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ABSTRACT: Recently, efficient and very sophisticated numerical approaches have been developed in order 
to deal with crack propagation problems. They allow providing quantitative information related to crack 
opening and path. Although they are robust and rigorously formulated, their computational costs prevent to 
apply them on large scale structures. In this paper, authors are proposing simple and robust numerical process 
for obtaining quantitative information about cracks’ opening. A coupled discrete-continuous numerical analy-
sis is presented and helps to provide such a quantitative description for a reinforced concrete structure sub-
jected to external loading. The complete RC structure is studied through a macroscopic damage-based con-
tinuous model. This level of computation helps to identify the critical parts of the structure where the density 
of cracks is the largest. Using this pre-calculated displacement field as boundary conditions, a discrete ele-
ment approach is carried out. This provides the computation of the direction and the opening of the different 
cracks. A basic example highlights the relevancy of the proposed approach and encourages further works. 

1 INTRODUCTION 

The determination of a quantitative crack pattern 
stays an opened question in the field of computa-
tional mechanics. During the last decades, very ac-
curate and sophisticated numerical methods were 
developed and are able to correctly manage a dis-
placement discontinuity for representing crack 
propagation. Among them, the Extended Finite Ele-
ment Method (Moës et al. 1999) and the Strong Dis-
continuity Method (Oliver et al. 1996) are the most 
well known. Nevertheless these techniques are 
rarely used for large scale applications since they re-
quire large computational resources. So far, engi-
neers are still missing techniques to get quantitative 
information about crack scales.  

This paper presents results from the French re-
search project CEOS.fr which aims to assess the ca-
pability of damage mechanics based models to pre-
dict accurately and quantitatively cracking patterns 
for some typical reinforced concrete structures (RC 
beams, RC bootstrap …). The purpose of the present 
study is therefore to show how the classical models 
based on continuum damage mechanics may still 
provide quantitative information about cracking dis-
tribution in the case of a concrete structure. The con-

sidered concrete structure is a specimen tested in 
tension: the experimental results are available in the 
literature (Boulay et al. 2009). Two separate nu-
merical analyses are performed to explore their effi-
ciency. First, a three dimensional non linear finite 
element analysis based on damage mechanics is in-
troduced. From the damage pattern and the nodal 
displacement field, quantitative information can be 
obtained. Second, in order to evaluate the correlation 
between the isotropic damage variable and the mean 
crack opening, a discrete analysis is carried out. The 
discrete element method is here employed for post-
processing, focusing the analysis on the most critical 
parts of the structure. 

In a first part, the approach relying on continuum 
damage mechanics is presented. The second part of 
the paper is focused on the presentation of the dis-
crete element modeling. In the last part, the coupling 
of the two approaches is detailed and applied on a 
simple case study. 

2 CONTINUUM DAMAGE MODEL 

To simplify the analysis, the cracked behaviour is 
assumed to be split into two independent behaviours 
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(Pensée et al. 2002). For the hydrostatic strain 
mechanism, only cracks’ openings and closings are 
considered. The frictional sliding is only considered 
for the deviatoric part of the strain and stress tensors. 
Experimental observations from triaxial machine 
tests on concrete-like materials show a direct rela-
tion between the occurrence of hysteretic loops in 
the materials and the ratio of hydrostatic stresses 
over deviatoric ones (Gabet et al. 2008). These re-
sults justify the decomposition of the strain energy 
into two different parts respectively due to the 
spherical and the deviatoric components. This fea-
ture is one of the key points for taking into account 
damage and internal sliding. 

2.1 A consistent state potential 

Most of the quasi-brittle materials, such as concrete, 
are subject to unilateral effects. They classically ap-
pear when the material is subject to a tension–
compression loading path. It can be observed that 
crack closing is expressed by a gain of stiffness dur-
ing the compressive phase. For numerical robust-
ness, a scalar damage variable is chosen. Neverthe-
less, a major drawback lies in the difficulty to take 
into account total unilateral effects when a single 
damage variable is considered: during a tension–
compression loading path, the elastic modulus is not 
fully recovered but only partially.  

Sliding is susceptible to occur between the 
cracks’ lips and therefore friction has to be included. 
This effect is exhibited when the material is subject 
to a cyclic loading. In order to take into account this 
mechanism, the approaches proposed by (Ragueneau 
et al. 2000) have been considered. Nevertheless, in 
the present study, it is considered that the energy 
rate (related to sliding) only affects the deviatoric 
part of the free energy. This consideration is justi-
fied because sliding and friction are mainly in rela-
tion with shear stresses. This hypothesis is consistent 
with the fact that in mode I cracking (pure opening), 
friction and sliding do not occur. 

