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Abstract. This contribution discusses a coupled two-scale frameworkfor hydro-mechanical problems
in saturated heterogeneous porous geomaterials. The heterogeneous nature of such materials can lead
to an anisotropy of the hydro-mechanical couplings and non-linear effects. Based on an assumed
model of the mesostructure, the average macroscopic hydro-mechanical behaviour is extracted by
means of a computational homogenisation procedure in a monolithic way. The ingredients needed to
upscale the hydro-mechanical couplings are outlined. The two-scale simulation results are compared
with direct numerical simulation for the consolidation of aparticle-matrix porous material.

1 INTRODUCTION

The formulation of macroscopic constitutive
laws for the hydro-mechanical behaviour of het-
erogeneous porous geomaterials such as ma-
sonry, concrete or soil is complex. Due to the
hydro-mechanical couplings, non-linear effects
such as stress-induced permeability evolution
may occur. The mesostructure of geomaterials
may also result in the appearance of anisotropic
hydro-mechanical properties. The characterisa-
tion of such a behaviour by means of macro-
scopic closed-form constitutive laws is difficult
because of their complex formulation and the
costly identification of their parameters. As
a complementary approach, multi-scale com-
putational strategies aim at solving this issue
by deducing a homogenised response at struc-

tural scale from a representative volume ele-
ment of the fine scale (RVE), based on con-
stituents properties and averaging theorems, see
Figure 1. The constituents inside the RVE may
be modelled using a closed-form formulation,
depending on the multi-physical phenomena to
be represented. A variational homogenisation
procedure taking into account fine-scale tran-
sient phenomena and based on (strong) uniform
boundary conditions applied to the fine-scale
RVE was recently proposed for consolidation
problems in [1]. Here, a formulation using peri-
odic computational homogenisation will be pro-
posed for saturated heterogeneous porous me-
dia. The fine-scale constituents considered here
are made of a heterogeneous porous solid skele-
ton saturated with a compressible pore fluid
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such as water and are themselves represented
as homogeneous media. The heterogeneities in
the mechanical, hydraulic and coupling proper-
ties of the solid phases are thus considered at
the RVE level.

Figure 1: Principle of a two-scale nested computational
procedure for saturated hydro-mechanical problems.

2 COMPUTATIONAL HOMOGENISA-
TION

Computational homogenisation approaches
allow identifying equivalent homogenised con-
tinuum properties from the constituents consti-
tutive behaviour of a heterogeneous mesostruc-
tural RVE. The behaviour of each constituent
within the mesotructural RVE is assumed to be
a priori known. This allows the set-up of nested
computational procedures in which a sample of
the mesostructure is used to numerically deter-
mine the local macroscopic material response
of the heterogeneous material. The definition
of such a nested scheme essentially requires the
definition of four ingredients: (i) a fine-scale
constitutive description for the constituents, (ii)
the definition of a representative mesostructural
sample, (iii) the choice of a coarse-scale repre-
sentation, and (iv) the set-up of scale transitions
linking structural and fine-scale quantities.

Such methods were developed for the me-
chanical case in [2] and for thermo-mechanical
problems in [3, 4] using a staggered ap-
proach. Based on these methods, the scale-
transitions are here adapted for saturated hydro-
mechanical problems in a monolithic way based

on fine-scale steady-state information and peri-
odicity constraints applied at the boundary of
the RVE. Such constraints are classically re-
lated to the assumption of the separation of
scales; the material configuration is macroscop-
ically homogeneous, but mesoscopically het-
erogeneous [2].

