
1 INTRODUCTION

Requirements of modern technology and progress in 
mechanics of solids and structures give rise to mutu-
ally interrelated extensive theoretical and experi-
mental studies of mechanical properties of struc-
tural materials. Strong motivation for suitable orien-
ted experiments exists in the case of brittle rock-like 
materials because of complexity of the phenomena 
that affect their mechanical response. Some results 
of experimental and theoretical studies of mecha-
nical behavior of brittle rock-like materials have 
been previously reported mainly for uni-axial and bi-
axial loading of concrete (Kupfer 1973, Ehm & 
Schneider 1985, Thienel et al. 1991, Ligęza 1999). 
Relatively small amount of respective experimental 
data for such materials subjected to tri-axial state of 
stress is available. Some data can be found in mono-
graphs on rock mechanics (Cristescu & Hunsche 
1998, Derski et al. 1989, Goodman 1989) and on 
mechanics of concrete (Chen 1982, Neville 1995). 
Simultaneously new approach based on the methods 
of continuum damage mechanics has been used to 
formulate phenomenological models capable to des-
cribe the mechanical behavior of brittle rock-like 
materials in presence of oriented damage growth 
(Chaboche et al. 1995, Litewka et al. 1996, Mura-
kami & Kamiya 1997, Halm and Dragon 1998). 
However, all those theoretical descriptions are based 
on limited experimental data, particularly for tri-
axial state of stress and were verified for some 
specific cases of loading only. To obtain more 
realistic theoretical description of overall material 
response that could account for oriented damage 

growth and development of damage induced aniso-
tropy further extensive experimental studies are 
needed.

The aim of this paper is to supply experimental 
data on fracture of brick and mortar subjected to tri-
axial state of stress as well as to show potentialities 
of own theoretical model (Litewka et al. 1996, 
Litewka & Dębiński 2003). A study of such a state 
of loading is a necessary first step towards analysis 
of complex conditions that are experienced by brick 
and mortar structures in practice during earthquakes 
or due to mining subsidence. That is why the tests 
were performed for relatively high values of the 
compressive mean normal stresses as well as for 
pure hydrostatic pressure.

2 EXPERIMENTS

The experiments presented here have been done as 
a continuation of those discussed by the authors in 
earlier paper (Litewka & Szojda 2006). The new re-
sults were obtained for specimens of the same types 
of mortar and brick that were tested earlier, and that 
is why the recent and older data could be compared. 
These two different series of the specimens are 
referred to as the specimens of Brick 1 and Mortar 1 
for those reported in Litewka & Szojda (2006) and 
Brick 2 and Mortar 2 for these more recent presented 
here. The height and diameter of the cylindrical spe-
cimens used were equal to 12 cm and 6 cm, respec-
tively. The specimens of brick were cut out from 
standard plain brick whereas those of mortar were 
prepared in special moulds. The details of the speci -
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Table 1.  Experimental data and constants used in theo-
retical analysis of tri-axial state of stress___________________________________________
Constant Unit Mortar Brick___________________________________________
E0 MPa 8730 2550
ν0 - 0.173 0.103
fc MPa -7.90 -10.85
A MPa-2 2095×10-5 1249×10-5 
B MPa-2 62.55×10-5 200.0×10-5 
C MPa-1 -0.9469×10-5 -1.100×10-5 
D MPa-1 1.678×10-5 3.754×10-5

F - 1.070 0.6900___________________________________________

mens preparation and the experimental procedure 
can be found elsewhere (Szojda 2001, Litewka &
Szojda 2005).

The tests were performed for two cases of tri-
axial compression referred to as State I and State II 
and also to pure hydrostatic pressure and uni-axial 
compression. The objective of the test performed 
under uni-axial compression was to calibrate the 
materials. That is why the initial Young modulus E0
and Poisson ratio ν0 as well as uni-axial compressive 
strength fc were measured experimentally for both 
materials tested. The data shown in Table 1 were 
calculated as mean values measured for seven 
specimens of brick and seven for mortar. These 
values of standard constants E0, ν0, fc and those for 
five other parameters A, B, C, D and F seen in Table 
1 are necessary to employ the theoretical model pro-
posed.

The objective of the tests under tri-axial state of 
stress was to measure the stresses at material frac-
ture for prescribed loading programs. The tri-axial 
State I is a combination of uni-axial compression 
and hydrostatic pressure whereas the State II is a 
simultaneous action of hydrostatic pressure and uni-
form bi-axial compression. The respective stress ten-

Figure 1. Limit surface at material fracture and loading paths 
for State I and State II:  point corresponding to material 
fracture.

