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ABSTRACT: In the context of a poromechanics framework developed for durability-oriented analysis, the pa-
per is mainly concerned with a constitutive model for reinforced concrete. A continuous concrete matrix and
two different sets of steel reinforcement characterize the three-phase composite material. For each phase, the
nonlinear pre- and post-peak behavior is described separately, while considering interactions between the rein-
forcement bars and the concrete. The material behaviour of the matrix material is formulated by a combined
multisurface elasto-plastic damage model. A classical J2–plasticity flow rule describes the elasto-plastic re-
sponse of the steel reinforcement. Based on continuum micromechanics, the Mori-Tanaka homogenization
technique is considered as a suitable approach to derive the homogenized (macromechanical) constitutive re-
lations of the composite material and related local (micromechanical) field information which is essential for
durability analyses. Dowel action between the reinforcement bars and the concrete is implicitly captured by the
chosen approach. The model performance is demonstrated by selected numerical and experimental studies.

1 INTRODUCTION

Corrosion of the reinforcement constitutes one of
the major limiting factors for the durability of rein-
forced concrete structures. Expansive radial pressures
induced by corrosion products (rust) along the in-
terface between the steel bars and the concrete may
cause cracking and spalling of cover concrete. Grad-
ual loss of bond strength between the reinforcement
and the surrounding concrete and the reduction of re-
inforcement cross-sectional area amplify the deterio-
ration mechanisms caused by corrosion. On the struc-
tural level, a reduction of the structural stiffness and
of the load carrying capacity affects the (residual) ser-
vice life-time of reinforced structures and may lead
to premature failure. Since the nature of steel corro-
sion is physico-chemical and its evolution is strongly
moisture dependent, life-time oriented structural anal-
yses require consideration of transport mechanisms
of moisture and of corrosive substances such as chlo-
ride ions or calcium hydroxide leading to the depas-
sivation of the reinforcement bars. Equally relevant
is a suitable model for reinforced concrete allowing
to represent the interacting mechanisms between the
reinforcement bars and the surrounding concrete such
as bond slip and dowel action as well as the corrosion-
induced degradation of these interaction properties.

In this study, the main focus is laid on the latter

aspect: Reinforced concrete is modelled as a three-
phase composite material consisting of a continuous
matrix and two different sets of rebars. This idea has
been suggested recently by (Pietruszczak and Win-
nicki 2003) and (Linero et al. 2006) using the classical
mixture theory in order to obtain macroscopic proper-
ties of the composite material. In the present paper,
the macroscopic behavior of this composite material
is obtained by employing homogenization schemes
to a representative volume element (RVE), in which
the necessary conditions for the application of ho-
mogenization are fulfilled (Zaoui 2002). This model
for reinforced concrete is being implemented within a
multiphase model for partially saturated concrete ac-
counting for heat and moisture transport and the rel-
evant interactions observed on the nano- and micro-
level between cracking, drying and creep (Meschke
and Grasberger 2003; Grasberger and Meschke 2004).

While for mainly unidirectional loading a 1D-
modelling of the reinforcement within an embedded
approach would be sufficient (Linero et al. 2006),
shear stresses transmitted by the rebar in case of
cracked concrete (dowel action) suggest a homoge-
nization approach using a fully 3D representation of
the steel reinforcement within the considered RVE.
Effects such as dowel-action are therefore captured
automatically without any additional specifications of



the residual shear stiffness in cracked zones.
The mechanical response of composite materials

is highly influenced by the morphology of the mi-
crostructure, the properties of the constituents and
by micromechanical interactions within the compos-
ite. The volume fraction, the aspect ratio, the orien-
tation and the shape of constituents with correlated
interactions have to be taken into account in order to
describe the structural response accurately. To avoid
modelling of the complex heterogeneous microstruc-
ture, adequate homogenization techniques are per-
formed. Based on continuum micromechanics (Zaoui
2002) the MORI-TANAKA homogenization scheme is
employed in this study in order to provide an esti-
mate of the constitutive relations of reinforced con-
crete described as a three-phase composite material.
The adopted micromechanical model ensures the con-
tinuity of the surrounding matrix and accounts for
interactions between the embedded inhomogeneities
(Mori and Tanaka 1973).