3 TWO-SCALE FRAMEWORK FOR
SATURATED POROUS MEDIA

3.1 Macroscopic description
At the macroscopic scale, a classical porous

medium assumption [5] including material non-
lineartities is used to model the (evolving)
equivalent hydro-mechanical properties under
quasi-static conditions in the infinitesimal range
of deformation. The balance equations con-
sist of the momentum equilibrium and the mass
conservation equation

~∇M · σM +~b = ~0 (1)

ζ̇M + ~∇M · ~qM = Qs (2)

whereσM is the total stress tensor,~b is the body
force vector,ζM is the fluid content increment,
~qM is the fluid flow vector andQs is a body
flow source. ~∇M is the gradient operator with
respect to the coordinates at the macroscopic
scale. The total stress state of a fluid-saturated
porous medium is usually decomposed into an
effective stress stateσeff

M of the solid skeleton
and a fluid pressurepM as follows

σM = σ
eff
M −αMpM (3)

whereαM is the second-order Biot coefficient
tensor associated with the hydro-mechanical
couplings. The multi-physical couplings
of geomaterials generally present an initial
anisotropy [6] which can evolve due to dam-
age [7]. The quasi-brittle mechanical behaviour
of geomaterials is usually driven by a non-linear
constitutive law linking in a variational form the
variation of the effective stress tensor to varia-
tion of the strain tensorεM = (~∇M~uM)sym of the
solid skeleton

δσeff
M = 4

CM : δεM (4)
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where 4
CM is the tangent stiffness tensor of

the solid phase. The fluid transport within the
porous medium is driven by Darcy’s law

~qM = −κM
~∇MpM (5)

whereκM is the permeability tensor. This pa-
rameter can evolve, for instance, in terms of the
effective stress state in geomaterials susceptible
to damage [8]. The increment of the fluid con-
tent is a storage function which depends on both
the mechanical and hydraulic behaviour as fol-
lows

ζM = αM : εM +
1

M
pM (6)

where 1/M is the compressibility modulus.
This parameter will be assumed constant for the
sake of simplicity.

3.2 Fine-scale description
In the context of a multi-scale framework,

the equivalent macroscopic (hydro-mechanical)
behaviour is obtained by means of nested com-
putations performed on a RVE where the het-
erogeneities observed at the fine scale are mod-
elled. This framework is called FE2 if finite
element modelling is used at both scales. At
the fine scale, any mesostructure and closed-
form law can be a priori postulated. In order
to focus on the upscaling of the coupled hydro-
mechanical properties, a mesostructure consist-
ing of a matrix with a single poroelastic inclu-
sion will be considered.

At fine scale, since the RVE size is assumed
to be small with respect to the structural dimen-
sions (separation of scales), the fine-scale tran-
sient effects are neglected, assuming a steady-
state (instantaneous) hydro-mechanical equilib-
rium within the RVE, in the same spirit as [3].
Neglecting body forces and sources inside the
RVE, the fine-scale hydro-mechanical balance
equations therefore read

~∇m · σm = ~0 (7)
~∇m · ~qm = 0 (8)

whereσm is the fine-scale total stress tensor
and~qm is the fine-scale fluid flow vector.~∇m

is the gradient operator with respect to the co-
ordinates at RVE level. Note that due to the
steady-state assumption, both the hydraulic and
mechanical problems have the same format, i.e.
divergence-free balance equations. Note also
that the fluid content increment and the com-
pressibility modulus are not taken into account
at this level. Only the tangent stiffness4CM ,
the permeabilityκM and the hydro-mechanical
couplingαM take part in the formulation. In
this contribution, elastic properties with a stress
dependent permeability and anisotropic hydro-
mechanical couplings will be considered.

3.3 Non-linear homogenisation of coupled
hydro-mechanical properties

The equivalent macroscopic hydro-
mechanical properties of a heterogeneous
porous mesostructure can be deduced from a
steady-state hydro-mechanical problem solved
on a RVE. The link between the macroscopic
and fine scales is ensured by means of averaging
relations. For the mechanical case, the consis-
tency between scales is enforced for the strain,
the stress and the work variables, see [2]. For
the hydraulic case, averaging relations are de-
fined for the pressure gradient, the flow and the
entropy variables, by analogy with the thermal
case developed in [3]. All these averaging rela-
tions can be satisfied by appropriate boundary
conditions at the boundary of the RVE, among
which the periodicity constraints are the most
used.