Table 2.  Experimental and theoretical failure stress for mortar
subjected to State I of tri-axial compression._________________________________________________
Material Specimen Hydrostatic Failure stress σ3f____________________

pressure, p Experiment Theory_______________________________
MPa MPa MPa_________________________________________________

Mortar 1 ZC1* -1.04 -10.90 -13.32
ZD1* -0.934 -12.19 -12.83
ZC2* -1.84 -17.55 -16.71
ZD2* -1.92 -16.03 -17.01
ZC3* -2.69 -18.74 -19.77
ZD3* -2.92 -20.01 -20.56_________________________________________________

Mortar 2 M-H4-1  -3.41 -25.59 -22.14
M-H4-2  -4.33 -23.97 -24.89
M-H8-2  -8.45 -39.85 -35.51
M-H8-3  -8.20 -36.05 -34.92
M-H12-1 -12.28 -48.34 -43.98
M-H12-2 -12.37 -49.53 -44.17
M-H12-3 -11.95 -49.75 -43.29_________________________________________________

*  The data for these specimens of Mortar 1 were discussed in 
Litewka  & Szojda (2006).

Table 3.  Experimental and theoretical failure stress for mortar
subjected to State II of tri-axial compression._________________________________________________
Material Specimen Hydrostatic Failure stress σ1f = σ2f____________________

pressure, p Experiment Theory_______________________________
MPa MPa MPa_________________________________________________

Mortar 1 ZA1* -0.01 -7.19 -8.60
ZB1* -0.21 -9.40 -10.98
ZA2* -2.30 -15.86 -21.74
ZB2* -2.37 -16.83 -22.01
ZA3* -3.81 -23.55 -26.79
ZB3* -3.92 -24.87 -27.12_________________________________________________

Mortar 2 M-V0-1  -0,14 -11.47 -10.21
M-V0-2  -0.09 -7.92 -9.64
M-V2-1  -1.87 -21.69 -20.07
M-V2-2  -2.29 -22.03 -21.71
M-V4-1  -3.85 -24.50 -26.89
M-V4-2  -4.46 -29.06 -28.70
M-V8-1  -7.83 -29.43 -37.50
M-V8-2  -8.00 -30.67 -37.90
M-V12-1 -12.17 -44.22 -47.23
M-V12-2 -11.63 -45.89 -46.07
M-V12-3 -12.20 -44.75 -47.30_________________________________________________

*  The data for these specimens of Mortar 1 were discussed in 
Litewka  & Szojda (2006).

Table 4.  Experimental and theoretical failure stress for brick
subjected to State II of tri-axial compression._________________________________________________
Material Specimen Hydrostatic Failure stress σ1f = σ2f____________________

pressure, p Experiment Theory_______________________________
MPa MPa MPa_________________________________________________

Brick 1 CA1* 0 -10.49 -10.96
CB1* -0.06 -14.36 -11.02
CA2* -2.76 -21.94 -22.87
CB2* -2.51 -17.19 -22.13
CA3* -3.34 -24.70 -24.46
CB3* -3.63 -22.83 -25.22_________________________________________________

Brick 2 B-V9-1  -9.09 -36.21 -37.50
B-V9-2  -9.26 -34.83 -37.85
B-V9-3  -9.53 -31.56 -38.40_________________________________________________

*  The data for these specimens of Brick 1 were discussed in 
Litewka  & Szojda (2006).



Table 5.  Experimental and theoretical failure stress for brick
subjected to State I of tri-axial compression._________________________________________________
Material Specimen Hydrostatic Failure stress σ3f____________________

pressure, p Experiment Theory_______________________________
MPa MPa MPa_________________________________________________

Brick 1 CC1* -1.20 -15.27 -15.29
CD1* -0.93 -16.58 -14.29
CC2* -1.95 -20.86 -17.87
CD2* -2.13 -22.05 -18.45
CC3* -3.20 -22.23 -21.56
CD3* -3.03 -22.80 -21.09_________________________________________________

Brick 2 B-H3-1  -3.14 -19.53 -21.40
B-H3-2  -3.55 -21.56 -22.51
B-H6-1  -6.64 -34.17 -29.87
B-H6-2  -6.55 -33.66 -29.67
B-H6-3  -6.30 -31.83 -29.12
B-H9-1  -9.92 -47.26 -36.67
B-H9-2  -8.66 -37.87 -34.13
B-H9-3  -9.34 -40.68 -35.53_________________________________________________

*  The data for these specimens of Brick 1 were discussed in 
Litewka  & Szojda (2006).