The main goal of this study is to derive a reli-
able macroscopic model for reinforced concrete as a
composite material which provides information about
the stress and strain fields of the individual con-
stituents (the concrete matrix and the reinforcement
bars). This information is essential when degrada-
tion mechanisms originating from mechanical, phys-
ical and physico-chemical processes have to be esti-
mated accurately. Since details on the coupled hygro-
mechanical model for concrete have been already
presented elsewhere (Meschke and Grasberger 2003;
Grasberger and Meschke 2004), the focus of this pa-
per lies on the formulation of reinforced concrete
based on homogenization micromechanical approach.
Since this work is in progress, in a first version of the
proposed model, bond-slip between the rebar and the
surrounding concrete is not yet accounted for.

2 CONSTITUTIVE MODELS
2.1 Concrete matrix material
For describing damage and creep of cementitious
materials subjected to external loading and chang-
ing hygral conditions an elasto-plastic damage model
(Meschke and Grasberger 2003; Grasberger and
Meschke 2004) formulated within the framework
of the BIOT-COUSSY theory (Coussy 2004) is em-
ployed. Concrete is assumed to consist of a contin-
uous matrix and pores, which, depending on the en-
vironmental conditions, are in general partially filled
by liquid water and by an ideal mixture of water
vapour and dry air. Based on the considered theory,
the individual phases formed by the matrix phase and
the pores are represented as a homogeneous material
according to their volume fraction in each material
point. The related constitutive relations capturing the
main physical processes acting on the nano- and mi-

crolevel are obtained by means of defining an appro-
priate expression for the free energy of the thermo-
dynamic system together with macroscopic coupling
coefficients which are obtained from relating micro-
and macroscopic quantities and exploiting symmetry
conditions of the macroscopic energy function Ψm

Ψm = W(εm − εp
m − εf

m,ml − ρlφ
p
l , ψ, γf , T )

+U(αR, αDP ) (1)

for the matrix material (Grasberger and Meschke
2004). The index m refers to the matrix. The lin-
earized strain tensor εm within the matrix is assumed
to be small and can therefore be decomposed into
elastic strains εe

m, plastic strains εp
m and long-term

creep strains εf
m i.e.

εm = εe
m + εp

m + εf
m. (2)

Moisture distribution is described by the liquid mass
content ml and by liquid, with a density of ρl, oc-
cupying the non-recoverable portion of the poros-
ity φp

l . The integrity ψ captures the isotropic dam-
age state of the poromechanical material. Viscous
slip γf , associated with relative motions within gel-
pores, causes creep deformations observed on the
macroscopic scale (Bažant et al. 1997; Grasberger and
Meschke 2003). The thermal field is described by the
absolute temperature T . The hardening and soften-
ing law, specifying the material behaviour beyond the
elastic domain, is governed by the internal variables
αR for tension cracking and by αDP for compression
damage.

A multi-surface fracture energy-based damage-
plasticity theory is employed to characterize the
behaviour of concrete in tension and compression
(Meschke et al. 1998). Degradation mechanisms and
inelastic deformations are controlled by four thresh-
old functions fk defining a region of admissible stress
states in the space of plastic effective stresses σ ′

m

IE={(σ′

m, qk)|fk(σ
′

m, qk(αk)) ≤ 0, k = 1, ..,4}. (3)

Cracking of concrete is accounted for by means of
a fracture energy based Rankine criterion, employ-
ing three failure surfaces perpendicular to the axes of
principal stresses

fR,A(σ′

m, qR) = σ′

A − qR(αR) ≤ 0, A = 1,2,3 (4)

with qR(αR) = −∂U/∂αR denoting the softening pa-
rameter and the index A refers to the principal di-
rection. The ductile behaviour of concrete subjected
to compressive loading is described by a harden-
ing/softening Drucker-Prager plasticity model

fDP (σ′

m, qDP ) =
√

J2 − κDP I1 −
qDP (αDP )

γDP

≤ 0 (5)



with qDP (αDP ) = −∂U/∂αDP as the harden-
ing/softening parameter and the values κDP and γDP

are obtained from the compressive strength of the ma-
terial.

