
1 INTRODUCTION 
 
Cracking is one of the critical considerations when 
designing concretes structures. Continuum and dis-
crete simulation models (e.g. nonlocal damage, gra-
dient damage, PU-FEM, X-FEM) have been used to 
account for these complex cracking processes. Most 
of these codes use constitutive models (e.g. the dam-
age-plasticity model) simplifying some of the ob-
served phenomena. However, cyclic tensile-
compressive tests on concrete specimens (Reinhardt, 
1984) show a rather complex cyclic behavior (figure 
1). In pre-peak tensile loading, a nonlinear load de-
formation curve is observed. In the post-peak region, 
strain-softening occurs during damage evolution. 
When unloading, the load deformation curve is char-
acterized by a stiffness reduction in tensile loading 
and a stiffness recovery in compressive loading. In 
addition, permanent deformations and hysteretic 
loops are formed which change of shape when going 
from tensile to compressive loading and vice versa. 
Moreover, the hysteretic loops change form with 
damage. All these phenomena can be related to the 
presence and the growth of the damage in the form 
of micro-, meso- and macrocracks. Nonlinear elastic 
behavior is explained by the opening/closing of ini-
tial defects, while strain softening and stiffness re-
duction is attributed to the growth of the micro- and 
meso-cracks. Permanent deformations can be ex-
plained by the misfit of closing cracks and stiffness 
recovery upon complete closure of the cracks. Hys-
teretic behavior is attributed to the opening and the 
closing of cracks at different stresses. 

 
 
Figure 1: Experimental results according to Reinhardt(1984) 

 
 
 

 
 
 
 

 
 
 
 
 
Figure 2: Combined damage-plasticity model. 
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ABSTRACT: Experimental tensile-compressive cyclic tests on DEN-concrete specimens reveal several phe-
nomena: nonlinear elasticity, stiffness reduction, stiffness recovery, permanent deformation and hysteretic 
behavior, which changes shape during tensile unloading to compressive loading. In this paper, a constitutive 
model is proposed that captures all these effects, and which is based on strain decomposition into a classical 
linear elastic strain and a non-classical strain described by the Preisach-Mayergoyz model (PM-model). 
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Classical damage-plasticity models (figure 2) in-
clude a softening branch, the stiffness reduction in 
the tensile region and the stiffness recovery in the 
compressive region. Hysteretic behavior is however 
not included.  

(Gylltoft, 1984) proposes a constitutive model 
that includes hysteretic behavior of the material in 
the tensile region (σ ≥ 0), but not in the compressive 
region (σ < 0) (figure 3). In Gylltoft’s model, stiff-
ness reduction in tensile loading, compressive hys-
teretic phenomena and nonlinear elasticity are not 
taken into account. 

(Reinhardt et al., 1986) propose a model that in-
cludes a tensile as well as a compressive hysteretic 
behavior (figure 4). The hysteretic behavior in ten-
sile loading is similar as in Gylltoft’s model, i.e. the 
unloading branch is parallel with the linear pre-peak 
elasticity behavior, and the tensile hysteretic behav-
ior has the shape of a parallelogram. The compres-
sive hysteretic behavior has the shape of a triangu-
lar. A drawback of the model is that the minimum 
stress in the loop has to be known in advance. 

(Yankelevsky et al, 1989) propose a focal-point-
model, where the hysteretic behavior is described by 
7 so-called focal points (figure 5). The model is 
based on the experimental observation that the stiff-
ness of the (tensile) loading and unloading hysteretic 
loop changes. 

(Hordijk, 1991) proposes the continuous-
function-model (CFM), which consists of 4 inde-
pendent analytical equations, describing respectively 
the softening branch, the unloading behavior, the re-
loading behavior and the stress drop, when the re-
loading hysteretic loop reaches the softening branch. 
The model consists of 14 parameters, which need to 
be determined experimentally.  

(Duda, 1991) proposes a rheological model for 
the simulation of cyclic tensile-compressive loading. 
The model consists of three parallel units: two units 
are composed of two springs and sliders in series 
connection (each able of forming a trapezium shaped 
hysteretic loop), and one unit is composed of a 
slider. The behavior of the units is influenced by the 
damage level (i.e. maximum attained displacement). 
This model can simulate all of the observed phe-
nomena, except for the non-linear elasticity. The 
model consists of 14 parameters, which need to be 
determined experimentally. 

 
Figure 3: model proposed by Gylltoft(1984), where go and gc 
are be considered material parameters. 

 
Figure 4: model proposed by Reinhardt et al,(1986). 