sor components that correspond to State I and State 
II are expressed by Equations (5), (6). Various 
combinations of the stress tensor components and at 
least two different loading paths are necessary to 
supply information on the shape of the limit surface 
at failure of the material subjected to tri-axial states 
of stress. The possible form of such a limit surface 
together with the loading paths for State I and State 
II of tri-axial compression is shown in Figure 1. It is 
seen from this figure that respective loading paths 
consisted of two stages. The Stage 1 was the same in 
both cases of tri-axial loading and consisted in a mo-
notonic increase of hydrostatic pressure up to pres-
cribed value p. In the Stage 2 of the first tri-axial 
state of stress (State I) the compressive vertical nor-
mal stress σV was increased up to material failure 
that occurs forσ3f = p + σV. In the Stage 2 of the 
State II of tri-axial loading two compressive hori-
zontal components σH of uniform bi-axial state of 
stress were increased simultaneously up to material 
failure that corresponds to σ1f = σ2f = p + σH. To 
obtain several combinations of the stress tensor 
components the various levels of the hydrostatic 
pressure p were used. The respective numerical data 
presented earlier (Litewka & Szojda 2006) as well as 
new ones are shown in Tables 2-5. The new 
experiments performed for Mortar 2 and Brick 2 
according to the program seen in Tables 2-5 made it 
possible to determine the stresses at material fracture 
for higher levels of hydrostatic pressure p than those 
in earlier tests done for Mortar 1 and Brick 1.

3 FRACTURE CRITERION

The theoretical model of fracture and deformability 
of brittle rock-like materials employed in this paper, 
based on the assumption of tensorial nature of the 

material damage was presented in earlier papers 
(Litewka et al. 1996, Litewka & Dębiński 2003, 
Litewka & Szojda 2006) and that is why the final 
form of the respective relations will be shown here. 
According to the rules of the continuum damage 
mechanics presented by Hayhurst (1983), Lemaitre 
(1984), Murakami (1987) and Krajcinovic (1995) 
the current state of the deteriorated material structure 
is described by the symmetric second rank damage 
tensor Ωij defined by Murakami & Ohno (1981) and 
Betten (1983). The explicit form of the relevant 
constitutive equations was found (Litewka et al. 
1996, Litewka & Dębiński 2003) by employing the 
methods of the theory of tensor function represen-
tations as applied to solid mechanics by Boehler 
(1987) and Betten (1988, 1998). The first equation 
of the theoretical model is the stress-strain relation 
for anisotropic elastic solid
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where εij is the strain tensor and σij is the stress 
tensor. Equation (1) contains the Kronecker delta δij, 
the Young modulus E0 and Poisson ratio ν0 for an 
originally undamaged material, two constants C and 
D to be determined experimentally and the second 
order modified damage tensor Dij responsible for the 
current state of internal structure of the material 
defined by Litewka (1989).

Deterioration of the material structure due to 
applied load was described by the damage evolution 
equation expressed in the form of the tensor function
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where Ωij is a classical second order damage tensor 
formulated by Murakami & Ohno (1981) and Betten 
(1983), skl is the stress deviator, detσσσσ is the deter-
minant of the matrix σσσσ of the stress tensor σij and A, 
B, F are material parameters to be determined expe-
rimentally. The multiplier H explained by Litewka 
& Dębiński (2003) and Litewka & Szojda (2006) is 
a function of the stress tensor components that was 
expressed by the following function of the stress 
tensor invariants

( )3det200
227

pp

H
σ+

=  . (3)

Equation (3) is a result of detailed analysis of possi-
ble form of such a function of the stress tensor 
invariants necessary to fulfill the physical conditions 
discussed by Litewka & Szojda (2006). 

The damage tensor Ωij that accounts for the 
continuity of the material is not sufficient to describe 
directly the overall macroscopic properties of dama-



ged material. That is why it was necessary to define 
a second order modified damage tensor Dij capable 
to account for the strength and stiffness reduction of 
the damaged material. The relation
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between the principal values Ω1, Ω2 and Ω3 of the 
damage tensor Ωij and the principal components D1, 
D2 and D3 of the modified damage tensor Dij con-
tained in Equation (1) was formulated by Litewka 
(1989). The principal components of the modified 
damage tensor (4) increase to infinity for fully da-
maged materials and that is why could reduce to 
zero the stiffness of the material expressed by 
Equation (1).

