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ABSTRACT: This paper presents recent results obtained by the Lattice Discrete Particle Model (LDPM) for
the simulation of concrete and fiber reinforced concrete behavior. LDPM is a meso-scale model which has
been recently formulated at Rensselaer Polytechnic Institute and extensively validated against experimental
data. LDPM can accurately predict several phenomena characterizing concrete behavior, including failure under
uniaxial, biaxial, and triaxial compression; material compaction under hydrostatic compression; and tensile
fracturing.

1 THE LATTICE DISCRETE PARTICLE MODEL

Since the mid-1980s, many meso-scale models for
concrete have appeared in the literature. The main
advantage of these models over classic constitutive
models for concrete is their ability to simulate ma-
terial heterogeneity and its effect on damage evo-
lution and fracture. Noteworthy examples of meso-
scale models are the ones published in Roelfstra et al.
(1985), Wittmann et al. (1988), Bažant et al. (1990),
Schlangen & Van Mier (1992), Carol et al. (2001),
Lilliu & Van Mier (2003), Cusatis et al. (2003a),
Cusatis et al. (2003b), Cusatis et al. (2006a), Cusatis
& Cedolin (2006b), Yip et al. (2006).

This paper presents and discusses recent results ob-
tained at Rensselaer Polytechnic Institute by the Lat-
tice Discrete Particle Model (LDPM). LDPM simu-
lates concrete mesostructure by taking into account
only the coarse aggregate pieces, typically with char-
acteristic size greater than 5 mm. The mesostructure is
constructed through the following steps. 1) The coarse
aggregate pieces, whose shapes are assumed to be
spherical, are introduced into the concrete volume by
a try-and-reject random procedure. 2) Zero-radius ag-
gregate pieces (nodes) are randomly distributed over
the external surfaces. 3) A three-dimensional domain
tessellation, based on the Delaunay tetrahedralization
of the generated aggregate centers, creates a system
of cells interacting through triangular facets, which
can be represented in a two-dimensional sketch by
straight line segments (Fig. 1). A vectorial constitu-
tive law governing the behavior of the model is im-
posed at the centroid of the projection of each single
facet (contact point) onto a plane orthogonal to the
straight line connecting the particle centers (edges of
the tetrahedralization). The projections are used in-

Figure 1: a) Meso-structure tessellation. b) Three-
dimensional discrete particle. c) Definition of nodal de-
grees of freedom and contact facets in two-dimension.

stead of the facets themselves to ensure that the shear
interaction between adjacent particles does not de-
pend on the shear orientation. The straight lines con-
necting the contact points with the particle centers de-
fine the lattice system.

Rigid body kinematics describes the displacement
field along the lattice struts and the displacement
jump, �uC�, at the contact point. The strain vector is
defined as the displacement jump at the contact point
divided by the inter-particle distance, L. The compo-
nents of the strain vector in a local system of refer-
ence, characterized by the unit vectors n, l, and m,
are the normal and shear strains:
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εN =
nT�uC�

L
; εL =

lT�uC�

L
; εM =

mT�uC�

L
(1)

The unit vector n is orthogonal to the projected facet,
and the unit vectors l and m are mutually orthogonal
and lie in the projected facet.

The elastic behavior is described by assuming that
the normal and shear stresses are proportional to the
corresponding strains:

σN = ENεN ; σM = ET εM ; σL = ET εL (2)

where EN = E0, ET = αE0, E0 = effective normal
modulus, and α = shear-normal coupling parameter.
E0 and α are assumed to be material properties.

The tensile fracturing behavior (εN > 0) is for-
mulated through a relationship between the effective
strain and the effective stress (Cusatis et al. 2003a),
defined as:

ε =
√

ε2
N + α(ε2

M + ε2
L); σ =

√
σ2

N +
(σM + σL)2

α
(3)

By using the effective strain and the effective stress,
the relationship between normal and shear stresses
versus normal and shear strains can be calculated in a
way similar to simple damage models(see derivation
in Cusatis et al. (2003a)):

σN = σ
εN

ε
; σM = σ

αεM

ε
; σL = σ

αεL

ε
(4)

The effective stress, σ, is incrementally elastic
(σ̇ = E0ε̇) and must satisfy the inequality 0 ≤ σ ≤
σbt(ε,ω). The strain dependent boundary σbt(ε,ω) can
be expressed as

σbt = σ0(ω) exp

[
−H0(ω)

〈εmax − ε0(ω)〉
σ0(ω)

]
(5)

in which the brackets 〈•〉 are used in Macaulay sense:
〈x〉 = max{x,0}.