 
Figure 5: model proposed by Yankelevsky,(1989). 
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(Oliveira, 2002) proposes an interface cyclic 
model which incorporates all described phenomena 
except the nonlinear elastic behavior for the meso-
modelling of masonry. The model is based on the 
plasticity theory and uses the yield envelope pro-
posed by (Lourenço, 1996). The hysteretic unload-
ing/reloading behavior is incorporated using two 
unloading surfaces. The unloading surfaces are con-
trolled by a mixed hardening law and appropriate 
experimentally measured hardening evolution rules. 

The above-mentioned constitutive models are or 
unable to describe all the observed phenomena, or 
the determination of all parameters is hard to per-
form. Moreover, these models are generally based 
on parametric description of the loops and lack 
physical understanding of the underlying micro-
scopic and mesoscopic phenomena.  

In this paper, we present a two-scale model that is 
based on the modeling of the physical behavior of 
the material at the micro- and mesoscale (i.e. as 
mentioned above, e.g. opening/closing of the micro-
and mesocracks…). The proposed model is able to 
incorporate nonlinear elasticity, softening, stiffness 
reduction in tensile loading, stiffness recovery in 
compressive loading, the tensile-compressive hys-
teretic loops and permanent strains. The constitutive 
model is based on the Preisach-Mayergoyz phe-
nomenological model (PM-model). In section two, 
the PM-model is briefly explained, and the PM-
space distribution is identified. In section 3, the con-
stitutive model is presented. Section 4 shows the ob-
tained results and in section 5 conclusions are 
drawn.  

PM-MODEL 

1.1 Motivation to use the PM-model. 

Guyer et al. (1999) show that materials can be sub-
divided in 2 classes: microscopic elastic materials 
(metals without dislocations, undamaged individual 
crystals, many fluids, intact plastics…) and nonlin-
ear mesoscopic elastic materials (sand, soil, cement, 
concrete, ceramics and damaged microscopic elastic 
materials). In a nonlinear, hysteretic mesoscopic ma-
terial, the solid ‘grains’ behave as rigid units, while 
the contact between the grains (the bond system) 
controls the  nonlinear, hysteretic behavior of the 
material. More specifically, according to Van Den 
Abeele et al. (2002) the nonlinear, hysteretic re-
sponse in this class of materials is caused by the 
low-aspect ratio features (e.g. contacts in micro-
cracks, macro-cracks, asperities …). According to 
Guyer (1999), this class of materials cannot be de-
scribed by the traditional elasticity theory as applied 

for microscopic elastic materials. Guyer et al. (1995) 
propose the Preisach-Mayergoyz space model, 
where the macroscopic hysteretic nonlinear response 
is described by outcome of an assemblage of micro- 
and mesoscale elements. Since the nonlinear, hyster-
etic response of concrete in cyclic loading results 
from micro- and mesoscopic features related to 
damage (such as microcracks, mesocracks, contacts 
in macrocracks, etc.), it is logical that the nonlinear, 
hysteretic elastic behavior depends upon damage. 

1.2 Composition of the PM-model. 

The PM-model is build up of a set of micro- and 
meso-scale elements, which are called non-classical 
elements or hysterons. In the PM-model, it is as-
sumed that a hysteron can only be in two states, 
open or closed. The element opens when a certain 
stress σ0 is exceeded and remains open as the load-
ing continues to increase (figure 6a). The element 
closes at σc (different from σ0) and remains closed 
when the loading further deceases. The stresses σ0 
and σc for each hysteron can be used as the ele-
ment’s coordinates in a “PM space”, thus creating a 
density of elements in the  σ0 - σc space (with σ0 ≥ 
σc). Elements that show no hysteresis reside on the 
diagonal (σ0 = σc), while hysterons showing increas-
ing hysteretic behavior are situated further from the 
diagonal. By keeping track of which elements are 
closed or open, the resulting nonlinear elastic strain, 
also called the non-classical strain can be calculated 
by the following integration in the P-M space:  

            
   (1) 

 
where ncε  = the non-classical strain; )(t

co
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state of the hysteron with opening stress oσ  and 
closing stress cσ  at time t; and  ),( co σσμ  = the PM-
distribution function. 

Figure 6b shows the PM space in tension-
compression. The PM space in tensile direction is 
bounded by the tensile strength ft. In the post-peak 
softening range the tensile strength gradually re-
duces due to damaging of the material, which results 
in a shrinkage of the tensile PM space. We assume 
that in compression, the stress is lower than the 
compressive strength, so no compressive damaging 
of the material is considered. The compressive PM 
space is bounded by a constant limiting value σlim. 
By choosing an adequate PM-distribution function, 
different non-linear phenomena observed at the 
macro-level can be modeled: hysteretic behavior, 
stiffness reduction, stiffness recovery and permanent 
deformations. 
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Figure 6 (a) Representation of the behavior of an hysteron. (b) 
The mapping of the individual hysteron in the PM-space. 

