
 

Modeling of multiple cracks in plain and reinforced concrete beams 

K. M. Pervaiz Fathima & J. M. Chandra Kishen 

Indian Institute of Science, Bangalore, India 

 
 
ABSTRACT: Modeling of multiple cracks in concrete structures using available finite element packages is 
not a simple task. In this work, this complexity is simplified by transforming multiple cracks into an equiva-
lent single crack or equivalent damage zone. Based on the global damage index, a method is proposed to rep-
resent multiple cracks as an equivalent single crack such that both correspond to the same value of damage 
index. By correlating the fracture mechanics and damage mechanics theories through an energy equivalence 
approach, an equivalent damage zone corresponding to multiple cracks is obtained. A finite element analysis 
is performed to assess the stiffness degradation of the members using both the theories and the results show 
that both the theories agree well with each other. Finally, it is concluded that it is easier to model discrete 
multiple cracks as an equivalent single crack or as an equivalent damage zone with reduced stiffness.

1 INTRODUCTION  

Concrete is one of the most widely used materials 
for the construction of civil engineering structures. 
Cracks are present in concrete even before the struc-
ture is subjected to any external loading. These are 
the microcracks formed due to shrinkage, hydration 
and carbonation. When concrete is subjected to load-
ing, these microcracks coalesce to form macro-
cracks, which upon further loading propagate lead-
ing to failure of the structure. It is important to 
model the cracks in concrete inorder to correctly 
analyse the structure. The methods currently avail-
able to model cracks are the smeared crack ap-
proach, discrete cracks, enhancing the continuum, 
enriching the element distribution function with a 
discontinuous field and methods where a discon-
tinuous displacement field is used (Tano & Klisinski 
1998). The smeared crack approach, introduced by 
Rashid (1968), replaces the crack by a continuum 
with altered physical properties. It is computation-
ally convenient and remeshing is not required.  On 
the other hand, the discrete crack models, widely 
used to study crack propagation in quasi-brittle ma-
terials like concrete, represent cracks by separating 
the nodes on the crack paths. They are usually im-
plemented within the framework of the finite ele-
ment method (FEM) or the boundary element 
method (BEM). Conventional FEM-based discrete 
crack models do not account for stress singularities, 
hence inaccurately calculate fracture parameters 
such as the stress intensity factors (SIFs), energy re-
lease rates, crack-tip stresses and opening displace-
ments. In order to accurately assess the fracture pa-
rameters, fine meshing has to be performed at the 

crack tip. The stress singularities can also be repre-
sented using quarter point elements (Barsoum 1977) 
or hybrid singular elements (Tong 1977 & Zeng 
2002). To analyse propagating cracks, remeshing 
procedures are required to update the finite element 
meshes after each crack propagation step (Xie et al. 
1995 & Wawnzynek 1989). These procedures are 
generally sophisticated and difficult to implement. 
The complexity involved in the remeshing algo-
rithm, in which fine crack tip meshes or special ele-
ments are to be implemented, further increases when 
propagation of multiple cracks is involved. 

The computational approaches to failure use ei-
ther of the two basic concepts: fracture mechanics or 
damage mechanics. The first one belongs to the fam-
ily of discrete or discontinuous models while the 
other falls in the category of continuous models. The 
two approaches can be blended so as to overcome 
the limitations in both the approaches. The use of 
combined fracture/damage mechanics approach was 
proposed by Janson & Hult (1977) to obtain a more 
realistic assessment of capacity of a loaded structure. 
Mazars (1986) developed a model according to the 
framework of thermodynamics to describe the birth 
and growth of cracks, using a combination of linear 
elastic damage mechanics and linear elastic fracture 
mechanics. 

Isotropic damage models are the simplest form of 
damage theory, wherein a single internal variable D 
defines the nonlinear behavior. This variable can be 
considered as a damage indicator and its value 
ranges from 0 to 1. The constitutive models based on 
isotropic damage concepts have been found to be 
more advantageous for its numerical practicability 
on modeling of concrete fracture compared to 
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smeared crack applications (Köksal & Karakoç 
1999). 

In this work, an attempt is made to simplify the 
complexities involved in modeling multiple crack 
propagation using the existing finite element pack-
ages by introducing an equivalent approach. The 
equivalence is established based on a global damage 
index, which is a function of minimum eigenvalue of 
the stiffness matrix. A method is proposed to obtain 
equivalent single crack corresponding to multiple 
cracks such that damage index value is same in both 
the cases. The crack so obtained is further trans-
formed into an equivalent damage zone by correlat-
ing fracture mechanics and damage mechanics ap-
proaches through an energy equivalence approach. 

