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Abstract. This contribution discusses a coupled two-scale framevwaitydro-mechanical problems
in saturated heterogeneous porous geomaterials. Th@geterous nature of such materials can lead
to an anisotropy of the hydro-mechanical couplings and Im@ar effects. Based on an assumed
model of the mesostructure, the average macroscopic hydaanical behaviour is extracted by
means of a computational homogenisation procedure in a litltioavay. The ingredients needed to
upscale the hydro-mechanical couplings are outlined. Woestcale simulation results are compared
with direct numerical simulation for the consolidation gbarticle-matrix porous material.

1 INTRODUCTION tural scale from a representative volume ele-
ment of the fine scale (RVE), based on con-
stituents properties and averaging theorems, see
Figure 1. The constituents inside the RVE may
be modelled using a closed-form formulation,
depending on the multi-physical phenomena to
be represented. A variational homogenisation
procedure taking into account fine-scale tran-
sient phenomena and based on (strong) uniform
boundary conditions applied to the fine-scale
RVE was recently proposed for consolidation

The formulation of macroscopic constitutive
laws for the hydro-mechanical behaviour of het-
erogeneous porous geomaterials such as ma-
sonry, concrete or soil is complex. Due to the
hydro-mechanical couplings, non-linear effects
such as stress-induced permeability evolution
may occur. The mesostructure of geomaterials
may also result in the appearance of anisotropic
hydro-mechanical properties. The characterisa-

tion of such a behaviour by means of macro- ) _ . .
scopic closed-form constitutive laws is difficult Problemsini[l]. Here, a formulation using peri-

because of their complex formulation and the ©dic computational homogenisation will be pro-

costly identification of their parameters. As POSed for saturated heterogeneous porous me-
a complementary approach, multi-scale com- dia. The fine-scale constituents considered here

putational strategies aim at solving this issue &ré made of a heterogeneous porous solid skele-
by deducing a homogenised response at struc- ton saturated with a compressible pore fluid
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such as water and are themselves representedon fine-scale steady-state information and peri-
as homogeneous media. The heterogeneities inodicity constraints applied at the boundary of
the mechanical, hydraulic and coupling proper- the RVE. Such constraints are classically re-
ties of the solid phases are thus considered at lated to the assumption of the separation of

the RVE level. scales; the material configuration is macroscop-
ically homogeneous, but mesoscopically het-
Structural scale JI I erogeneou{[Z] .
Macroscopic
. Proviem 3 TWO-SCALE FRAMEWORK FOR
SATURATED POROUSMEDIA

Q7 Q Q N\

3.1 Macroscopic description

Stress 0o Strain d&yr
Fluid flow 5y Pressure gradient At the macroscopic scale, a classical porous
_____ +average properties \ WMPM medium assumption[5] including material non-
Fine scale lineartities is used to model the (evolving)
' 0. o, equivalent hydro-mechanical properties under
Sl 'e’ : quasi-static conditions in the infinitesimal range
problem on a RVE of deformation. The balance equations con-

sist of the momentum equilibrium and the mass

Figure 1: Principle of a two-scale nested computational . .
conservation equation

procedure for saturated hydro-mechanical problems.

ﬁM'UMJrg =0 (1)
2 COMPUTATIONAL HOMOGENISA- éw1+6M-§M = Qs (2)

TION

Computational homogenisation approaches Whereay, is the total stress tensaris the body
allow identifying equivalent homogenised con- forc_e vector,g‘:M is the fluid content_lncrement,
tinuum properties from the constituents consti- ¢v 1S the fluid flow vector andy; is a body
tutive behaviour of a heterogeneous mesostruc- 1OW source. Vi, is the gradient operator with
tural RVE. The behaviour of each constituent "€SPect to the coordinates at the macroscopic

within the mesotructural RVE is assumed to be Scale. The total stress state of a fluid-saturated
a priori known. This allows the set-up of nested POrous medium is usually decomposed into an
computational procedures in which a sample of effectlve.stress state;’ of the solid skeleton
the mesostructure is used to numerically deter- @nd @ fluid pressurg,, as follows

