.1 mm. This leads with the specimen length of
500 mm (Figure 1) to 5000 elements per segment
strand. A finer discretisation does not affect the results
significantly, whereas coarser discretisations cannot
approximate the used bond law in a sufficient man-
ner and overestimate the macroscopic stiffness of a
crack bridge. The boundary conditions are given with
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Figure 6. Degradation algorithm implemented in the bond stress-
slip relationhCR evolved from an arbitrarly chosen loading

prescribed displacements at the concrete’s end nodes.
The displacement is zero atx = 0 mm and becomes
continuously increased atx = 500 mm for the case of
monotonic loading. For the case of cyclic loading the
displacement atx = 500 mm is increased and reduced
according to a load regime as used in the experiments.
As mentioned in the previous section the strands are
connected with bond elements, which act according
to bond laws also introduced in this section. The free
value of the bond law is the slip, which is determined
by the difference of the displacements between the
two nodes of a bond element.

Besides the nonlinearities resulting from the bond
law, additional nonlinearities arise from limited ten-
sile strengths for both the concrete and the reinforce-
ment. To avoid the failure of a series of elements in
the case of constant or nearly constant stresses in the
longitudinal direction, the failure of elements is lim-
ited to one per load step. The bar elements used to
represent the concrete in the clamping zones are as-
sumed not to crack on a length of 100 mm from the
ends of the specimen to avoid failure at the concrete
section’s end nodes.

The resulting system of nonlinear equations is
solved using the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) approach, which is a Quasi-Newton-Method,
in combination with a line-search algorithm (Bathe
1996; Matthies & Strang 1979; Nocedal & Wright
1999). Some more details regarding the numerical im-
plementation related to the stated problem are pre-
sented in (Ḧaußler-Combe & Hartig 2006a).

4 COMPUTATIONS

4.1 Geometrical and material parameters

So far, the model is specified in principle. For the
computations a specialised model is used, which con-
sists of three bar element strands: one strand for the
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Figure 7. Specialised model with three element strands in the
cross section (left) and the longitudinal section (right)

concrete and two strands for the yarn reinforcement,
see Figure 7. In this model, the concrete strand is only
connected with the so-called sleeve strand via bond
elements using the bond lawhCR for adhesional bond
as element characteristic. The sleeve strand is addi-
tionally coupled with the core strand via bond ele-
ments acting according to the bond lawhRR, which
represents purely frictional load transfer.

The tensile strength of the concrete is assumed with
6.5 N/mm2 and the Young’s modulus is defined with
28,500 N/mm2 (Jesse 2004). The cross-sectional area
of the concrete of 771 mm2 is determined by the width
of 99.5 mm and the thickness of 7.8 mm of the speci-
men. The reduction of the cross-sectional area of the
concrete due to the reinforcement is neglected.

The reinforcement material are yarns of alkali-
resistant glass with a unit length weight of 310 tex
produced by Nippon Electric Glass. The Young’s
modulus was determined by (Abdkader 2004) with
Eyarn = 79,950N/mm2. The total cross-sectional area
of the reinforcementAreinf = 14.6 mm2 results from
the number of yarnsnyarn = 134 and the cross-
sectional area of a yarnAyarn = 0.11 mm2. Hence,
the specimen was reinforced with a ratio of about
1.9 Vol. %. According to the model, the reinforcement
is splitted into two parts, the sleeve strand with 25 %
of the total cross-sectional reinforcement area and the
core strand with 75 % of the total cross-sectional re-
inforcement area. This ratio is approximated on the
base of microscopic observations on transparent cuts
of yarns embedded in a cementitious matrix.