The internal variable ω is defined as follows
(Cusatis et al. 2003a):

tanω =
εN√
αεT

=
σN

√
α

σT

(6)

and it characterizes the coupling between normal and
shear strains (or stresses). The σbt boundary evolves
exponentially as a function of the maximum effective
strain, which is a history-dependent variable defined
as εmax =

√
ε2

N,max + αε2
T,max, where εN,max(t) =

max
τ<t

[εN(τ)] and εT,max(t) = max
τ<t

[εT (τ)] are the max-

imum normal and total shear strains, respectively, at-
tained during the loading history (in absence of un-
loading εmax ≡ ε).

The function σ0(ω) is the strength limit for the ef-
fective stress and is defined as follows:

σ0(ω) = σt
− sin(ω) +

√
sin2(ω) + 4α cos2(ω)/r2

st

2α cos2(ω)/r2
st

(7)
in which rst = σs/σt is the ratio between the shear
strength (cohesion), σs, and the tensile strength, σt.
In the stress space σN − σT , Equation 7 represents a
parabola with its axis coincident with the σN -axis.

The exponential decay of the σbt boundary starts
when the maximum effective strain reaches its elas-
tic limit, ε0(ω) = σ0(ω)/E0; and the decay rate is
governed by the post-peak slope (softening modulus),
which is assumed to be a power function of the inter-
nal variable ω:

H0(ω) = Ht

(
2ω

π

)nt

(8)

Equation 8 provides a smooth transition from soft-
ening behavior under pure tensile stress (ω = π/2,
H0(ω) = Ht) to perfectly plastic behavior under pure
shear (ω = 0, H0(ω) = 0). In order to preserve the
correct energy dissipation during mesoscale dam-
age localization (Bažant & Oh 1983), the soften-
ing modulus in pure tension is expressed as Ht =
2E0/ (Lcr/L− 1), where Gt is the mesoscale fracture
energy, Lcr = 2E0Gt/σ

2
t , and L is the length of the

tetrahedron edge associated with the current facet.
For compressive loading (εN < 0), the nor-

mal stress is computed by imposing the inequal-
ity −σbc(εD, εV ) ≤ σN ≤ 0, where σbc is a strain-
dependent boundary depending on the volumetric
strain, εV , and the deviatoric strain, εD. The volumet-
ric strain is computed by considering the interaction
of the four particles located at the vertexes of each
Delaunay tetrahedron.

For a constant deviatoric strain to volumetric
strain ratio, rDV = εD/εV , the compressive boundary
σbc(rDV , εV ) is assumed to have an initial linear evo-
lution (modeling pore collapse) followed by an expo-
nential evolution (modeling compaction and rehard-
ening). One can write the following:

σbc = σc0 + 〈−εV − εc0〉Hc (9)

for −εV ≤ εc1 and

σbc = σc1 exp [(−εV − εc1)Hc/σc1] (10)

otherwise; σc0 = yielding compressive stress, εc0 =
σc0/E0 = volumetric strain at the onset of pore col-
lapse, Hc = initial hardening modulus, εc1 = λc0εc0 =
volumetric strain at which rehardening begins, λc0 =
material parameter governing the onset of reharden-
ing, and σc1 = σc0 + (εc1 − εc0)Hc.

For increasing rDV , the slope of the initial harden-
ing modulus must tend to zero in order to simulate the
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



observed horizontal plateau featured by typical exper-
imental data. This can be achieved by setting

Hc(rDV ) =
Hc0

1 + κc2 〈rDV − κc1〉 (11)

where Hc0 = κc0EN and κc0, κc1, κc2 are material pa-
rameters.

In the presence of compressive stresses, the shear
strength increases due to frictional effects. This ef-
fect can be simulated effectively through classical in-
cremental plasticity. Incremental shear stresses can be
calculated as σ̇M = ET (ε̇M − ε̇p

M) and σ̇L = ET (ε̇L −
ε̇p

L), where the plastic strain increments are assumed
to obey the normality rule ε̇p

M = λ̇∂ϕ/∂σM and ε̇p
L =

λ̇∂ϕ/∂σL, where λ is the plastic multiplier.
The plastic potential can be expressed as ϕ =√
σ2

M + σ2
L − σbs(σN) in which the shear strength,

σbs, is formulated with a nonlinear frictional law

σbs = σs + (µ0 − µ∞)σN0 − µ∞σN−

−(µ0 − µ∞)σN0 exp (σN/σN0)
(12)

where σs = cohesion, µ0 and µ∞ are the initial and
final internal friction coefficients, respectively, and
σN0 = the normal stress at which the internal fric-
tion coefficient transitions from µ0 to µ∞. Finally,
equations governing the shear stress evolution must
be completed by the loading-unloading conditions
ϕλ̇ ≤ 0 and λ̇ ≥ 0.