Based on the macroscopic strain and pres-
sure gradient, the fine-scale displacement and
pressure profiles within the RVE can be ex-
pressed respectively by

~um(~x) = εM ·~x+ ~uf(~x) (9)

pm(~x) = p k
m + ~∇MpM ·(~x− ~xk) (10)

+pf(~x) (11)

wherep k
m is the pressure at an arbritary point~xk.

~uf(~x) andpf (~x) are the displacement and pres-
sure fluctuation fields, respectively. These fluc-
tuations are assumed periodic, i.e. taking equal
values on any two boundary points on the edges
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related by the periodicity relation [2, 3]. Such
fluctuations allow accounting for the material
heterogeneity inside the RVE for the hydraulic
and mechanical behaviours as well as their cou-
plings.

On the basis of the periodicity assumption,
the averaging relations allow one formulating a
boundary value problem on the RVE and con-
trolling its behaviour from degrees of freedom
at specific controlling points [2, 3].The strain
measureεM and the pressure gradient measure
~∇MpM of the macroscopic description can then
be expressed in terms of controlling degrees of
freedom of the discretised RVE (three control-
ling dofs for the strain and two controlling dofs
for the pressure gradient).

The rigid body translations of the RVE are
implicitly inhibited by means of the assumed
displacement profile (9) without loss of gener-
ality. For the hydraulic case, since the (usual)
averaging relation is assumed for the gradient
of the pressure field, the fluid pressure level at
the fine scale can not be determined in a unique
way with this relation only. This level however
has to be prescribed properly inside the RVE
since it directly contributes to the total stress
level due to the hydro-mechanical coupling (3).
Note that the macroscopic pressurepM cannot
be directly applied on a fine-scale node. By
analogy with [3], this motivates to impose an
additional consistency (averaging relation) for
the pressure field between the macroscopic and
fine scales which reads

pM =
1

V

∫
V

pmdV (12)

whereV is the RVE volume. Using a finite
element discretisation, Equation (12) leads to
a non-homogeneous tying relation. A phan-
tom node method can be used to prescribe the
independent term of this relation. A control-
ling degree of freedom associated to this term is
therefore added to the fine-scale system in order
to impose in an average sense the macroscopic
pressure levelpM . Note that this tying relation
involves all the degrees of freedom of pressure
which significantly increases the band width of

the system to solve. The macroscopic pressure
gradient is also imposed in an average sense by
using non-homogeneous tying constraints.

Using the periodic displacement and pres-
sure boundary conditions, and the pressure con-
sistency between scales (12), the fine-scale
steady-state hydro-mechanical problem can be
solved in a monolithic way. The average macro-
scopic response, i.e. the total stress and the fluid
flow, can be extracted from the response of
the RVE condensed at the controlling degrees
of freedom. The macroscopic tangent stiff-
ness, permeability and the hydro-mechanical
coupling coefficients can also be extracted from
the condensation of the fine-scale system ma-
trix. Note that the upscaling of the coupling
coefficients is allowed by the additional degree
of freedom controlling the macroscopic pres-
sure level within the RVE and introduced by the
pressure consistency between scales (12).

Since transient phenomena are neglected at
fine scale, the fluid content increment and the
compressibility modulus can not be deduced
from the RVE response condensed at the con-
trolling degrees of freedom. The macroscopic
compressibility modulus is therefore deduced
from fine-scale quantities by an explicit vol-
ume integral on the RVE. The macroscopic fluid
content increment is then deduced by Equation
(6).