The mechanical behavior for the matrix in case that
no moisture and heat transport is considered, is char-
acterized by the stress field of the matrix σm which is
equal to the plastic effective stress tensor σ ′

m (Gras-
berger and Meschke 2004) and is obtained from equa-
tion (1) and (2) as

σm = ψCm : εe
m = ψCm : (εm − εp

m − εf
m) (6)

with Cm as the undamaged elasticity tensor of the ma-
trix material.

2.2 Reinforcement
Similar to equation (2), the total strain tensor of the
rebar εs can be decomposed into an elastic εe

s and a
plastic part εp

s

εs = εe
s + εp

s. (7)

The subscript s refers to the deformations of the steel.
Since the distribution of the stiffness within a rein-
forced concrete structure is discontinuous, the strains
of the matrix given in equation (2) may differ from the
strains of the reinforcement even when full bonding
between reinforcement and matrix is assumed. The
stress-strain relationship is obtained from the stored
energy function Ψs as

σs = ∂Ψs/∂ εe
s = Cs : εe

s = Cs : (εs − εp
s) , (8)

where Cs denotes the isotropic tensor of elasticity.
The admissible stress field σs within the rebar is de-
scribed by a classical J2-plasticity model (Simo and
Hughes 1998) and the non-linear regime beyond the
yield stress σy is governed by an isotropic linear hard-
ening law based on the von Mises yield condition

f(s, α) = || s || −
√

2/3 [σy +Kα ] ≤ 0. (9)

The evolution of the isotropic hardening is governed
by the internal variable α and by the constant isotropic
hardening plastic modulus K.

3 CONTINUUM MICROMECHANICS
3.1 Composite material (reinforced concrete)
In this study, the considered three-phase composite
consists of a continuous matrix formed by concrete
and by two sets of straight rebars representing the
steel reinforcement forming the reinforcement-layer.
The direction of the rebars and the geometry of the
cross section may be arbitrary within the 2-3–plane of
the reinforcement layer. Figure 1 contains an illustra-
tion of the composite material ,,reinforced concrete”.
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Figure 1: Illustration of the composite material.

Such a configuration is typical for reinforced shell-
like as well as beam structures. Besides steel rein-
forcement also textile materials are frequently used as
fiber-reinforcement in concrete structures. Such com-
posite material may also be described within a mi-
cromechanical framework (Richter 2005). Therefore,
the proposed micromechanical model presented in the
following sections is formulated in a rather general
format in order to consider a broad class of reinforc-
ing materials.

3.2 The representative volume element (RVE)
A widely used approach in continuum micromechan-
ics is based on the consideration of a representative
volume element (RVE) representing an arbitrary ma-
terial point of a structure. Thereby, the complex mor-
phology of the microstructure is captured in a sim-
plified manner by the RVE in order to estimate the
related effective (macroscopic) response by means of
an averaging procedure. To confirm the representative
character of the RVE, the considered size l has to be
large enough in order to ensure a statistical distribu-
tion of the constituents with a characteristic size d and
at the same time it has to be essentially smaller than a
length of the structure L

d� l� L. (10)

In Figure 2 the assumed RVE is depicted schemati-
cally. The considered microstructure is governed by
two straight steel rebars with the tensor of elasticity
C1, C2 and the related angles α1, α2, which are em-
bedded in a continuous matrix (concrete) with the ma-
terial tensor Cm. Depending on the position and vol-
ume fraction of each rebar, the expected effective me-
chanical response of the RVE is in general anisotropic
or transversal isotropic. Hill’s condition requires the
equality of the energy on the micro and macro level
independently of the constitutive law. This condition
is a priori fulfilled by homogeneous strain bound-
ary conditions applied by prescribing linear displace-
ments at the boundary of the RVE (Zohdi and Wrig-
gers 2005)

u(x) = ε∗ ·x, x ∈ ∂V, (11)

where ε∗ defines the macroscopic (constant) strain
tensor.
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Figure 2: Representative volume element (RVE).