Current LDPM formulation has been implemented
into MARS, a multi-purpose computational code for
the explicit dynamic simulation of structural perfor-
mance (Pelessone 2009).

2 THREE-POINT BENDING TESTS
In this section LDPM is validated by simulating three-
point bending (TPB) tests of notched specimens of
three different sizes. Figure 2a shows the geometry
of the medium size specimen. The geometric data of
the specimens are reported in Table 1, where S and
d are the specimen length and depth, and a is the
notch depth. Damage evolution during TPB tests is
characterized by the growth of a crack that initiates
at the notch tip and propagates toward the opposite
side of the specimen (Fig. 2b). Since fracture occurs
in a very localized region, the numerical simulations
were carried out by modeling only the central part
of the specimens (in the vicinity of the notch) with
LDPM and by using standard elastic finite elements in
the zones where elastic behavior was expected. Cou-
pling between LDPM and solid finite elements was
obtained through a master-slave formulation (Cusatis
et al. 2006a).

For the calibration of the material model parame-
ters, the load displacement curve of the medium size
specimen (Fig. 2c), the compressive strength, and the
estimated pressure-volume curve under hydrostatic

Table 1: Geometric data for three-point bending tests.

Specimen S [mm] d [mm] a [mm]
Small 840 100 50

Medium 1188 200 100
Large 1455 300 150

Figure 2: Three-point bending tests.

compression were used. After the completion of the
calibration step, the simulations of the small size
specimen and large size specimen were carried out
for validation purposes without permitting further ad-
justment of the material model parameters. The agree-
ment between the numerical simulations and the ex-
perimental data is excellent overall. This proves that
LDPM can accurately simulate fracture propagation
in concrete and that it can predict the dependence of
structural strength on the structural size (size-effect).

3 UNIAXIAL COMPRESSION
In this section calibration and validation of LDPM
is presented with reference to uniaxial compression
strength tests performed on prismatic specimens with
a cross section of 100×100 mm2 and three different
heights: 50 mm, 100 mm, and 200 mm.

In the experiments (Van Mier et al. 1997), the
load was applied under displacement control by a
loading device which prevented rotation of the load-
ing platens. The tests were performed in two ways:
with untreated loading platens (high friction) and with
platens covered by friction-reducing material (low
friction). To simulate these two conditions, a sim-
plified frictional boundary was used as proposed in
Cusatis et al. (2003b).

The calibration of the LDPM parameters was ob-
tained by fitting the stress-strain curve relevant to

Proceedings of FraMCoS-7, May 23-28, 2010

hThD ∇−= ),(J                             (1) 
 

The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  

 

J•∇=
∂

∂
−

t

w
                              (2) 

 
The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 

 

nsc
w

s

e
w

c

e
w

h
h

D
t

h

h

e
w

&&& ++
∂

∂

∂

∂

=∇•∇+
∂

∂

∂

∂

− αα

αα

)(

    

(3)
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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Figure 3: Uniaxial compression test results.

cubic specimens with low friction at specimen ends
(Fig. 3a). The calibration procedure also required the
simulation of a hydrostatic compression test, a split-
ting (Brazilian) test, and a three-point bending (TPB)
test . The relevant experimental data, not available in
Van Mier et al. (1997), were estimated on the basis
of available literature on similar concretes (Bažant &
Planas 1998). In addition, fitting of the high friction
stress-strain curve for the cubic specimens (Fig. 3a)
allowed for the calibration of the friction parameters.
In Figures 3a, b, and c, the experimental curves rel-
evant to the cubic specimens are compared with the
average of three numerical results obtained by run-
ning the same tests with specimens featuring different
generated mesostructures. Error bars show the scatter
of the numerical solutions. Figure 3d shows a typical
failure mode for low-friction conditions.