mine the local macroscopic material response
of the heterogeneous material. The definition

of such a nested scheme essentially requires thewhereaM is the second-order Biot coefficient

definition of four ingredients: (i) a fine-scale  (ansor associated with the hydro-mechanical
constitutive description for the constituents, (ii) couplings. The multi-physical couplings
the definition of a representative mesostructural geomaterials generally present an initial
sample, (iii) the choice of a coarse-scale repre- anisotropy [[6] which can evolve due to dam-
sentation, and (iv) the set-up of scale transitions 546 [7]. The quasi-brittle mechanical behaviour
linking structural and fine-scale quantities. of geomaterials is usually driven by a non-linear
Such methods were developed for the me- cqngitutive law linking in a variational form the
chanical case ir [2] and for thermo-mechanical \ariation of the effective stress tensor to varia-

problems in [[3[4] using a staggered ap- tjon of the strain tensas, = (Vi)™ of the
proach. Based on these methods, the scale-gg)id skeleton

transitions are here adapted for saturated hydro-
mechanical problems in a monolithic way based doil = ‘Cyy : dey (4)

oy = O 52 — O\ PM (3)
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where ‘Cy; is the tangent stiffness tensor of is the gradient operator with respect to the co-
the solid phase. The fluid transport within the ordinates at RVE level. Note that due to the
porous medium is driven by Darcy’s law steady-state assumption, both the hydraulic and
mechanical problems have the same format, i.e.
divergence-free balance equations. Note also
wherex,, is the permeability tensor. This pa- that the fluid content increment and the com-

rameter can evolve, for instance, in terms of the Pressibility modulus are not taken into account
effective stress state in geomaterials susceptible @t this level. Only the tangent stiffnesS,,

to damagel[8]. The increment of the fluid con- the permeability<,, and the hydro-mechanical
tent is a storage function which depends on both coupling oy, take part in the formulation. In
the mechanical and hydraulic behaviour as fol- this contribution, elastic properties with a stress

v = _KfMﬁMpM ()

lowWs dependent permeability and anisotropic hydro-
1 mechanical couplings will be considered.
(v = Qur:éy+ MPM (6)
3.3 Non-linear homogenisation of coupled
where 1/M is the compressibility modulus. hydro-mechanical properties
This parameter will be assumed constantforthe  The equivalent macroscopic  hydro-
sake of simplicity. mechanical properties of a heterogeneous

. o porous mesostructure can be deduced from a
3.2 Fine-scaledescription steady-state hydro-mechanical problem solved
In the context of a multi-scale framework, on a RVE. The link between the macroscopic
the equivalent macroscopic (hydro-mechanical) and fine scales is ensured by means of averaging
behaviour is obtained by means of nested com- relations. For the mechanical case, the consis-
putations performed on a RVE where the het- tency between scales is enforced for the strain,
erogeneities observed at the fine scale are mod-the stress and the work variables, dee [2]. For
elled. This framework is called PHEf finite the hydrau”c case, averaging relations are de-
element modelling is used at both scales. At fined for the pressure gradient, the flow and the
the fine scale, any mesostructure and closed- entropy variables, by analogy with the thermal
form law can be a priori pOStUlatEd. In order case deve|oped ||m[3] All these averaging rela-
to focus on the upscaling of the coupled hydro- tions can be satisfied by appropriate boundary
mechanical properties, a mesostructure consist- conditions at the boundary of the RVE, among

ing of a matrix with a single poroelastic inclu-  which the periodicity constraints are the most
sion will be considered. used.