The strands of bar elements are coupled with bond
elements for which the bond surface areas have to be
defined. The bond surface areasSsleeve andScore are
assumed to be the lateral surface areas of cylinders,
which have the cross-sectional area of a homogeneous
yarnAyarn:

Ssleeve = nyarn · l ·Cyarn

= nyarn · l · (2
√

πAyarn) (1)

Score = nyarn · l ·Ccore

= nyarn · l · (2
√

π · 0.75 ·Ayarn) (2)
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Figure 8. Computational and experimental stress-strain relation
for the case of monotonic loading

In these equationsl is the element length,Cyarn the
circumferences of a homogeneous circular yarn and
Ccore of the core fraction of a yarn respectively. In
these bond surface areas possible roughness or ellip-
ticity of the yarn boundary is not included, because
the bond forces finally result from the product of the
bond surface areas and the bond stresses. The ten-
sile strength of the yarns is defined with 1357 N/mm2

(Abdkader 2004).

4.2 Monotonic loading

In Figure 8 the computed and an experimentally ob-
tained stress-strain relation for the case of monotonic
tensile loading is shown. It can be seen that the un-
cracked state in the simulation coincides with the ex-
perimental data. Because the slope of this linear in-
crease is mostly influenced by the Young’s modulus
of the concrete, this agreement could be expected as
well as the transition point to the cracking state, which
depends on the tensile strength of the concrete.

The computed mean slope of the cracking state of
the concrete also agrees with the experimental data,
but the drops of the stress after each concrete crack
are larger than observed in the experiments. This re-
sults from the as purely brittle implemented failure of
the concrete, which is not observable in reality. It is
well known that concrete is able to transfer stresses
over small cracks to a certain amount, which depends
on the crack width. This effect is called tension soft-
ening and according to (Brockmann 2006) it also ex-
ists in the special kind of concrete used in the experi-
ments under consideration. A further fact, which im-
plies that tension softening would lead to more realis-
tic computational results, is the calculated total num-
ber of cracks. It is lower than the number of cracks
observed in the experiments.

After the crack development has finished, the com-
puted stress-strain relation increases again, which

agrees with the behaviour in the experiments. How-
ever, the computed slope in this state is larger than
in the experiments. The reasons for this discrepancy
are currently not clear. It can be speculated that a
certain number of highly bonded filaments fails pre-
maturely. This has to happen simultaneous with the
concrete, because if it would occur after the concrete
cracking has finished the slope in the stress-strain re-
lations would have to decrease non-linearly, which is
not observable in the experimental data. Another rea-
son could be that de facto a lower number of yarns
were inserted in the experiment. A reason, which is
currently favoured by the authors, is that some kind
of telescopic effect appears due to the heterogeneous
structure of the yarns and the non-uniform bond con-
ditions in the yarn. This could be modelled with a
finer discretisation of the yarn, which means that more
reinforcement strands have to be connected in paral-
lel.

The failure of the whole structure occurs if the ten-
sile strength of firstly the sleeve strand and secondly
the core strand of the reinforcement are reached.
While a good agreement between the simulation and
the experiment regarding the ultimate stress is observ-
able, the ultimate strain is according to the slope of the
stress-strain relation in this state lower in the simula-
tion as observed in the experiment.

4.3 Cyclic loading

As mentioned before, with the model it is also pos-
sible to simulate the stress-strain behaviour under
cyclic loading. Therefore, the model used in the previ-
ous section was loaded with four load cycles on differ-
ent load levels. In Figure 9 the simulated stress-strain
relation is compared with an experimental one. The
stress-strain relation for the case of monotonic load-
ing can be seen as the envelope for the cyclic stress-
strain relation. Thus, the uncracked state, the crack-
ing and the final cracking state are computed with the
same quality as described for the case of monotonic
loading in the previous section.