The equivalence is validated by computing the 
stiffness degradation factor using both the ap-
proaches. 

2 DAMAGE MODELS 

Damage models may be classified mainly into two 
categories: those used mostly in seismic engineering 
wherein, damage indices are evaluated from parame-
ters such as sectional forces, ductility or deformation 
energy of structural members; the second category is 
made by the continuum mechanics damage models 
that describe the material state at a point in the struc-
ture and are based on the principles of thermody-
namics (Mazars 1986). Numerous models have been 
proposed to represent damage of structural members, 
most of which are based on empirical damage defi-
nitions. Several researchers have introduced damage 
indices that are a function of a few selected parame-
ters, such as the normalized energy index (Darwin & 
Nmai 1986), damage ratio based on reduced stiff-
ness (Lybas & Sozen 1977), normalized cumulative 
rotation (Banon & Veneziano 1982), strength drop 
index (Chung et al. 1989) etc. The seismic damage 
model by Park & Ang (1985) is also widely used for 
reinforced concrete members. Damage measures can 
also be defined in terms of structural stiffness, quan-
tified by some characteristic parameters such as ei-
gen frequencies and mode shapes (Kratzig et al. 
2000 & Ndambi et al. 2002) etc, that reflect the 
structural stiffness indirectly or directly by means of 
eigenvalues of the global stiffness matrix (Kratzig & 
Petryna 2001). In the present work, a global damage 
index that is based on the minimum eigenvalue of 
the global stiffness matrix is used. It is defined as 

 

min

min

1
d

u

D = −

λ

λ
                             (1) 

 
where, λminu is the minimum eigenvalue correspond-
ing to an uncracked beam and λmind is the minimum 

eigenvalue corresponding to a cracked beam. The 
limiting values of D may be defined as follows: 
when there is no crack, λminu = λmind, therefore D = 0 
corresponding to no damage; when critical crack 
length corresponding to failure is reached, λmind → 0, 
and D → 1 indicating critical damage of the mem-
ber. Between these two limiting conditions, at vari-
ous stages of crack propagation, the λmind value de-
creases monotonically with increase in crack length, 
and the corresponding stiffness degradation factor 
would fall in the range 0 ≤ D ≤ 1. Through this pro-
cedure, the local effects of cracking get incorporated 
in the global behavior of the member. By this 
method, the degraded structural response or the re-
sidual stiffness of the member can be computed ob-
serving the variation of local damage parameter. In 
other words, local damage variables act as a parame-
ter for determining the cause of damaging event, and 
this result is captured through the global damage in-
dicator (Sain & Chandra Kishen 2008). 

2.1 Computation of Damage Index for Beams with 
Multiple Cracks 

Concrete beams are one of the most regularly used 
structural members to study the fracture processes of 
concrete structures. Even, the first theoretical work 
on fracture of concrete (Kaplan 1961) examined the 
application of linear elastic fracture mechanics to 
concrete beams under three and four point bending. 
Despite the fact that a concrete beam is structurally 
simple, a good understanding of its failure process 
may well explain some of the fundamental mecha-
nisms in the fracture of concrete. In this work, plain 
and reinforced concrete beams subjected to three 
point bending are considered. 

2.2 Damage Index for Plain Concrete Beams with 
Multiple Cracks 

In this study, damage index is computed for three 
geometrically similar beams of different sizes (Ba-
zant & Xu 1991), the span to depth ratio being equal 
to 2.5 and the initial notch length to depth ratio equal 
to 1/6. The geometry and loading details of the 
beams are given in Table 1. A finite element analy-
sis is carried out by discretizing the beam into 1000 
beam elements and using crack beam elements at the 
known position of crack. 
 
Table 1.  Geometry and loading conditions of plain concrete 
beams. 