At fine scale, since the RVE size is assumed  Based on the macroscopic strain and pres-

to be Sma” W|th respeCt to the StrUCtura| dimen' sure gradient’ the fine_sca'e disp'acement and

sions (separation of scales), the fine-scale tran- pressure profiles within the RVE can be ex-
sient effects are neglected, assuming a steady-pressed respectively by

state (instantaneous) hydro-mechanical equilib-
rium within the RVE, in the same spirit s/ [3]. U () = ey T+ 1up(2) 9)
Neglectlng_ body forces and sources inside the pm(@) = pk+ ﬁMpM'(f_ ) (10)
RVE, the fine-scale hydro-mechanical balance Fpy(F) (11)
equations therefore read Pri¥

—~
S
SN—

=0 (7) wherep” is the pressure at an arbritary paitit
-0 8) uy(Z) andp () are the displacement and pres-
sure fluctuation fields, respectively. These fluc-
where o;, is the fine-scale total stress tensor tuations are assumed periodic, i.e. taking equal
and g, is the fine-scale fluid flow vectory, values on any two boundary points on the edges

<5
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related by the periodicity relation![2), 3]. Such
fluctuations allow accounting for the material
heterogeneity inside the RVE for the hydraulic
and mechanical behaviours as well as their cou-
plings.

On the basis of the periodicity assumption,
the averaging relations allow one formulating a
boundary value problem on the RVE and con-
trolling its behaviour from degrees of freedom
at specific controlling points [2] 3]The strain
measures,,; and the pressure gradient measure
Virpy of the macroscopic description can then
be expressed in terms of controlling degrees of
freedom of the discretised RVE (three control-
ling dofs for the strain and two controlling dofs
for the pressure gradient).

The rigid body translations of the RVE are
implicitly inhibited by means of the assumed
displacement profilé {9) without loss of gener-
ality. For the hydraulic case, since the (usual)
averaging relation is assumed for the gradient
of the pressure field, the fluid pressure level at
the fine scale can not be determined in a unique
way with this relation only. This level however
has to be prescribed properly inside the RVE
since it directly contributes to the total stress
level due to the hydro-mechanical couplifgy (3).
Note that the macroscopic pressuprg cannot
be directly applied on a fine-scale node. By
analogy with [3], this motivates to impose an
additional consistency (averaging relation) for

the system to solve. The macroscopic pressure
gradient is also imposed in an average sense by
using non-homogeneous tying constraints.
Using the periodic displacement and pres-
sure boundary conditions, and the pressure con-
sistency between scaleb [12), the fine-scale
steady-state hydro-mechanical problem can be
solved in a monolithic way. The average macro-
scopic response, i.e. the total stress and the fluid
flow, can be extracted from the response of
the RVE condensed at the controlling degrees
of freedom. The macroscopic tangent stiff-
ness, permeability and the hydro-mechanical
coupling coefficients can also be extracted from
the condensation of the fine-scale system ma-
trix. Note that the upscaling of the coupling
coefficients is allowed by the additional degree
of freedom controlling the macroscopic pres-
sure level within the RVE and introduced by the
pressure consistency between scdlek (12).
Since transient phenomena are neglected at
fine scale, the fluid content increment and the
compressibility modulus can not be deduced
from the RVE response condensed at the con-
trolling degrees of freedom. The macroscopic
compressibility modulus is therefore deduced
from fine-scale quantities by an explicit vol-
ume integral on the RVE. The macroscopic fluid
content increment is then deduced by Equation

the pressure field between the macroscopicand4 COMPARISON OF MULTI-SCALE

fine scales which reads

1
~ [ p,dv
V/Vp

where V' is the RVE volume. Using a finite
element discretisation, Equation {12) leads to
a non-homogeneous tying relation. A phan-

P = (12)

AND FINE-SCALE RESULTSON TEX-
TURED POROUSMATERIALS

The proposed multi-scale scheme was im-
plemented using parallel computation. Two
cases of consolidation of heterogeneous tex-
tured porous materials are considered to illus-
trate the non-linear homogenisation procedure.