The thermodynamic potential function takes the 
following form:  
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where ρ  is the material density, κ  and µ  are the 
bulk and shear coefficients. 

ij
ε  is the second order 

total strain tensor, 
ij

δ  is the second order Kronecker’s 
tensor and d  is the scalar damage variable (0 for 
virgin material and 1 for failed material).

ij

π

ε  is the 
second order sliding tensor, γ  is a material parameter, 

ij
α  is the second order tensor associated to the 
kinematics hardening, z  is the internal variable 
corresponding to the isotropic hardening and H  its 
consolidation function. 

ij
A

+
< >  stands for the posi-

tive part of the tensor 
ij
A , 

1

3

D

ij ij kk ijε = ε − ε δ  is the 
second order deviatoric total strain tensor. From the 
state potential function, the state laws are obtained 
by simple derivation. The Cauchy’s and frictional 
stress tensors are given by: 
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The damage energy release rate is written: 
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The thermodynamic forces related to kinematic 
and isotropic hardenings can be expressed by the 
Equations: 
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where 

ij
X  denotes the second order back stress 

tensor of the kinematic hardening and Z the thermo-
dynamic force of the isotropic hardening. 

2.2 Damage and sliding threshold 

A damage variable is associated with the isotropic hard-
ening variable in order to ensure that damage mecha-
nism is not activated during unloading. The second or-
der sliding tensor is conversely associated with the 
kinematics hardening variable. It allows an efficient 
control of the energy released during cyclic loadings. A 
threshold surface, denoted

d
f , is introduced: 

 

0
( )

d
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where Y  denotes energy-type variable driving 
damage and 

0
Y , an initial threshold. To define a dif-

ferent behaviour in tension and in compression, this 
variable is decomposed into direct (tension) and in-
duced (compression) extension mechanisms: 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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where ijklE  is the Hook’s tensor with elastic pa-
rameters κ  and µ . β  is a parameter driving the 
dissymmetry of the threshold surface between ten-
sion and compression. The direct and induced exten-
sions tensors are obtained through the following de-
compositions: 
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A surface without any threshold is introduced in 

order to manage a sliding mechanism from kinemat-
ics hardening. It takes the form of a Von Mises’s cri-
terion (without hydrostatic effects): 
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where 

ij
s  stands for the deviatoric part of the fric-

tional stress tensor. 

2.3 Evolution laws 

The evolution of damage and isotropic hardening 
variables are postulated as being associated. From 
the maximum dissipation principle, a unique La-
grange’s multiplier, denoted 

d
λ� , is introduced: 
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In order to keep a unique damage variable in ten-

sion and in compression, the dissymmetry between 
tension and compression responses can be obtained 
by choosing an appropriate continuously differenti-
able consolidation function: 
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where 

Dir
A  and 

Ind
A  are brittleness parameters for 

tension and compression. 
Concerning friction and sliding, the flow rules are 

supposed not to be associated. From the maximum 
dissipation principle, they can be expressed as: 
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where 

π
ϕ  is a pseudo potential function for dissi-

pation and 
π

λ�  the associated Lagrange’s multiplier. 
It has been chosen according to (Armstrong & Fre-
derick 1966) and can be expressed as: 
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It allows overcoming the main linearity drawback of 

the Drucker’s criterion for associated hardenings. Let us 
note that this approach ensures that the sliding tensor, the 
kinematics hardening tensor and the back stress tensor are 
pure deviatoric second order tensors. 

2.4 Strain softening and mesh dependency 

A nonlocal approach (Pijaudier-Cabot et al. 1987) is 
used as regularization technique. It consists in aver-
aging the damage threshold surface in the vicinity of 
the current Gauss’ point. Applied to the proposed 
constitutive Equations, the local damage energy re-
leased rate Y  is replaced by the nonlocal one 

nl
Y : 
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where x  denotes the Gauss’ point, W  is a weight 
function (a Gaussian function usually) and ( )xΩ  
denotes a neighbourhood around x . The definition 
of such a domain requires the introduction of an in-
ternal length denoted 

c
l . 

2.5 Local responses 

The local response under cyclic loading is presented 
in the Figure 1, using data from Table 1. 

 
Table1. Material parameters used for the concrete model. 

Material parameters  Values 

Young modulus E  36000 MPa 
Poisson’s ratio ν  0.2 
Initial threshold 0

Y  200 Jm-3 
Brittleness in tension Dir

A  1.6 10-3 Pa-1 
Brittleness in compression Ind

A  1.6 10-5 Pa-1 
Kinematics hardening 0

γ  7.0 109 Pa 
Non linear hardening 0

a  5.0 10-7 Pa-1 

Dissymmetry parameter β  100 
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Figure 1. Damage, permanent strain and hysteretic loops for a 
concrete model in uniaxial tension-compression. 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



3 DISCRETE MODELING 

A particle-based discrete model is used for fine 

crack description. The material is described as a par-

ticle assembly, and a crack is naturally obtained if a 

bond between two particles breaks. A Voronoi tes-

sellation is used as efficient and easy mesh genera-

tion. The particle nuclei are randomly generated on a 

grid (Mourkazel et al. 1992) in order to control the 

boundary conditions (see Fig. 2). 
 