Specimen Width 
mm 

Depth 
mm 

Span 
mm 

Peak Load 
N 

Small 38.1 38.1 95 1815.6 
Medium 38.1 76.2 191 2986 

Large 38.1 152.4 381 5184 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  

 

J•∇=
∂

∂
−

t

w
                              (2) 

 
The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 

 

nsc
w

s

e
w

c

e
w

h
h

D
t

h

h

e
w

&&& ++
∂

∂

∂

∂

=∇•∇+
∂

∂

∂

∂

− αα

αα

)(

    

(3)

 
 

where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



The standard stiffness matrix for beam element 
with two degrees of freedom (vertical deflection and 
rotation) at each node is used for the undamaged 
elements. The stiffness matrix of the cracked beam 
element is obtained using compliance coefficients, 
by partial differentiation of the total strain energy 
equation with respect to the nodal displacements 
(Tharp 1987) and is given in Equation 2. 
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where λvv and λmm are the compliances with respect 
to shear and moment respectively and are given be-
low.  
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where B = width of the beam; ν = Poisson’s ratio; a 
= crack length; M = Bending moment; V = Shear 
force;  KIm  = Mode I SIF; KIIv = Mode II SIF 
 

Computation of damage index involves the fol-
lowing steps: 

1. The eigenvalues of the stiffness matrix of the 
undamaged beam are determined. 

2. The crack beam element is introduced at the 
known crack location and standard beam elements at 
other undamaged portion of the beam. 

3. The global stiffness matrix for cracked member 
is assembled and its eigenvalues are computed. 

4. The degree of global damage D is computed 
using the minimum eigenvalues corresponding to 
damaged and undamaged beams using Equation 1. 

5. The crack length is incrementally increased 
and the above steps repeated to determine the varia-
tion of D as a function of relative crack depth (the 
local damage parameter). The above procedure is 
adopted for three point bend beams containing  

(i) single crack at the midspan  
(ii) multiple (five) cracks, with one crack at the 

midspan and the others at a spacing of span/20 on ei-
ther side of the middle one. All the cracks are as-
sumed to be of the same length and equally spaced. 

Figures 1 & 2 show the variation of damage in-
dex as a function of relative crack depth for the three 
different sized specimens with single crack and five 
cracks respectively. From these figures, it is ob-
served that the variation of damage index with crack 
depth is same for geometrically similar specimens 
and as expected, the damage index increases with 
the number of cracks. 

 

 
Figure 1. Variation of Damage Index with respect to relative 
crack depth for beams with a single crack. 

 

 
Figure 2. Variation of Damage Index with respect to relative 
crack depth for beams with five cracks. 

2.3 Damage Index for Reinforced Concrete Beams 
with Multiple Cracks 

A reinforced concrete beam originally used by Alaee 
& Karihaloo (2003), whose geometrical properties 
are given in Table 2 is considered here.  
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k
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vg and k
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vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



Table 2. Details of RC beam. 

Depth (mm) 
Width (mm) 
Length (mm) 
Steel area (mm2) 
Yield stress (MPa) 
Young’s modulus E (MPa) 

150 
100 
1200 
113.09 
544 
35.6e3 

 
The procedure to compute the damage index is 

the same as that of plain concrete beam as discussed 
in the previous subsection. The difference lies in the 
formulation of the stiffness matrix. The concrete 
beam element has three degrees of freedom namely 
extension, vertical deflection and rotation, the rein-
forcement steel is superimposed over it as a bar ele-
ment (only extension). Since steel induces an axial 
closing force, the beam may be assumed to be a 
flexural member subjected to axial loading as well. 
The stiffness matrix of such a beam element as de-
rived by Chajes (1974) is used here. 
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where Ac = Area of concrete; Ec = Modulus of elas-
ticity of concrete; As = Area of steel; Es = Modulus 
of elasticity of steel; l = length of element. 
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Here, P is the axial force induced in the steel rod. 

It is computed at each crack step using the expres-
sion below which is obtained by the congruence 
condition i.e. by equating the rotation due to bending 
moment and the closing force to zero (Carpinteri 
1984).  
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The stiffness matrix of the cracked beam element 

is given by (Tharp 1987) 
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where, λvv and λmm are defined in Equations 4 and 5; 
λpp and λmp compliances for extension and rotation 
due to axial force respectively. 
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Figure 3. Variation of Damage Index with respect to relative 
crack depth for reinforced concrete beam with 1and 5 cracks. 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 

 

( ) ( )
( )

( ) ( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
∞

+

−
∞

−=

11
10

,
1

                            

1
10

1
1,

1
,,

h
cc

g
e

sc
K

h
cc

g
e

sc
G

sc
h

e
w

αα

αα

αα

αααα

 (4) 

 
where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



Using the procedure described in the previous 
section, the damage index for the beam with one and 
five cracks is computed. Figure 3 shows the varia-
tion of damage index with the relative crack depth. 