Theoretical model used in this paper can also be 
used to determine the maximum stresses that can be 
sustained by the material subjected to multi-axial 
state of stress. To this end the appropriate fracture 
criterion for brittle material was formulated accor-
ding to the rules of the damage mechanics. The phy-
sical background of this criterion was looked for in 
the results of experiments done and in the failure 
modes of broken specimens. It is seen from Figure 

a)                                                    b)

c)                                                   d)

Figure 2. Specimens of bricks after tests: a) Specimen B-H0-2 
tested under uni-axial compression, b) Specimen B-H3-2 tested 
under tri-axial compression, p = -3.55 MPa, c) Specimen B-
H6-1 tested under triaxial compression, p = -6.64 MPa, d) 
Specimen BC1 tested under pure hydrostatic compression.

2a that the failure of brick specimen subjected to 
uni-axial compression occurs due to accumulation 
and growth of vertical cracks. In the case of tri-axial 
compression shown in Figures 2b, c the material 
before its failure is totally crushed into separate tiny 
particles. This is well seen particularly in Figure 2c 
in the case of the specimen subjected to relatively 
high hydrostatic pressure p. In this specific case of 
loading the lower part of the specimen of brick is not 
seen in Figure 2c as it was completely crushed into 
powder whereas the other parts did not show so 
advanced degradation of the material structure. No 
photographs could be taken for three specimens of 
brick subjected to hydrostatic pressure p = -9.92, 
-8.66 and -9.34 MPa. These specimens were com-
pletely crushed into small particles and into powder. 
The similar failure modes were detected for the 
specimens of mortar where the total degradation of 
the internal structure occurred even for lower values 
of hydrostatic pressure. It means that tri-axial 
compression of brittle rock-like materials results in 
crack growth to such a state that at fracture the net 
cross section area on certain planes is reduced to 
zero. This full deterioration of internal structure of 
the material occurs when at least one of the principal 
components Ω1, Ω2 or Ω3 of the damage tensor Ωij
determined from Equation (2) reaches the limit value 
equal to unity.

To compare the experimental results with theore-
tical prediction the Equation (2) was expressed in 
terms of the stress tensors components 
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for State I of tri-axial compression and
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for State II of tri-axial compression. Taking into 
account the notation adopted in Equation (5) the
relation
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was obtained for State I. The third principal com-
ponent of the damage tensor Ω3 does not decide in 
this case on the material fracture as it grows slower 
than Ω1 and Ω2. The State II of tri-axial compression 
expressed by Equation (6) is characterized by faster 



growth of the principal component Ω3 of the damage 
tensor and that is why the material fracture occurs 
when
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In this case the growth of two others principal com-
ponents Ω1 and Ω2 of the damage tensor is slower 
and that is why they do not decide about the onset of 
fracture.

Application of the fracture criterion proposed re-
quires calibration of the material. The numerical va-
lues of the constants A, B, C, D and F shown in 
Table 1 were obtained by using the stress-strain cur-
ves determined experimentally for uni-axial com-
pression of brick and mortar seen in Figures 3, 4.

Figure 3. Experimental and theoretical stress-strain curves for 
brick subjected to uni-axial compression.
* The data for these specimens of Brick 1 were used in Litewka 
& Szojda (2006).

Figure 4. Experimental and theoretical stress-strain curves for 
mortar subjected to uni-axial compression. 
* The data for these specimens of Mortar 1 were used in 
Litewka & Szojda (2006).

The details of the method used here to identify the 
material parameters have been described by Litewka 
& Dębiński (2003). The constant F that appears in 
Equations (2), (7), (8) was also determined experi-
mentally and to do this, one point taken from one 
stress-strain curve obtained experimentally for tri-
axial compression is sufficient. Theoretical stress-
strain curves shown in Figures 3, 4 were obtained 
from the relations
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Equations (9), (10) were obtained by specifying the 
stress-strain relation (1) for uni-axial compression.

Equations (7) and (8) were used to calculate the 
values of σV and σH corresponding to material 
failure in State I and State II. These data made it 
possible to determine the theoretical stresses at ma-
terial fracture σ3f = p + σV for State I and σ1f = σ2f = 
p + σH  for State II. Comparison of these theoretical 
predictions with corresponding experimental data for 
mortar and brick is shown in Tables 2-5. 