After calibrating the model, validation simulations
were performed without further adjustment of the pa-
rameters. This was obtained by simulating uniaxial
compression tests of prisms with length L = 50 mm
and 200 mm. Figure 3f shows the results relevant to L
= 200 mm. The numerical simulations predicted very
accurately both peak stress and post-peak behavior of
the stress-strain curves for both low platen friction
and high platen friction. Figure 3e shows comparisons
between experimental data and numerical results rele-

vant to L = 50 mm. Overall the agreement is excellent
and only the peak stress of the stress-strain curve for
the low-friction case is predicted with less (but still
acceptable) accuracy with respect to the other cases.

It must be noted here that the macroscopic strain-
softening behavior captured by the model is the effect
of tensile fracturing and shearing in the mesostructure
rather than a phenomenological formulation of com-
pressive softening, as typically done in continuum-
based models.

4 BIAXIAL COMPRESSION
In this section the numerical simulation of biaxial
tests is discussed with reference to the experimental
data reported in Kupfer et al. (1969). In the exper-
imental campaign, concrete panels (200 mm × 200
mm × 50 mm) were subjected to biaxial compression,
biaxial compression-tension, and biaxial tension. The
load was applied by means of brush-bearing platens
to reduce the effect of friction.

The adopted loading paths were proportional in the
space of the in-plane principal stresses σ1 and σ3, i.e.
k = σ3/σ1 = constant. Figure 4a shows the experi-
mental (circles) and numerical (solid line) failure en-
velope, which is constructed from the peak stresses
for various values of k normalized by the uniaxial

Figure 4: Biaxial test results.
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



compressive strength. The numerical results fit the ex-
perimental data very well. Both the experiments and
the numerical simulations show that compressive con-
crete strength increases as a function of k and reaches
its maximum for k ≈ 0.5.

It is interesting to analyze the failure modes un-
der some characteristic loading paths. In Figure 4b,
one can see the failure mode (identified through con-
tours of mesoscale crack openings) associated with
uniaxial compression (k =-1/0). The numerical simu-
lation predicts the classical shear bands with an incli-
nation of about 45 degrees. Failure under uniaxial ten-
sion (k ==1/0), featuring one localized crack orthog-
onal to the direction of loading, is reported in Figure
4c. Figure 4d shows the fracture path associated with
equibiaxial tension (k =1/1). Under this load condi-
tion, the specimen fails with an inclined fracture of
about 45 degrees. Finally, Figure 4e reports the fail-
ure mode associated with compression and transverse
tension (k =-1/0.103). Although the transverse ten-
sion is about one tenth of the compression, its pres-
ence is sufficient to change the failure mode from a
shear band (observed for pure compression) to a split-
ting crack.

5 TRIAXIAL COMPRESSION
Concrete strength and ductility depend strongly on
the degree of confinement. Under multiaxial stress
states, mesoscale tensile fracturing and shearing are
prevented, making strain softening reverse into strain
hardening. LDPM simulations of triaxial tests are re-
ported herein. The simulated experimental data are
relevant to experiments performed at Engineer Re-
search Development Center (ERDC) and are already
published in Caner et al. (2000). In these experiments,
76.2 mm × 152.4 mm cylindrical specimens were first
submitted to a hydrostatic pressure up to a desired
confinement value (Fig. 5c). Later, while the trans-
verse confinement was kept constant, the longitudinal
stress was continuously increased up to either failure
or a maximum longitudinal strain of 10 %. Confining
pressures from 20 MPa up to 600 MPa were consid-
ered.

Figure 5a reports the comparison between the nu-
merical simulations (solid curves) and the experimen-
tal results (circles). The agreement is excellent, and
both the experimental and the numerical results show
significant strength increase as a function of the con-
fining pressure. For a confining pressure of 600 MPa,
the strength is more than 25 times the unconfined uni-
axial strength. In addition, at high confining pressures
the behavior is very ductile and longitudinal strains
up to 10 % are reached without reduction of the load
carrying capacity. Figure 5d shows the simulated fail-
ure mode during triaxial tests. The failure, as typically
reported in the experiments, is associated with the for-
mation of an inclined shear band.