3.3 Micro-macro mapping
The local strain and stress fields within the RVE are
averaged over the total volume V of the RVE in order
to evaluate the homogenized values of the strains

< ε >V =
1

V

∫

V
ε(x)dV =

n∑

i=1

ci < ε >i (12)

and of the stresses

< σ >V =
1

V

∫

V
σ(x)dV =

n∑

i=1

ci < σ >i . (13)

Since the local averaged field values are assumed
to be constant within each phase (σi =< σ(x) >i

and εi =<ε(x)>i), they can be summed up accord-
ing to the volume fraction ci = Vi/V , whereby Vi is
the total volume of the phase iwithin the RVE. Hence,
the volume of the RVE of the considered three-phase
composite is assumed to be filled completely by all
phases i.e. c1 + c2 + cm = 1. According to the aver-
age strain theorem, for any perfectly bonded hetero-
geneous body the averaged strains < ε >V given by
equation (12) can be identified as the macroscopic
strain tensor ε∗ applied on the RVE i.e. < ε >V = ε∗,
which is independent of the considered constitutive
laws (Zohdi and Wriggers 2005). For a three-phase
composite, a reformulation of equation (12) and (13)
leads to

ε∗ =< ε >V = c1 ε1 + c2 ε2 + cm εm (14)

describing the homogeneous macroscopic strains ap-
plied onto the composite material and to

σ∗ =< σ >V = c1 σ1 + c2 σ2 + cm σm (15)

for the macroscopic stresses representing the compos-
ite stress field. The related local stress tensor σi(εi)
is calculated according to each constitutive law given
by equations (6) and (8). The unknown local strain
fields εi have to estimated by means of the forth-order

localization (concentration) tensor Ai which relates
the homogenized macroscopic strains ε∗ to the local
strains within each phase

εi = Ai : ε∗, i = 1,2,m. (16)

The tensor Ai of each phase accounts for the mor-
phology of the microstructure by considering the elas-
ticity, the volume fraction, the aspect ratio, the orien-
tation and the shape of each constituent. It should em-
phasized that Ai relates micro and macro quantities
and depends therefore on the theory chosen for the
micromechanical model. If a three-phase composite
is considered only two concentration tensors have to
be known. The third one can be determined from the
average value

< A >V = c1 A1 + c2 A2 + cm Am = 11, (17)

with 11 denoting the forth-order unit tensor. Due
to different orientation and shape of the inhomo-
geneities, which is captured by Ai, the mechanical
response of the related homogenized stiffness tensor
C
∗ is in general anisotropic even if all constituents

are isotropic. As long as all constituents are in elas-
tic regime, the mechanical constitutive relation for a
composite material is defined by

σ∗ = C
∗ : ε∗, (18)

where C
∗ can be derived from the localization tensors

of each phase

C
∗ =< C : A >V =

n∑

i=1

ci Ci : Ai. (19)

In the post-cracking range of the matrix or in the
yielding regime of the rebars, however, the macro-
scopic tangent stiffness tensor of the composite C

∗,tan

needs to be computed according to

C
∗,tan = dσ∗/dε∗. (20)

Depending on the considered micromechanical model
the macroscopic tangent tensor C

∗,tan is obtained
from linearization of each constitutive law

C
tan
i = dσi/dεi i = 1,2,m. (21)