2 MODELLING 

2.1 Basics of constitutive model. 

The constitutive model is based on the decomposi-
tion of the total strain into a classical elastic strain 
and a non-classical strain  

 
         (2) 

 
The classical elastic strain eε  is described using the 
classical theory of linear elasticity. The correspond-
ing Young’s modulus Eo is the modulus of the un-
damaged material (i.e. without initial damage). The 
non-classical strain ncε  is determined by the PM-
model. In the next section, a method is proposed to 
determine the PM-distribution. 

2.2 Identification of the PM-distribution. 

Figures 7a, 7b and 7c give respectively the first, an 
intermediate and last unloading-loading loop of 
stress versus non-classical strain. The non-classical 
strain is obtained by subtracting the linear elastic 
strain from the total strain. Comparing the different 
hysteretic loops, it can be concluded that the PM 
space related to the loops, highly depends on the 
damage level d of the material or  );,( dco σσμ . 
Damage is defined according to continuum damage 
theory, where the damage variable d ranges from 0 
for the intact material to 1 at complete macro-
cracking. During the unloading-loading loop (σ ≤ ft), 

no further damage evolution is assumed, which 
means that a single loop is determined by one PM 
distribution with damage d. The damage level attrib-
uted to a loop can be determined based on the resid-
ual strength of the material ft, which equals the 
maximum stress maxσ of the unloading-loading loop 
(see Figure 7). The residual strength in the post-peak 
loading (softening curve) is given by: 
 

0)1( tt fdf ⋅−=               (3) 
 
With ft equals σmax, which is the maximum stress 
that can be transferred in the material with damage 
d, ft0 = the initial tensile strength of the undamaged 
material. At the start of the unloading curve (σ=σmax) 
all hysterons are in the open state. The correspond-
ing non-classical strain max,ncε is determined by the 
integration of the PM space until σ0 = σmax. The 
non-classical strain during unloading is then given 
by: 
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The non-classical strain ncε  during reloading from 
the minimal reversal stress revσ  of the loop is given 
by:  
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In equation (5), εnc,rev is the non-classical strain ob-
tained with equation (4) during unloading from the 
maximum stress σmax until the reversal stress revσ .  

The identification of the PM distribution is gen-
erally an underdetermined identification problem. 
Therefore, following (Carmeliet et al. 2002), the PM 
space is described by a sum of analytical functions. 
We introduce the following functional form, based 
on an exponential decay in density of hysterons 
away from the diagonal, i.e. we assume:  

 

∑ −=
=

n

i
dimic ddd

1
0 ));(exp();();,( σκσρσσμ    (6) 

with the mean stress: 
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and the stress amplitude:  
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In equation (6), κi is a decay parameter, which is de-
pendent on the damage d, ρi a diagonal density func-
tion given by: 
 

( )σσρ )(exp)();( dbdad iii =         (9) 
 
The damage dependent parameters ai, bi and κi are 
determined by indirect identification minimizing the 
least square difference between measured and pre-
dicted loop. Figure 7a, 7b and 7c compare the meas-
ured and fitted data for respectively the first, an in-
termediate and the last loop. The identification 
analysis showed that the loops can be adequately 
modeled by the sum of two functions (n=2, or two 
PM-populations). Figures 8a-e shows the depend-
ence of the parameters on damage. 

We observe that the parameters ai and bi for both 
populations increase with damage. These parameters 
describe the diagonal function. This means that dur-
ing damage evolution the mechanical effect of the 
total number of hysterons on the nonlinear behavior 
of the material, or the non-classical strain, becomes 
more pronounced. The decay parameter of the first 
population κ1 increases first with damage, where-
after it decreases to zero for high damage values. 
This means that in the beginning of the damage 
process the hysterons of the first population become 
more situated near the diagonal and thus become 
less hysteretic. At the end of the damage process, 
these hysterons will be situated uniformly over the 
PM-space, and thus generate very hysteretic behav-
ior. These hysterons could probably be attributed to 
nonlinear effects in the crack process zone, which 
grows during damage evolution. 