4 COMPARISON OF MULTI-SCALE
AND FINE-SCALE RESULTS ON TEX-
TURED POROUS MATERIALS

The proposed multi-scale scheme was im-
plemented using parallel computation. Two
cases of consolidation of heterogeneous tex-
tured porous materials are considered to illus-
trate the non-linear homogenisation procedure.
A periodic poroelastic inclusion-matrix mate-
rial is considered. A non-linearity is introduced
in the fluid transport by making the perme-
ability dependent of the effective stresses, and
the anisotropy of the hydro-mechanical cou-
pling is studied. The multi-scale solutions (MS)
are compared to direct numerical simulations
(DNS) used as a reference, keeping in mind that
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the scale separation assumption of the computa-
tional homogenisation procedure is not exactly
satisfied here.

4.1 Stress-induced permeability evolution
The considered consolidation case is a con-

fined column of dimensions0.2 × 1 m2 with
a uniformly distributed compressive load of1
MPa instantaneously applied on the top surface.
The top surface is permeable at a contant pres-
sure precribed to zero and the other edges are
impervious to fluid flow. The fine-scale struc-
ture is a periodic arrangement of square inclu-
sions embedded in a more permeable and softer
matrix. The unit cell used for the multi-scale
computation is therefore a square with a cen-
tered square particle, see Figure 2. The dimen-
sions of the unit cell are0.05× 0.05 m2 and the
inclusion volume is around50% of the cell vol-
ume. The material properties are heterogeneous
with respect to the elastic behaviour and the per-
meability, see Table 1. An arbitrary closed-form
law is chosen for the permeability in terms of
the effective stress in order to introduce non-
linearity in the problem. The permeability of
the matrix linearly depends on the volumetric
effective stress as follows [7]

κ = κi(1 + Aσeff
v ) (13)

whereA is a constant coefficient, leading to a
decrease of permeability with volumetric com-
pression. The permeability of the inclusion is
kept constant, see Table 1. This case is com-
pared to the case where the permeability of the
matrix is independent of the stress state (κ = κi

orA = 0).

Table 1: Matrix (a) and inclusion (b) material parameters.
E is the Young modulus andν is the Poisson ratio.

(a) (b)
E (GPa) 1 10
ν (-) 0.4 0.1

M (GPa) 5 5
α (-) 0.5 0.5

κi (m2/Pa.s) 3× 10
−9

3× 10
−10

A (MPa−1) 1 0

Figure 2: Configuration of the consolidation of a hetero-
geneous porous material made of a periodic arrangement
of square inclusions.

The time evolution of the pressure at the bot-
tom of the column is depicted in Figure 3 for
both constant and evolving permeability and for
both fine-scale and multi-scale models. The set-
tlement evolution is also shown in Figure 4.
Note that the settlement is taken at the mid-
depth of the column to avoid top boundary ef-
fect. The heterogeneities of both the mechani-
cal and hydraulic properties are correctly taken
into account by the multi-scale model. The de-
crease of the permeability and the related slower
decrease of the pressure with consolidation is
also well captured by the homogenisation pro-
cedure.
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Figure 3: Consolidation of a heterogeneous porous ma-
terial with constant permeability (blue) and evolving per-
meability (red). Comparison of the bottom pressure evo-
lution for direct numerical simulation (DNS - dot mark-
ers) and multi-scale simulation (MS - circle markers).
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Figure 4: Consolidation of a heterogeneous porous ma-
terial with constant permeability (blue) and evolving per-
meability (red). Comparison of the mid-depth settlement
evolution for direct numerical simulation (DNS - dot
markers) and multi-scale simulation (MS - circle mark-
ers).

4.2 Anisotropic hydro-mechanical cou-
plings

In order to introduce anisotropy, the same
case of consolidation is revisited with vertical
and horizontal rectangular inclusions, as de-
picted in Figure 5. The ratio of inclusion-matrix

volume is preserved with respect to the case of
square inclusions used in the previous exam-
ple. Heterogeneous elastic properties are con-
sidered with identical permeability in both ma-
trix and inclusion materials in order to focus on
the effect of an anisotropic hydro-mechanical
coupling. Homogeneous and heterogeneous
Biot coefficients are successively considered for
both fine-scale structures (vertical and horizon-
tal inclusion), see Table 2. Each multi-scale so-
lution is compared to the results of a direct nu-
merical simulation.