3.4 Three-phase MORI-TANAKA approach
An appropriate homogenization scheme to derive the
effective mechanical response of a RVE is provided
by the widely used MORI-TANAKA approach (Mori
and Tanaka 1973). This micromechanical model en-
sures continuity of the matrix phase and accounts
for mechanical interactions between the inclusions in
an average manner. According to this homogeniza-
tion scheme, the reference material playing the pre-
dominant morphological role of the composite is the



continuous matrix. The inclusions and their states of
strain and stress are directly affected by the matrix
material. Within this approach, which is also denoted
as effective field theory, the two limit cases (no inclu-
sions exist (ci = 0) and no matrix phase is considered
(cm = 0)) are covered by C

∗ = Cm when ci = 0 and
C
∗ = Ci when cm = 0. In the following, the MORI-

TANAKA equations for a non-linear three-phase com-
posite are presented.

The relation between the strains of the phases εi

and the applied macroscopic strains ε∗ on the bound-
ary of the RVE is formulated in the general format

εi = A
MT
i : ε∗, i = 1,2,m. (22)

In order to identify the fourth-order concentration ten-
sor A

MT
i of each phase, the related assumptions of the

MORI-TANAKA approach have to be taken into ac-
count. As mentioned before, the average strains of the
inclusions (ε1,ε2) are defined by the average strains
of the matrix εm

ε1 = T 1 : εm and ε2 = T 2 : εm. (23)

Based on ESHELBY’s equivalent inclusion approach,
the fourth-order tensor T i of each phase can be esti-
mated by re-formulating the inclusion inhomogeneity
problem as a homogeneous problem with eigenstrains
(Eshelby 1957). The solution for a single elastic inho-
mogeneity with an ellipsoidal shape perfectly bonded
to a surrounding homogeneous matrix is given by

T i =
[

11 + S
i : (C−1

m : Ci − 11)
]
−1

i = 1,2. (24)

For an ellipsoidal geometry of the inclusions the
forth-order ESHELBY tensor S

i for each phase is
solely dependent on the aspect ratio of the inclu-
sion and on the Poisson’s ratio νm of the surround-
ing isotropic matrix Cm. Since a cylindrical shape can
be regarded as an ellipsoidal geometry with a spe-
cial aspect ratio, the solution of the ESHELBY tensor
in a local coordinate system S

loc for the considered
straight rebars can be computed (Eshelby 1957). In
Figure 3, the cylindrical inhomogeneity representing
a single rebar is illustrated. In this Figure, over-bars
are used to characterize the local coordinate system.
Note that the cross section of the rebar may have an
elliptical or circular shape depending on the aspect
ratio s = a2/a1. The ESHELBY tensor is transformed
from the local to the global coordinate system within
the 2-3-plane by means of the rotation tensor Q(α)

Sijkl = Qim(α)Qjn(α)Qko(α)Qlp(α)S loc
mnop , (25)

where α stand for the angle of rotation of the con-
sidered bar with respect to the positive x1-axis (see
Figure 2). For each set of rebars with the orientation
αi the related ESHELBY tensor S

i has to be obtained

a 3

a 3 a 1 a 2> > ,

1

a 1

a 2

1

2

3

2

a 2 a 1s  = /

Figure 3: Representation of an inhomogeneity.

according to formula (25). The coordinate transfor-
mation of the stiffness tensors Cm of the matrix and
Ci of the steel rebars is, because of the invariant prop-
erty of isotropic tensors, not required.

As soon as the mechanical response of the matrix
becomes inelastic, the related stiffness required for
equation (24) is defined according to the actual dam-
age state. In the post-cracking regime, the stiffness of
the matrix phase degenerates to ψCm where ψ is the
remaining integrity, while the elastic stiffness of the
steel reinforcement remains unchanged in the post-
yielding regime. It should be noted that T i given by
equation (24) also represents the localization tensor
resulting from the dilute approach, where no interac-
tions between inclusions are considered. The applica-
tion of the dilute approach is limited to composites
with very small volume fractions of the inclusions.