3 TRANSFORMATION OF MULTIPLE 
DISCRETE CRACKS INTO AN EQUIVALENT 
SINGLE CRACK 

In this section, a method is proposed to represent 
multiple cracks as an equivalent single crack using 
the damage index obtained in the previous section 
such that both correspond to the same value of dam-
age index. The method is illustrated in Figure 4. 

Figure 4 shows how five cracks are converted 
into an equivalent single crack based on damage in-
dex. The variation of damage index with respect to 
relative crack depth being known; for any a/H, for 
the beam with five cracks, D is known. Correspond-
ing to this D, an equivalent single crack (a/H)eq is 

 

 
Figure 4. Equivalent single crack corresponding to five cracks. 

 
Table 3. Equivalent single crack length correspond-ding to 
multiple cracks for plain concrete beams. 

Relative crack depth 
(single crack) 

Equivalent single crack 
corresponding to 5 cracks 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 

0.217 
0.401 
0.547 
0.652 
0.737 
0.812 

 
Table 4. Equivalent single crack length correspond-ing to five 
cracks for reinforced concrete beam. 

Relative crack depth 
(single crack) 

Equivalent single crack 
corresponding to 5 cracks 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 

0.212 
0.403 
0.547 
0.652 
0.741 
0.815 

obtained from the plot of damage index versus rela-
tive crack depth for the beam with single crack.  

The equivalent crack lengths for plain concrete 
beams with multiple cracks are tabulated in Table 3 
and for the reinforced concrete beam in Table 4. 

4 TRANSFORMATION OF DISCRETE CRACKS 
INTO AN EQUIVALENT DAMAGE ZONE 

According to fracture mechanics theory, energy is 
required for an existing crack to propagate by an 
amount δa. This energy is commonly expressed as 
strain energy release rate per unit crack extension 
and is denoted by G. Similarly, in case of damage 
based analysis, the strain energy loss per unit vol-
ume of the material due to increase in damage by an 
amount dD is referred to as damage strain energy re-
lease rate. The idea of energy based equivalence is 
based on equating the energy loss due to damage, 
with the energy required for equivalent crack propa-
gation within the member. In a more explanatory 
sense, energy based equivalence correlates two 
structures having the same geometry and loading 
condition, but different damage definitions. In a 
global sense they behave in the same manner when 
the energy dissipation corresponding to two different 
damage conditions become equal for the two struc-
tures (Mazars & Cabot 1996). The energy release 
rate δU per unit crack extension δa (which in turn is 
equal to the potential energy lost (δΠ) by the applied 
load) is related to the stress intensity factor. 
Energy release per unit crack extension is computed 
using 
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Using Equation 15, the strain energy as a function 

of relative crack depth α can be evaluated. The crack 
is replaced with an equivalent damage zone of width 
lc, depth LD and thickness B. LD = a + ld, where, a is 
the crack length and ld is the length of process zone. 
The damage zone corresponding to the process zone 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  

 

( )
1

1
10

1
10

1
1

22.0188.0
0

,
1

−
⎟
⎠

⎞
⎜
⎝

⎛
−∞

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−∞

−−+−

=

h
cc

g
e

h
cc

g
eGs

s
s
c

w

sc
K

αα

αα

αα

αα

 

(6)

 
 
The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



length is assumed to be an equilateral triangle of side 
lc (Garhwal & Chandra Kishen 2008). Figure 5 
shows an equivalent damage zone corresponding to 
a discrete crack of length a. 

In three-dimensional form, the energy dissipated 
through damage is expressed as 
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where, σ

eq
is the von Mises equivalent stress and σ

H
 

is the hydrostatic stress. 
The energy dissipated due to progressive damage 

near the location of the crack results in the gradual 
change of damage variable D from 0 → 1 and is 
given by, 

 

( )

( )
( )

( )

1
1

2
0 0

1

                                                                                     (19)

d dd d
c

D c

yy

a l a la a Bl
U Bl YdD dy YdD dy

ya

a

−−
+ +

= − + + −∫ ∫ ∫ ∫

−

⎛ ⎞⎧ ⎫⎧ ⎫ ⎜ ⎟⎪ ⎪⎪ ⎪ ⎝ ⎠⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

 
Equating the two energy terms in Equations 15 

and 19, we can solve for the unknown dimension of 
the damage zone, LD through a trial and error proce-
dure, after defining LD in terms of lc. The above pro-
cedure is adopted for the three plain concrete speci-
mens (Table 1) and the reinforced concrete beam 
(Table 2) with single and multiple (five) cracks. In 
the case of multiple cracks, they are first converted 
into an equivalent single crack. The variation of the 
damage zone length LD with respect to crack length 
is shown in Figures 6 & 7 for plain concrete speci-
mens and Figure 8 for reinforced concrete beam. 