 
Figure 2. A 2D mesh (left) and a 3D one (right). 

3.1 Cohesion forces 

Cohesion forces can be modeled by springs at the in-
terface of neighbored particles or by beams linking 
the nuclei of the particles. Here Euler-Bernoulli 
beams have been used. Four parameters have to be 
identified: the length, the area, the inertia and the 
elastic modulus of the beam (Schlangenand et al. 
1997, Van Mier et al. 2002). The first two parame-
ters are imposed by the mesh geometry. The two last 
parameters are identified in order to obtain the elas-
tic properties of the Young modulus and the Poisson 
coefficient, E and ν  (Delaplace et al. 2007). Let us 
note that if necessary, one can compute contact 
forces between unlinked particles, for example for 
cyclic loading with crack opening and closing. 

3.2 Nonlinear behaviour 

The nonlinear behavior of the material is obtained 
by considering a brittle behavior for the beams. The 
simplicity of this behavior is meaningful because the 
model represents the material at a mesoscale, where 
just a simple phenomenon, a crack opening in mode 
I, is represented. The breaking threshold ijP  de-
pends on the beam strain and on the rotations of the 
particles (respectively i and j) linked by the beam: 
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The critical strain 
cr

ε  is identified by fitting the 
material tensile strength. Then, the critical rotation 

cr
θ  is identified by fitting the material compression 
strength. Note that if the threshold depends only on 
the beam strain, the material compression strength is 
overestimated by the model. With this simple beam 
behavior, one can obtain a reliable description of the 
material behavior, either for uniaxial loadings or bi-
axial ones (Delaplace 2009). 

3.3 Crack description 

The study is focused on a fine description of the 
crack pattern, and on the measurement of the crack 
opening. The crack pattern is nothing else than the 
location of the broken beams. An example is given 
on figure 3 for a 2D case, where the interfaces corre-
sponding to the broken beams are plotted. 

 

 
Figure 3. A crack pattern obtained for a loaded reinforced con-
crete beam.  

 

The opening of the crack is computed by consid-

ering the relative displacement )( ji uu −  of the 

unlinked particles i and j. This approximation is jus-

tified since the particles are rigid and the material is 

unloaded close to the crack lips. The amplitude of 

the opening is projected on the direction orthogonal 

to the crack direction: 

( )ij i j ij
e u u n= −                         (15)  

 
where )0,max( xx >=< . 

ij
n  stands for the normal 

vector used to orientate the contact between two par-
ticles i and j. 

4 DISCRETE ELEMENTS AND CONTINUUM 
DAMAGE MODELING POST-PROCESSING 

4.1 From continuous modeling to crack growth 

4.1.1 Framework 
To describe a crack nucleation and propagation in 
solid media, the most convenient approach consists 
in describing nonlinearities by models based on 
plasticity theories (Dragon et al. 1979), damage the-
ory (Mazars 1984, Simo et al. 1987) or on smeared 
crack approaches (Willam et al. 1987).  

More recent advances in numerical analysis of 
concrete structures promote finite element discreti-
zation by introducing material discontinuities in the 
finite element formulations. This enhancement may 
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moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
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divergence of the moisture flux J  
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k
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vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



be achieved through the finite element interpolation 
(Belytschko et al. 1988, Larsson et al. 1996) or the 
finite element nodes (Oliver 1996, Belytschko et al. 
1999, Moes et al. 1999). 

At last, some models introduce the crack discon-
tinuity using the discrete element method (Bazant et 
al. 1990, Bolander et al. 1998, d’Addetta et al. 2002, 
Delaplace et al. 2006). The material heterogeneity is 
modeled with randomized meshes and constitutive 
parameters. The crack nucleation and propagation 
are naturally accounted for in the analysis. Some re-
cent works tends to couple the continuous and the 
discrete approach by employing discrete elements in 
the critical zones and finite element discretization in 
the other parts of the structures using overlapping or 
non overlapping numerical algorithms between two 
adjacent substructures (Xiao et al. 2003). Such an al-
ternative imposes to know, in advance which, part of 
the structure requires refined and discrete analysis. 