For the present three-phase composite the concen-
tration tensors A

MT
i introduced in equation (22) re-

lated to each phase can be identified from combin-
ing equation (19) for the homogenized effective ma-
terial tensor C

∗, equation (17) for the concentration
tensors A

MT
i together with equation (14) for the ho-

mogenized macroscopic strains ε∗ and with the mi-
croscopic strains εi given by equation (23) as

A
MT
1

=
[

c1 11 + c2 T 2 : T
−1

1
+ cm T

−1

1

]
−1

(26)

A
MT
2

=
[

c1 T 1 : T
−1

2
+ c2 11 + cm T

−1

2

]
−1

(27)

A
MT
m = [c1 T 1 + c2 T 2 + cm 11]−1 . (28)

Since A
MT
i is a function of T 1 and T 2, it is obvi-

ous that the strains in each phase are affected by the
other constituents, which allows for the consideration
of micromechanical interactions within the MORI-
TANAKA strategy.

3.5 Consideration of sets of reinforcement
The assumed RVE illustrated in Figure 2 considers
two straight inhomogeneities (rebars) embedded in a
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Figure 4: Consideration of reinforcement sets.

continuous matrix. If the distance between neighbor-
ing rebars is relatively large, the assumed mechanical
response of the RVE containing single rebars in each
direction is a suitable approximation of the macro-
scopic effective shear stiffness. Since the stiffness of
the composite material in longitudinal direction of the
rebars is manifested by a parallel system (VOIGT-
boundary conditions), the adopted micromechanical
model reproduces the proper stiffness in longitudinal
direction independent of the distance between adja-
cent rebars. If sets of reinforcement are considered,
however, depending on the distance between neigh-
boring reinforcement bars, the effective shear stiff-
ness may differ from the effective shear stiffness of
a RVE whose size is in accordance with the require-
ments described in section 3.2.

The stiffening effect provided by the rebar in
shear mode (dowel action) is frequently accounted
for by increasing the effective shear stiffness of the
composite according to beam bending mechanisms
(Pietruszczak and Winnicki 2003; Linero et al. 2006).
In the present approach, however, a consistent mod-
ification of the ESHELBY tensor S is performed in
order to capture the effective shear stiffness when re-
inforcement sets embedded in a matrix are consid-
ered. To this end, the aspect ratio parameter s= a2/a1

specifying the cross section of the rebar is modified
in order to reproduce the correct effective shear stiff-
ness. It should emphasized, that this modification pri-
marily affects the shear contribution while the macro-
scopic stiffness in longitudinal direction of the rebars
remains unchanged. In Figure 4 the mapping from
the standard RVE of a single set system to the mod-
ified RVE of sets of reinforcement bars is depicted
schematically.

3.6 Homogenized mechanical response

For the proposed three-phase composite material, the
macroscopic (homogenized) free energy Ψ∗ can be
additively decomposed into the matrix part Ψm and
the part Ψi associated with the rebars according to

their volume fractions cm and ci, respectively

Ψ
∗
= cmΨm 1 :A

MT−1
m :1+

2∑

i=1

ciΨi 1 :A
MT−1

i :1. (29)

Since the applied macroscopic strain tensor ε∗ differs
from the strains within each phase, the energetic con-
sistency is ensured by taking the concentration tensor
A

MT
i of the MORI-TANAKA scheme into account in

equation (29). This approach can easily be confirmed
by deriving the macroscopic stress tensor σ∗ in equa-
tion (15) from the homogenized free energy Ψ∗

σ∗
=

∂Ψ∗

∂ε∗
= cm

∂Ψm

∂ε∗
: A

MT−1
m +

2∑

i=1

ci
∂Ψi

∂ε∗
: A

MT−1

i

= cm
∂Ψm

∂εm
:
∂εm

∂ε∗
: A

MT−1
m +

2∑

i=1

ci
∂Ψi

∂εi
:

∂εi

∂ε∗
: A

MT−1

i

= cm σm : A
MT
m : A

MT−1
m

︸ ︷︷ ︸

11

+

2∑

i=1

ci σi : A
MT
i : A

MT−1

i
︸ ︷︷ ︸

11
= cm σm +

2∑

i=1

ci σi
!
=< σ >V . (30)

The homogenized non-linear tangent operator C
∗,tan

relating macro-strains to the macro-stresses is identi-
fied as

C
∗,tan =

dσ∗

dε∗
= c1

dσ1

dε∗
+ c2

dσ2

dε∗
+ cm

dσm

dε∗

= c1
dσ1

dε1

:
dε1

dε∗
+ c2

dσ2

dε2

:
dε2

dε∗
+ cm

dσm

dεm

:
dεm

dε∗

= c1C
tan
1

:AMT
1

+c2C
tan
2

:AMT
2

+cmC
tan
m :AMT

m

= C
tan
m + c1(C

tan
1

− C
tan
m ) : A

MT
1

+

c2(C
tan
2

− C
tan
m ) : A

MT
2

. (31)

The tangent stiffness of each phase C
tan
i depends on

the damage or yielding state and is calculated accord-
ing to the adopted material model for each phase.
Note, that in the non-linear regime, also the con-
centration tensor A

MT
i is affected by the damage or

yielding state, which is manifested by T i given in
equation (24). As long as all constituents are within
the elastic range however, equation (31) coincides
with equation (19) and the classical micromechanical
laws of elastic composites are valid.

3.7 Numerical study in the elastic regime
To illustrate the influence of the volume fraction
and the orientation of the rebar on the effective
stiffness C

∗ within the elastic regime of both con-
stituents, a simple benchmark test is performed. To
this end, one single rebar with Young’s modulus Es =
76,000 N/mm2 and Poissons ratio νs = 0.2 is embed-
ded within a matrix with Em = 30,000 N/mm2 and
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Figure 5: E∗

3 for different volume fractions c (numerical).

νm = 0.2. The shape of the rebar is assumed to be
cylindrical (aspect ratio s = 1). For different angles
α of the rebars, the effective Young’s modulus in 3-
directionE∗

3
= 1/C∗−1

33 is computed for three different
volume fractions of the rebar (c = 1/5/10 %).

Two homogenization procedures - the mixture the-
ory and the MORI-TANAKA approach - are used.
Since in the mixture theory besides the volume frac-
tion no micromechanical information is considered,
the related equations are directly obtained by assum-
ing A = 11 for the concentration tensor leading to an
isotropic homogenized stiffness tensor C

∗. The me-
chanical response obtained with the MORI-TANAKA
technique, however, is manifested by an anisotropic
stiffness even if all constituents are isotropic. Fig-
ure 5 illustrates the isotropic response based on the
mixture theory (dashed lines) and the more realistic
anisotropic, orientation-dependent response obtained
from the MORI-TANAKA approach (solid lines).
Since the mixture theory is based on a parallel system
of the constituents, resulting in uniform (constant)
strains within the RVE, the approximated macro-
scopic stiffness constitutes an upper bound (VOIGT
approximation). In addition to the orientation also the
volume fraction of the rebar c strongly affects the ho-
mogenized effective stiffness.

3.8 Homogenization within multi-physics
In this section, the extension of the adopted (mechan-
ical) homogenization technique for reinforced con-
crete to a multi-phase model for concrete is briefly
addressed. Since the free energy of the porous matrix
Ψm given in equation (1) is governed by the moisture
content ml and by the absolute temperature T , the re-
lated state equations of the liquid pressure pl and of
the entropy S

pl = ρl ∂Ψ∗/∂ml = ρl cm∂Ψm/∂ml 1 :AMT−1

m :1(32)