Figure 5b shows the comparison between the ex-
perimental data and the hydrostatic test and uniaxial

Figure 5: Triaxial test results.

strain test data. The latter test is conducted by fully
restraining the transverse expansion of the specimens
while loaded longitudinally. As one can see, LDPM
is able to reproduce very well the experimental evi-
dences in both tests in both the loading and unload-
ing phases. In particular, LDPM succeeds in predict-
ing the more compliant behavior during the uniaxial
strain test. This result is particularly noteworthy since
most continuum-based models currently available for
the simulation of concrete do not perform well under
this loading condition and since they can be calibrated
to fit either the hydrostatic curve or the uniaxial strain
curve, but not both.
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
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be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



6 FIBER REINFORCED CONCRETE
Recently, LDPM has been extended to include the
effect of randomly dispersed fibers. During the pre-
processing phase, each individual fiber is inserted in
the specimen volume. Fiber positions and orientations
are randomly generated, and the intersection between
each fiber and the LDPM facets are detected. Stresses
on each LDPM facets can be computed as

σ = σc +
1

Ac

∑
f∈Ac

Ff (w, df ,Lsf ,Llf ,nf ) (13)

where σ = [σN σM σL]T, σc = [σNc σMc σLc]
T, and

Ff = [FNf FMf FLf ]
T represents the fiber contribu-

tion. The concrete stress components σNc, σMc, and
σLc are computed according to the LDPM constitu-
tive law presented in Section 1. The fiber contribution,
Ff , is computed according to the micro-structural
fiber-matrix interaction model developed by Lin and
coworkers (Lin et al. 1999), and it depends on facet
crack opening, w; fiber geometry (df = fiber diame-
ter, Lsf = short embedment length, Llf = long em-
bedment length); and fiber orientation with to respect
to the crack (facet) plane, nf ). Equation 13 is consis-
tent with the assumption of a parallel coupling at facet
level between concrete matrix and fibers.

Simulation of the fiber effect on the tensile fractur-
ing behavior of concrete is shown in Figure 6. The ex-
perimental data are relevant to experiments reported
by Li et al. (1998). In this experimental investigation,
dog-bone shaped specimens were subjected to direct
tension. The tests were controlled through displace-
ment measurements over a measure length of 120 mm
to ensure the stability in the post-peak and softening
regime. The simulated fibers were Dramix steel fibers
with hooked ends characterized by a diameter of 0.5
mm and a length of 30.0 mm.

Figure 6a shows experimental and numerical stress
versus displacement curves for three different fiber
volume fractions, 0% (plain concrete), 2%, and 6%.
LDPM is able to predict the increased strength and
ductility due to the effect of fibers. The behavior grad-
ually transitions from softening for plain concrete and
low fiber volume fractions to hardening for high fiber
volume fractions.

LDPM numerical results are further investigated in
Figure 6b, where contours of the meso-scale crack-
opening at the end of the simulations are reported for
the various fiber volume fractions. For plain concrete,
the crack pattern is characterized by one localized
crack that propagates from one side towards the other
side of the specimen. As fracture propagates, material
outside the crack unloads as the overall load applied
to the specimen tends to zero. For the 2% volume frac-
tion, one main crack propagates, but the entire speci-
men features diffuse cracking, and no unloading oc-
curs. Absence of unloading outside the main crack
is attributed to the fact that, even though the overall
behavior is still softening, the stress versus displace-

Figure 6: Simulation of fiber reinforced concrete.

ment curve shows a non-zero residual stress associ-
ated with the fiber crack bridging effect. Finally, for
the 6% volume fraction, the crack pattern is character-
ized by several branched cracks whose propagation is
arrested by the effect of the fibers. No unloading oc-
curs outside the main cracks, since the overall behav-
ior is strain-hardening and, up to a displacement of
0.5 mm (average nominal strain of 0.5 mm / 120 mm
≈ 0.42%), no reduction of the load carrying can be
observed.

7 CONCLUSION
This paper presents recent results obtained through
the Lattice Discrete Particle Model (LDPM). LDPM
shows unprecedented predictive capabilities under
an extremely wide variety of conditions, including
tensile fracture, uniaxial compression, biaxial ten-
sion and compression, and triaxial compression. The
unique feature of LDPM, enabled by its meso-scale
character, is its ability to simulate softening macro-
scopic behavior in compression as a result of meso-
scale tensile fracture and shearing without the need of
a phenomenologically formulated compressive soft-
ening. This, in turn, allows automatically the simu-
lation of the transition from strain softening to strain
hardening due to confining effects.

In addition, the meso-scale formulation of LDPM
provides an ideal framework for the simulation of
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  
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isotherm” if measured with increasing relativity 
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isotherm for HPC is influenced by many parameters, 
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ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
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paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



fiber effects and, consequently, for the modeling of
fiber reinforced concrete (FRC). Preliminary results
relevant to the tensile behavior of FRC with steel
fibers demonstrate LDPM’s capability of predicting
the increase of strength and ductility as function of
fiber volume fraction.
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hThD ∇−= ),(J                             (1) 
 

The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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