The first load cycle was executed in the state of
ongoing cracking. The shape of the stress-strain re-
lation in the computed cycle agrees in principle with
the experimental observations. After a steep decrease
the unloading path becomes flatter. However, the un-
loading path reaches a lower strain level in the simu-
lations compared with the experiment, which means
that the macroscopic observable plastic deformations
are underestimated. A reason could be the participa-
tion of the concrete on the load-carrying at the cracks
while unloading. It can be assumed that the cracks
in the concrete do not close perfectly for example
due to loosened particles and the relaxation of eigen-
stresses. Thus, the concrete is locally stressed com-
pressional, which leads to a macroscopic plastic de-
formation. This effect cannot be reproduced with the
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Figure 9. Computational and experimental stress-strain relation
for the case of cyclic loading

current model. Another source of possible plastic de-
formations exists in the unloading path of the bond
law described in Section 3.1. The slope of this un-
loading path in the bond law is currently arbitrarily
chosen and is thus open for further improvements.

The shape of the reloading path of the experimental
stress-strain relation agrees with the assumption of a
moderate compressional pre-stressing of the concrete,
because at the beginning of the reloading the stress-
strain relation increases according to the Young’s
modulus of the concrete. This is not observable in
the simulated stress-strain relation where the reload-
ing starts with a flatter slope caused by the bond law
and the stiffness of the reinforcement. Afterwards, in
both the experimental and the simulated stress-strain
relation the reloading path merges towards the mono-
tonic stress-strain relation and follows it during fur-
ther loading.

The other three load cycles are beyond the cracking
state in the stress-strain relation, see Figure 9. In all
three cycles, the characteristics described for the first
cycle are repeated in principle, but the differences be-
tween simulation and experiment become more pro-
nounced. Especially the compression of the concrete
near the end of the unloading is clearly observable
in the last cycle of the experimental data. There as
well as in the previous cycles, the unloading path be-
comes stiffer near the abscissa. As mentioned before,
this is not observable in the simulation, because the
compression of the concrete after cracking is not im-
plemented in the model. This is also the reason, why
the reloading paths in the computed stress-strain re-
lation start always flatter than in the experimentally
obtained relation.

In agreement with the experimental data, the cy-
cles on lower load levels behave stiffer than cycles on
higher load levels and the hystereses become larger
as well. The area in between a hysteresis is a measure
of the dissipated energy. Looking on Figure 9 it can
be seen that in the simulation too much energy is dis-

sipated compared with the experiments. One reason
is the simulated stiffness in the final cracking state,
which is larger than in the experiment. This leads to
more pronounced hystereses.

Regarding the occurring macroscopic observable
plastic deformations, it must be concluded that the
model underestimates these deformations. A possible
reason is an initial slack, which could lead to a de-
layed activation of the yarn reinforcement. This could
lead to stressless deformations. A fine-tuning of the
parameters used in the model basing on a detailed
study of several experimental will improve the agree-
ment between the model and the experiment.

5 CONCLUSIONS

The load-carrying and failure behaviour of Textile Re-
inforced Concrete shows complexity even in the case
of purely tensile loading. This behaviour is simulated
with a lattice model reduced to the essential. The dis-
tinction between matrix and yarn, the different bond
zones in the yarn and the limited tensile strength are
assessed as essential properties. The spatial material
distribution seems in the case of unidirectional re-
inforcement and loading less important. Hence, the
presented model has a one-dimensional geometry but
takes material-specific nonlinearities like limited ten-
sile strengths and nonlinear bond laws with damage
into account.

The presented computational results are showing
a good agreement with the experimental data, al-
though some deficiencies are still existing. A further
improvement of the computational results could be
reached by the implementation of tension softening
for the fine-grained concrete to include the load trans-
mission over a concrete crack and to simulate the
crack patterns in the concrete more realistic. How-
ever, this will primarily ameliorate the computational
results quantitatively. Regarding the cyclic loading, a
modification of the unloading path of the bond law
can possibly improve the computational results.

An important exercise is the estimation of the pa-
rameters used in the simulations. The material param-
eters for instance the tensile strengths or the Young’s
moduli of the concrete and the yarns are sufficiently
well known but the knowledge about the interaction
between matrix and reinforcement is still lacking. It is
for example not experimentally confirmed how strong
and durable the bond between matrix and reinforce-
ment is. Further investigations are necessary to clarify
these open questions.
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