Table 2: Matrix (a) and inclusion (b) material parame-
ters for the homogeneous (hmg) and heterogeneous (htg)
cases regarding the Biot coefficient.

hmg htg
(a) (b) (a) (b)

E (GPa) 1 10 1 10
ν (-) 0.4 0.1 0.4 0.1

M (GPa) 5 5 5 5
α (-) 0.5 0.5 0.5 1

κ (m2/Pa.s) 3× 10
−13

3× 10
−13

Figure 5: Configurations of the consolidation of a hetero-
geneous porous material made of a periodic arrangement
of either vertical (V) or horizontal (H) rectangular inclu-
sions.

The bottom pressure evolution and the mid-
depth settlement are presented in Figures 6 and
7, respectively. Since the pressure vanishes at
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the end of each simulation, only the first time
steps are shown. It is observed that the hetero-
geneity of the hydro-mechanical coupling (in
blue) is properly captured by the homogenisa-
tion procedure with respect to the cases where
a homogeneous coupling is used (in red). At
the first time step, the multi-scale solution over-
estimates the presure with an error of less than
5% and underestimates the displacement with
an error of2.2% (with respect to the DNS).
This error is decreasing with time and only the
anisotropy of the elastic parameters affects the
steady-state (final) settlement. The periodic-
ity condition imposed on the displacement and
pressure fields and the fact that the scale separa-
tion is not satisfied here could explain the initial
overestimation of the undrained stiffness. The
steady-state assumption at the fine scale could
also be an origin of the discrepancy between the
multi-scale and fine-scale results since the fluid
content increment depends on the Biot coeffi-
cients.
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Figure 6: Consolidation of a heterogeneous porous ma-
terial with vertical (V) and horizontal (H) inclusions for
homogeneous (hmg - red) and heterogeneous (htg - blue)
Biot coefficients. Comparison of the mid-depth settle-
ment evolution for direct numerical simulation (DNS -
dot and cross markers) and multi-scale simulation (MS -
circle and square markers).
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Figure 7: Consolidation of a heterogeneous porous ma-
terial with vertical (V) and horizontal (H) inclusions for
homogeneous (hmg - red) and heterogeneous (htg - blue)
Biot coefficients. Comparison of the mid-depth settle-
ment evolution for direct numerical simulation (DNS -
dot and cross markers) and multi-scale simulation (MS -
circle and square markers).

5 CONCLUSIONS

A non-linear computational homogenisa-
tion procedure was proposed for the hydro-
mechanical behaviour of saturated heteroge-
neous porous materials. Based on compu-
tational homogenisation approaches developed
for the mechanical and thermal cases [2, 3], an
enhancement of the scale transitions by means
of a consistency between scales on the pres-
sure field is proposed. It allows accounting
for the hydro-mechanical couplings in a mono-
lithic way. It was shown that the multi-scale
modelling yields results in good agreement with
respect to direct numerical simulations results
for consolidation cases in terms of displace-
ment and pressure evolution. In particular,
the multi-scale methodology allows taking into
account a stress-induced permeability evolu-
tion and an anisotropy of the hydro-mechanical
couplings. The periodicity argument and the
influence of the fine-scale transient phenom-
ena should be addressed in forthcoming pub-
lications. As a perspective,the methodology
proposed in [9, 10] where RVE computations
are used to model localised mechanical be-
haviour will be extended for the case of hydro-
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mechanical couplings.A damage model includ-
ing hydro-mechanical couplings will be incor-
porated at the RVE level in order to capture
damage-induced anisotropy with cracking and
fluid flow inside cracks.
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