4 DISCUSSION OF THE RESULTS

Experimental results obtained for tri-axial loading of 
the specimens of mortar and brick made it possible 
to determine the configuration of the stress tensor 
components at material failure. The experimental 
data for State I and State II shown in Tables 2-5 
were used to determine the limit surfaces at material 
fracture. The form of such limit surface for brittle 
rock-like materials, constructed at the stress space 
(Willam and Warnke, 1975; Szojda, 2001) is shown 
in Figures 1, 5, 6. The axes of the coordinate system 
shown in Figure 1 correspond to the principal 
stresses σ1, σ2, σ3 whereas those in Figures 5, 6 are 
defined by the mean stress

3
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where σ11, σ22, σ33, 12, 23 and 31 are the stress 
tensor components. The meridians of the limit sur-
face seen in Figures 5, 6 can be divided into three 



parts. Tri-axial tests presented in this paper made it 
possible to study experimentally the main almost 
rectilinear part of the meridian that corresponds to 
negative mean stresses. To this end the experimental 
results presented in Tables 2-5 for both materials 
subjected to State I and State II of tri-axial loading 
and also those obtained for the specimens of each 
material subjected to uni-axial compression were 
used. The experimental study of region of positive 
mean stresses where failure occurs in brittle manner 
by fracture of the material requires multi-axial ten-
sile tests which are very difficult in the case of 
brittle rock-like materials. To obtain any experi-
mental data for third region of large negative mean 
stresses where failure occurs by particle crushing, 
the tri-axial tests should be performed at very high 
values of hydrostatic pressure p combined with uni-

Figure 5. Main meridians of limit surface at fracture for brick.
* These data for Brick 1 were discussed in Litewka & Szojda 
(2006).

Table 6.  Specimens of mortar and brick tested under pure 
hydrostatic pressure._______________________________________________
Mortar 2 Brick 2_______________________________________________
Specimen Hydrostatic Specimen Hydrostatic

pressure, p pressure, p___________ ___________
MPa MPa_______________________________________________

MC1 -64.8 BC1 -65.9
MC2 -66.3 BC2 -66.9
MC3 -64.3 BC3 -65.1_______________________________________________

axial compression (State I) or uniform bi-axial com-
pression (State II). 

Theoretical model (Litewka & Dębiński 2003, 
Litewka & Szojda 2006) applied in this paper can 
also be used to determine the form of the limit sur-
face at material failure. The respective theoretical

Figure 6. Main meridians of limit surface at fracture for mortar.
* These data for Mortar 1 were discussed in Litewka & Szojda 
(2006).



results obtained from Equations (7), (8), (11), (12) 
were used to construct the meridians of the theo-
retical limit surfaces for brick and mortar. Fairly 
good agreement of the theoretical predictions with 
experimental data is seen in Figures 5, 6. The meri-
dians of the limit surfaces for both materials become 
curvilinear for negative mean stresses larger than 3fc. 
It could suggest that the specimens subjected to very 
high values of pure hydrostatic pressure could fai-
lure and the limit surface might be closed for certain 
sufficiently large mean stresses.

To obtain any experimental evidence that the 
limit surface would really be closed for negative 
mean stresses it should be necessary to do the tests 
at extremely high hydrostatic pressure. The experi-
mental study of this problem was also attempted 
here. To this end three specimens of the Brick 2 and 
three specimens of Mortar 2 were tested under pure 
hydrostatic pressure up to the limit capacity of the 
testing machine. For the machine used in these ex-
periments the maximum hydrostatic pressure was 
equal to p = -70 MPa. The list of the specimens 
tested and respective maximum values of p applied 
is shown in Table 6. All the specimens during the 
process of loading did not show any symptoms of 
failure. Moreover, inspection of the specimens after 
unloading did not reveal any degradation of the 
internal structure. This can be seen in Figure 2d 
where the photograph of the specimen BC1 after 
loading up to p = -65.9 MPa and unloading is 
presented. The results of these experiments and also 
of those similar reported for concrete by Neville 
(1995) suggest that this region of limit surface is out 
of the range of actually existing testing machines.

5 CONCLUSIONS

Experiments on behavior of brick and mortar under 
tri-axial loading presented in the paper were used to 
study the fracture of brittle materials subjected to 
higher values of negative mean stresses than those 
applied in earlier tests. The shape of theoretical limit 
surface at material failure was determined and com-
pared with the experimental data obtained. Fairly 
good agreement of the experimental data and theo-
retical predictions was detected for both materials 
tested. Increasing compressive strength of brittle 
rock-like materials known from earlier experiments 
for specimens of rocks and soils subjected to con-
fined axial compression was also observed in second 
tri-axial test used here. The experiments performed 
under pure hydrostatic pressure up to p = 8fc did not 
show any evidence that the limit surface for such a 
level of negative mean stresses might be closed. All 
these phenomena can also be explained theoretically 
within the mathematical model proposed. Thus, the 
experimental technique adopted and phenomenolo-

gical model used in this paper proved to be accurate 
enough to study the shape of the limit surface at 
material failure. 
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