The second population of hysterons becomes only 
important at high damage values (d>0.8). This popu-
lation is characterized by a decay coefficient κ2 ap-
proximately equal to zero, meaning there is no decay 
in the PM distribution away from the diagonal. This 
means that these hysterons, which only originate at 
high damage level, are very hysteretic, and are 
caused by the presence of nonlinear mechanisms –
probably contacts in macrocracks - when macro-
cracks are fully developed. 

In conclusion, the hysteretic behavior of the ma-
terial can be divided in two stages. In the first stages 
during damage evolution, the effect of the hysterons 
increases, while moving to the diagonal (indicated 
by an increase of κ1). At high damage level, a sec-
ond population of very hysteretic hysterons appears 
(indicated by a low value of κ2), while the hysterons 
of the first population become more and more hys-
teretic (indicated by a decrease of κ1).  
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Figure 7a: Comparison of the results for the first hysteretic 
loop. 
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Figure 7b: Comparison of the results for an intermediate loop. 
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Figure 7c: Comparison of the results for the last hysteretic 
loop. 
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Figure 8a: Evolution of the parameter a1 with the damage d 
(a1= ai of the first term). 
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Figure 8b: Evolution of the parameter b1 with the damage d. 
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Figure 8c: Evolution of the parameter κ1 with the damage d. 
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Figure 8d: Evolution of the parameter a2 with the damage d. 
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Figure 8e: Evolution of the parameter b2 with the damage (d). 
 
 
 
 
 
 
 

2.3 General constitutive model. 

The stress-strain relation for isotropic damage in-
cluding non-classical strain effects (hysteresis, stiff-
ness decrease and stiffness recovery) is described as: 
  

εσεσσ ⋅+⋅= ),(),( historyhistory dEdE       (10) 
 
Where ε is the total strain and E(d,σhistory) is the tan-
gent stiffness in the stress-strain space. The tangent 
stiffness is determined by: 
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Where σε ∂∂ nc is determined from the PM space 
model. It should be noted that the permanent strains 
are taken into account in the PM space model. This 
corresponds in the PM-space model with hysterons 
that remain in open state and do not close, upon 
loading. Permanent deformations are coupled with 
the damage present in the material because the PM 
model evolves with damage. 

Damage growth is defined by a damage growth 
criterion and a damage evolution law. Damage 
growth in tension is defined by a Rankine kind crite-
rion. 
 

φε −=df                 (12) 
 
Where fd defines the damage surface in tension, ε  is 
the total applied strain and φ  is an internal parame-
ter. At the beginning, this parameter equals the ini-
tial tensile fracture strain. If fd equals 0, then accord-
ing to the Kuhn-Tucker conditions damage evolves. 
The damage evolution function is described by: 
 

( ) ( )ii eed φφαφφα αα −⋅−−⋅− ⋅−−⋅−= 32 )1(1 11      (13) 
 
where α1, α2 and α3 are parameters which are deter-
mined by the tensile softening branch of the mate-
rial, φ is an internal parameter determined by equa-
tion (12) and iφ  the initial value of the internal 
parameter. 

Finally, the cyclic tension-compression behavior 
is simulated by the model formulated by equations 1, 
2, 3, 6, 7, 8, 11, 12 and 13. The proposed model de-
scribes all phenomena using damage evolution and 
un/reloading (figure 9). 
 
 
 
 



 
Figure 9: Results obtained with the proposed consti-
tutive model. 

3 CONCLUSIONS 

In this paper, a model is presented to describe uni-
axial cyclic tensile/compressive loading including 
phenomena like tensile softening damage, stiffness 
decrease during tensile damage, stiffness recovery 
during compressive loading, permanent deforma-
tions and hysteresis between loading and unloading 
branch. The model is based on strain decomposition 
in elastic and non-classical strain, covering all non-
linear effect. The non-classical strain is considered 
as the outcome of a population of hysteretic ele-
ments - called hysterons – which are described in the 
PM space by two distribution functions. The PM 
distribution is dependent on the damage level. The 
second population only originates at high damage 
levels or when macro-cracks are formed. At low 
damage levels, the populated PM-space is located 
near the diagonal. As the damage increases more 
hysterons originate, which are located near the di-
agonal, causing the hysterons to behave less hyster-
etic. Because the parameters that describe the PM-
distribution increase with the damage, it can also be 
stated that the total effect (or number) of the hys-
terons increases. It can be observed that the com-
bined model is able to take into account all of the 
observed phenomena that occur during tensile-
tensile and tensile-compressive loading: i.e. in the 
pre-peak region: nonlinear elasticity, hysteresis and 
in the post-peak region: stiffness reduction, stiffness 
recovery, permanent deformations, tensile-tensile 
and tensile-compressive hysteretic loops.  
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