tom node method can be used to prescribe the A periodic poroelastic inclusion-matrix mate-

independent term of this relation. A control-
ling degree of freedom associated to this term is

rial is considered. A non-linearity is introduced
in the fluid transport by making the perme-

therefore added to the fine-scale system in order ability dependent of the effective stresses, and
to impose in an average sense the macroscopicthe anisotropy of the hydro-mechanical cou-
pressure leveb,,. Note that this tying relation  pling is studied. The multi-scale solutions (MS)
involves all the degrees of freedom of pressure are compared to direct numerical simulations
which significantly increases the band width of (DNS) used as a reference, keeping in mind that
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the scale separation assumption of the computa- £ p=0
tional homogenisation procedure is not exactly VU
satisfied here. . o

4.1 Stress-induced permeability evolution

The considered consolidation case is a con-
fined column of dimension8.2 x 1 m? with .
a uniformly distributed compressive load of
MPa instantaneously applied on the top surface.
The top surface is permeable at a contant pres-
sure precribed to zero and the other edges are
impervious to fluid flow. The fine-scale struc-
ture is a periodic arrangement of square inclu-
sions embedded in a more permeable and softer
matrix. The unit cell used for the multi-scale Figure 2: Configuration of the consolidation of a hetero-
computation is therefore a square with a cen- geneous porous material made of a periodic arrangement
tered square particle, see Figure 2. The dimen- ©f square inclusions.
sions of the unit cell ar8.05 x 0.05 m? and the
inclusion volume is aroundl0% of the cell vol-
ume. The material properties are heterogeneous
with respect to the elastic behaviour and the per-
meability, see Table 1. An arbitrary closed-form
law is chosen for the permeability in terms of
the effective stress in order to introduce non-
linearity in the problem. The permeability of
the matrix linearly depends on the volumetric
effective stress as follows|[7]

Kk = ri(l+ Ao (13)

O
O

(@)
(@)

RVE

@]

Q Q)

where A is a constant coefficient, leading to a

decrease of permeability with volumetric com-

pression. The permeability of the inclusion is

kept constant, see Table 1. This case is com-

pared to the case where the permeability of the  The time evolution of the pressure at the bot-

matrix is independent of the stress state( x; tom of the column is depicted in Figure 3 for

or A =0). both constant and evolving permeability and for
both fine-scale and multi-scale models. The set-

Table 1: Matrix (a) and inclusion (b) material parameters. tlement evolution is also shown in Figure 4.

E is the Young modulus andis the Poisson ratio. Note that the settlement is taken at the mid-
@) (b) depth of the column to avoid top boundary ef-
E (GPa) 1 10 fect. The heterogeneities of both the mechani-
v(-) 0.4 0.1 cal and hydraulic properties are correctly taken
M (GPa) 5 5 into account by the multi-scale model. The de-
a(-) 0.5 0.5 crease of the permeability and the related slower
ki (M*/Paus)| 3 x 1077 3 x 1071 decrease of the pressure with consolidation is
A (MPa ) 1 0 also well captured by the homogenisation pro-
cedure.
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Figure 3: Consolidation of a heterogeneous porous ma-
terial with constant permeability (blue) and evolving per-
meability (red). Comparison of the bottom pressure evo-
lution for direct numerical simulation (DNS - dot mark-
ers) and multi-scale simulation (MS - circle markers).
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Figure 4: Consolidation of a heterogeneous porous ma-
terial with constant permeability (blue) and evolving per-
meability (red). Comparison of the mid-depth settlement
evolution for direct numerical simulation (DNS - dot
markers) and multi-scale simulation (MS - circle mark-
ers).

4.2 Anisotropic hydro-mechanical
plings
In order to introduce anisotropy, the same
case of consolidation is revisited with vertical
and horizontal rectangular inclusions, as de-
picted in Figure 5. The ratio of inclusion-matrix

cou-

6

volume is preserved with respect to the case of
square inclusions used in the previous exam-
ple. Heterogeneous elastic properties are con-
sidered with identical permeability in both ma-
trix and inclusion materials in order to focus on
the effect of an anisotropic hydro-mechanical
coupling. Homogeneous and heterogeneous
Biot coefficients are successively considered for
both fine-scale structures (vertical and horizon-
tal inclusion), see Table 2. Each multi-scale so-
lution is compared to the results of a direct nu-
merical simulation.