Table 1: Mechanical material parameters.
Concrete Steel
Em = 20,000 MPa Es = 200,000 MPa
νm = 0.2 νs = 0.3
f c

m = 20 MPa σy = 442 MPa
f t

m = 1.0 MPa K = 0 MPa
Gf = 0.1 N/mm s = 100

S = −∂Ψ∗/∂T = −cm∂Ψm/∂T 1 : A
MT−1

m : 1 (33)

can derived from the free energy of the composite
material Ψ∗ given in equation (29). It is implicitly
assumed that moisture and heat transport are not af-
fected by the embedded reinforcement. The expres-
sions for ∂Ψm/∂ml and ∂Ψm/∂T can be found in
(Grasberger and Meschke 2004).

4 EXPERIMENTAL VERIFICATION
A re-analysis of a shear test of a bi-directionally re-
inforced panel tested experimentally (Collins et al.
1985) is performed in order to validate the proposed
model for reinforced concrete. The considered panel
PV27 with dimensions 890 · 890 · 70 mm3 is re-
inforced homogeneously with a volume fraction of
1.785% in each orthogonal direction. For this panel,
the finite element discretization contains elements
with identical material parameters for the compos-
ite. While the experiment has been performed load-
controlled the finite element analysis is performed
displacement-controlled. A relatively large amount of
reinforcement and a low concrete strength have been
chosen to provoke structural concrete shear failure
(Collins et al. 1985). The material parameters for the
concrete matrix material and for the reinforcing steel
are collected in Table 1, with f c

m and f t
m representing

the compression and tensile strength, respectively and
Gf is the fracture energy. For the steel an ideal elasto-
plastic behaviour is assumed. At the boundaries of
the investigated panel, the concrete and the reinforc-
ing rebars are perfectly bonded. The stiffening effect
of the reinforcing steel sets is captured according to
section 3.5 by modifying the aspect ratio of the cross
section s.

The structural shear-stress versus the equivalent
shear-strain behaviour is depicted in Figure 6. The
structural shear-strains are computed from the pre-
scribed displacements at the top of the panel, and
the structural shear-stresses are obtained by averag-
ing the shear-stresses calculated also at the top at the
panel. The comparison between the experimental and
numerical result shows a satisfactory agreement. The
onset of cracking within the matrix is well predicted
by the proposed model. The maximum shear-stress,
however, is slightly underestimated in the numerical
analysis by ∼ 10.8%. As reported in (Collins et al.
1985) and also confirmed by the numerical analysis,
structural failure of the panel originates from concrete
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Figure 6: Analysis of an orthogonally reinforced shear
panel (Collins et al. 1985).

crushing. No yielding of reinforcement is observed.
In order to illustrate the contribution of the rebars to
the global shear stiffness, the same concrete panel
without consideration of reinforcement is also ana-
lyzed numerically. The respective shear stress-shear
strain curve is included in Figure 6. Since the stiffen-
ing effect provided by the reinforcement is missing,
the maximum load capacity is controlled by matrix
cracking. The maximum capacity of the plain con-
crete panel is approximately one third of the rein-
forced panel (Figure 6).

5 CONCLUDING REMARKS

In this paper, a constitutive model for reinforced con-
crete based on continuum micromechanics is pre-
sented. Reinforced concrete is represented as a three-
phase composite material, characterized by a contin-
uous concrete matrix and two different sets of steel
reinforcement rebars. The MORI-TANAKA homoge-
nization scheme is considered as a suitable approach
to derive the homogenized constitutive relations of the
composite material and to obtain related local (mi-
cromechanical) field information. Dowel action be-
tween the reinforcement bars and the concrete is im-
plicitly captured by the chosen approach. The pro-
posed model is formulated within a poromechanics
framework developed for durability-oriented numer-
ical analysis of reinforced concrete structures. How-
ever, in the present paper the main focus has been laid
on the purely mechanical response of reinforced con-
crete. Since the work is still in progress, debonding
mechanisms between concrete and the embedded re-
inforcement (bond slip) as well as corrosion have not
yet been taken into account.
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