 
 

 

 

 

 

 

 

 

 
 
 

 
Figure 5. Equivalent damage zone corresponding to a discrete 
crack of length a. 

 
Figure 6. Variation of the equivalent damage zone length LD 
with respect to relative crack depth for plain concrete beams 
with a single crack. 

 

 
Figure 7. Variation of the equivalent damage zone length LD 
with respect to relative crack depth for plain concrete beams 
with five cracks. 

 

 
Figure 8. Variation of the equivalent damage zone length LD 
with respect to relative crack depth for reinforced concrete 
beam with one and five cracks. 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



5 VALIDATION OF THE ENERGY 
EQUIVALENCE CONCEPT 

In this study, the stiffness reduction in concrete 
beams is determined using both fracture mechanics 
and damage mechanics approaches. The stiffness re-
duction factor, is defined as (Lybas & Sozen 1977),  
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where, K0 is the initial stiffness and Kr is the reduced 
secant stiffness associated with maximum displace-
ment.  

The finite element package FRANC2D (Cornell 
Fracture Group 1997) is used to model the beams. 
The reduced secant stiffness is computed using the 
maximum displacement as a function of increasing 
crack length for fracture based analysis and as a 
function of increasing damage zone length for dam-
age based analysis. In the fracture mechanics based 
analysis, a rosette of singular crack tip quarter point 
elements are used to model the crack tip. The dam-
age zone, in the damage mechanics based analysis is 
modeled using reduced value of modulus of elastic-
ity. According to the theoretical definition of dam-
age, the modulus of elasticity of the elements in the 
damage zone should approach zero. In this finite 
element study, a trial value of 1/100 of the undam-
aged modulus of elasticity E is considered in order 
to avoid the numerical difficulties arising from using 
a zero value. Thus, by computing the maximum dis-
placement from the finite element analysis, the re-
duced secant stiffness Kr is computed. In case of 
fracture mechanics approach, the crack tip is speci-
fied and the crack length is increased incrementally 
by moving the crack tip. In case of damage mechan-
ics approach, damage zone size is increased. The 
 

 
Figure 9. Stiffness reduction factor as a function of crack 
length for beam (small) with a single crack. 

 
Figure 10.  Stiffness reduction factor as a function of equiva-
lent crack length for beam (small) with five cracks. 

 
variation of stiffness reduction factors with increas-
ing relative crack depth are shown in Figures 9 & 10 
for small specimen. 

It is seen from these figures, that the stiffness re-
duction factor match closely with each other for 
fracture and damage mechanics based approaches, 
thereby validating the energy equivalence concept 
used. 

6 CONCLUSIONS 

In this study, it is shown that multiple cracks can be 
represented as an equivalent single crack using dam-
age index. The damage index, defined using the 
minimum eigenvalue of the stiffness matrices is in-
dependent of the size of the specimen for geometri-
cally similar specimens. An energy based equiva-
lence approach is proposed to model multiple 
discrete cracks in the form of a distributed damage 
zone. The stiffness reduction factor is computed us-
ing both fracture mechanics and damage mechanics 
theories and the results show that both the theories 
agree well with each other. Treating the multiple 
cracks as an equivalent single crack highly simpli-
fies the complexity involved in modeling multiple 
cracks in concrete structures. By representing multi-
ple cracks as an equivalent damage zone, that is re-
ducing the modulus of elasticity of that zone, the 
modeling becomes much simpler as there is no need 
to consider the stress concentrations occurring at the 
crack tip and hence more efficient. 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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maximum amount of water per unit volume that can 
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 
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where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 

 

( ) s
s

s

vg
kc

c

c

vg
k

sc
G αααα +=,
1

                 (5) 

 
where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  

 

( )
1

1
10

1
10

1
1

22.0188.0
0

,
1

−
⎟
⎠

⎞
⎜
⎝

⎛
−∞

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−∞

−−+−

=

h
cc

g
e

h
cc

g
eGs

s
s
c

w

sc
K

αα

αα

αα

αα

 

(6)

 
 
The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  
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Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
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