Table 2: Matrix (a) and inclusion (b) material parame-
ters for the homogeneous (hmg) and heterogeneous (htg)
cases regarding the Biot coefficient.

hmg htg
@ M| @ (b
EGPa) | 1 10| 1 10
v () 04 01|04 01
M (GPa) | 5 5 | 5 5
a) 05 05|05 1
k (M*/Pa.s)| 3 x 10713 | 3x 10713
F_p=0
vl
l
RVE (V)
RVE (H)

O

Q Q)

Figure 5: Configurations of the consolidation of a hetero-
geneous porous material made of a periodic arrangement
of either vertical (V) or horizontal (H) rectangular inclu-
sions.

The bottom pressure evolution and the mid-
depth settlement are presented in Figures 6 and
7, respectively. Since the pressure vanishes at
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the end of each simulation, only the first time
steps are shown. It is observed that the hetero-
geneity of the hydro-mechanical coupling (in
blue) is properly captured by the homogenisa-
tion procedure with respect to the cases where
a homogeneous coupling is used (in red). At
the first time step, the multi-scale solution over-
estimates the presure with an error of less than
5% and underestimates the displacement with
an error of2.2% (with respect to the DNS).
This error is decreasing with time and only the
anisotropy of the elastic parameters affects the
steady-state (final) settlement. The periodic-
ity condition imposed on the displacement and

pressure fields and the fact that the scale separa-

tion is not satisfied here could explain the initial
overestimation of the undrained stiffness. The
steady-state assumption at the fine scale coul
also be an origin of the discrepancy between the
multi-scale and fine-scale results since the fluid
content increment depends on the Biot coeffi-
cients.

6X 10
-+-V DNS htg
-*-V DNS hmg
0 -6~V MS htg
E -©-V MS hmg
> QE -X-HDNS htg |
5 -X-H DNS hmg
g 1 -5-H MS htg
8 q
IS
24 f
@
3
10 10° 10°
Time [s]

Figure 6: Consolidation of a heterogeneous porous ma-
terial with vertical (V) and horizontal (H) inclusions for
homogeneous (hmg - red) and heterogeneous (htg - blue)
Biot coefficients. Comparison of the mid-depth settle-
ment evolution for direct numerical simulation (DNS -
dot and cross markers) and multi-scale simulation (MS -
circle and square markers).
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Figure 7: Consolidation of a heterogeneous porous ma-
terial with vertical (V) and horizontal (H) inclusions for
homogeneous (hmg - red) and heterogeneous (htg - blue)
Biot coefficients. Comparison of the mid-depth settle-

d ment evolution for direct numerical simulation (DNS -

dot and cross markers) and multi-scale simulation (MS -
circle and square markers).

5 CONCLUSIONS

A non-linear computational homogenisa-
tion procedure was proposed for the hydro-
mechanical behaviour of saturated heteroge-
neous porous materials. Based on compu-
tational homogenisation approaches developed
for the mechanical and thermal cases [2, 3], an
enhancement of the scale transitions by means
of a consistency between scales on the pres-
sure field is proposed. It allows accounting
for the hydro-mechanical couplings in a mono-
lithic way. It was shown that the multi-scale
modelling yields results in good agreement with
respect to direct numerical simulations results
for consolidation cases in terms of displace-
ment and pressure evolution. In particular,
the multi-scale methodology allows taking into
account a stress-induced permeability evolu-
tion and an anisotropy of the hydro-mechanical
couplings. The periodicity argument and the
influence of the fine-scale transient phenom-
ena should be addressed in forthcoming pub-
lications. As a perspectivahe methodology
proposed in[[9, 10] where RVE computations
are used to model localised mechanical be-
haviour will be extended for the case of hydro-



B.C.N. Mercatoris, T.J. Massart and L.J. Sluys

mechanical coupling®2 damage model includ-
ing hydro-mechanical couplings will be incor-
porated at the RVE level in order to capture
damage-induced anisotropy with cracking and
fluid flow inside cracks.
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