4.1.2 Discrete element models as a post-processing 
numerical tool 

In the present work, the use of continuum damage me-
chanics at the structural level may be employed as a ro-
bust analysis of large scale structures under complex 
loadings. The general response in terms of displace-
ments, strains and stresses distribution is well recovered 
with such analysis. But for a quantitative computation 
of crack openings, such an approach fails to predict lo-
cal features. For this reason, another strategy is chosen 
in this paper. The global computation is performed us-
ing ‘standard’ nonlinear finite element analysis. In the 
post-processing phase, only the most interesting do-
mains, requiring a refined study, will be analyzed 
through a discrete element approach in order to obtain 
some local and singular information such as crack pat-
terns and openings. The analysis will be carried out in 3 
main steps: 
1. nonlinear finite element analysis of the full structure, 
2. selection of critical domains for post-processing and 

displacement field extraction on the boundaries, 
3. discrete element analysis of the critical domains 

using the previous displacements field history. 
 

 
 

Figure 4. Experimental sketch (left) for the brazilian induced 
tension tests. Experimental displacement field by image proc-
essing (right). 

4.2 Concrete specimen case study 

To emphasize the ability of such a procedure for de-
scribing cracks’ openings, a simple case study, widely 
described in the literature, has been selected. An in-
duced tension test (Brazilian test) is treated accordingly 
to the three steps procedure. A sketch of the experimen-
tal set-up is presented in figure 4 as well as the strain 
field measured obtained by digital images correlation. 
The displacement discontinuity along the crack can be 
directly observed. The experiment is displacement-
controlled. Two LVDT transducers measure the hori-
zontal displacement. The crack opening in the center is 
observed through image processing. 

4.3 Finite element analysis 

The Brazilian test has been simulated using a coarse 
mesh (Fig. 5) and the scalar damage model de-
scribed in the first section. The discretization uses 8 
nodes cubic elements. Comparisons with the ex-
perimental responses are given in Figure 6. The 
computations have been performed under lateral dis-
placement control. Nonlocal integral procedure has 
been used with an internal length of 1 cm. 

 

 
Figure 5. Damage field using a finite element coarse mesh and 
a continuum damage mechanics model. 
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Figure 6. Comparison between experimental and numerical re-
sults (finite element model).  

 
The critical zones clearly appear in the center of 

the specimen. If continuum damage mechanics mod-
els are able to globally recover the structural re-
sponse of the specimen (load displacement curve, 
damage pattern), the link with the refined crack de-
scription is quite difficult to assess, depending on 
the internal length chosen for the analysis. 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  
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isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
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especially those that influence extent and rate of the 
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etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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fill all pores (both capillary pores and gel pores), one 
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The material parameters k
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vg and k
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vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



4.4 Discrete element post processing 

From the finite element results, the central area can 
be selected for the discrete element post processing. 
The 3D displacement field obtained from the nonlin-
ear finite element analysis at the peak load is there-
fore used as boundary conditions for the discrete 
element computation. Due to the difference in 
meshes density, linear interpolation is used to obtain 
the displacement field at each node of the refined 
discrete mesh. The 2D and 3D discrete element 
meshes are presented in the Figure 7. The rectangu-
lar central area can be observed as well as the mesh 
refinement due to Voronoi cell meshing. 

 

Figure 7. Discrete elements mesh in the central area. 

 

Figure 8 plots the crack opening in the concrete 

core obtained from the discrete element method. At 

the peak load, corresponding to a maximum value 

for the damage variable equal to 0.7, a maximum 

crack opening of 3.3µm is calculated. For compari-

son, the experimental average crack opening is ob-

tained by subtracting the elastic part of the behav-

iour (Boulay et al. 2009). At the peak load, a crack 

opening equal to 3.6µm has been measured, in full 

agreement with the numerical results. 

 

 
Figure 8. Crack opening distribution in the central part of the 
concrete specimen (peak load). 

5 CONCLUSIONS AND OUTLOOK 

Quantifying cracking in reinforced concrete struc-
ture still remains an important and difficult task. 
Among all the different existing approaches (dis-
crete, continuous, X-FEM), the present paper pro-
poses a coupled finite/discrete element approach. Its 
principle lies in two distinct steps. First, a coarse fi-
nite element analysis is performed in order to locate 
areas where crack propagation is intensive. Second, 
based on the knowledge of the displacement field 
computed at the areas boundaries, a discrete element 
analysis is performed. Local information regarding 
cracks’ pattern can be obtained at a lower computa-
tional cost. A continuum mechanics damage-based 
model is first presented. Such a model is successful 
in describing the global structural behavior of 
cracked reinforced concrete elements. The discrete 
element post-processor is then focused on critical 
zones from the previous analysis. A Brazilian test is 
considered as a structural case study. Quantitative 
results, expressed in terms of load/displacement, 
match satisfyingly the experimental measurements. 
Discrete analysis leads to very accurate numerical 
results in terms of mean crack opening. These first 
results demonstrate that coupled finite/discrete ele-
ment approach can be tuned as a powerful tool for 
crack propagation problems. They are very promis-
ing for further studies. 
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by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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hThD ∇−= ),(J                             (1) 
 

The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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