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Abstract. This paper presents a crack model that couples the benefits ofthe damage mechanics
approach and the extended finite element method (XFEM). A local crack-tracking technique is devel-
oped to propagate a crack pattern along a single row of finite elements as a function of the equivalent
principal stress direction. The level-sets are computed topredict the crack path and with the use of
continuum damage mechanics, the path is corrected. Once a certain level of damage is reached inside
an element, the level-sets computed previously are used to apply the XFEM formulation with Heavi-
side function within this element introducing a discontinuity in the displacement field. The three point
beam tested by Bažant and Pfeiffer, the shear beam with single notch tested by Arrea and Ingraffea
and the tension-shear specimen tested by Nooru-Mohamed areused for the validation of the proposed
model that is targeted to be used shortly in dam safety application.

1 Introduction

The effect of cracks on the structural be-
haviour of concrete dams is a problem of grow-
ing interest, which is greatly stimulated by dam
ageing. Indeed, the presence of cracks in a
dam can be a source of uncertainty regarding
its durability, functional operation, and struc-
tural stability. A dam with a state of signif-
icant cracking and showing signs of distress
may in a particular case such as an earthquake
or a flood creates a major disaster. To decide

whether the structure needs rehabilitation, one
must compute efficiently if the cracks present
a real issue for the stability of the structure.
The method used to model crack initiation and
propagation must be robust and must take into
account the particularities that cracks have in
hydraulic structures such as pressurized water
penetration.

This paper presents a crack model that cou-
ples the benefits of the damage mechanic ap-
proach and the extended finite element method
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(XFEM) [1]. Beside the use of the regular-
ized XFEM model [2], XFEM models pre-
sented to date used most often a linear elastic
fracture mechanics (LEFM) approach to enrich
the crack tip. Although large concrete struc-
tures like dams are often cited as possible can-
didates for application of LEFM models, there
are severe limitations to this approach because
of the extent of the fracture process zone (FPZ)
in relation to the size of the structure. Herein,
the proposed constitutive models makes use of
the non linear fracture mechanics (NLFM) ap-
proach in the FPZ by using a classical dam-
age mechanics approach and makes the transi-
tion to XFEM when the concrete has reached
a certain level of damage. The transition from
NLFM to XFEM may also be interpreted as
the time when coalescence of micro-cracks oc-
curs to give a true discrete crack. Hence, the
use of the damage mechanics approach in the
FPZ does not require special crack tip enrich-
ment based on stress intensity factors and frac-
ture toughness material properties difficult to
define. Damage mechanics gives a predictor
for the crack path and helps compute level set
functions. The XFEM formulation with sim-
ple Heaviside function enrichment in the com-
pletely open region avoids the shear locking
phenomenon often observed with smeared type
models. Moreover, it does not require remesh-
ing and the mechanical crack mouth opening
displacement (CMOD) can be computed accu-
rately for hydro-mechanical coupling.

2 Continuum damage model

The benefit of a continuum damage approach
is the possibility to model areas where the dam-
age causes a multitude of micro-cracks that are
not necessarily localized. A good example of
this phenomenen is the damage caused by ther-
mal gradients on the surface of a structure. The
damage is present, but often no dominant crack
grows. This kind of behaviour would be very
complex to model with the XFEM. If damage is
localized, then prevailing crack grows and the
XFEM can adequately model the crack. An-
other benefit of the continuum damage model

is its ability to efficiently predict and adjust ini-
tial predictions of crack directions during their
evolutions.

The rotating anisotropic damage model con-
sidered in this paper is similar to that presented
by Gunn [3]. The effective stress̄σ for an
isotropic damage model is defined as:

σ̄ = (1− d)σ (1)

whereσ is the total stress andd is the scalar
damage index that is equal to zero when the ma-
terial is undamaged and to one when it is com-
pletely damaged. In the case of an anisotropic
formulation, the damage index is given by a ten-
sor and can be written in the following form:

σ̄ = M
−1

: σ (2)

with M the damage tensor. The total stressσ

is computed in terms of the elastic stress-strain
relationship:

σ = C0 : ǫ (3)

with C0 the usual linear-elastic constitutive ten-
sor. In the case of a damaged material, the
stress-strain relationship is given by:

σ = Cd : ǫ (4)

whereCd is the damaged constitutive tensor.
Using the previous relations, the damaged con-
situtive tensor can be evaluated as follows:

Cd = M
−1

C0 (5)

To keep the damaged constitutive tensor symet-
ric, one can, with the principle of energy equiv-
alence [4], replace it by a symetric tensor given
by:

Cd = M
−1

C0

(
M

−1
)T

(6)

Damage is initiated when a tensor norm is
greater than the initial thresholdr0. The ten-
sor norm must take into consideration the be-
haviour of concrete in tension and compression.
Thus, one suitable norm that takes into consid-
eration the effect of compressive strains and de-
fined as the equivalent strain̄τ , as proposed by
Ghrib [5], can be written as follows:

τ̄ =

√
√
√
√

2∑

i=1

(

〈εi〉2 +m〈−εi〉2
)

(7)

2



Simon-Nicolas Roth, Pierre Léger and Azzeddine Soulaïmani

where εi are the principal strains, with〈. . . 〉
the Macaulay brackets:〈εi〉 = εi if εi > 0,
〈εi〉 = 0 if εi < 0 andm is introduced to con-
sider that the effect of compressive strains are
smaller than tensile strains and is defined by:

m =

(
f ′
t

f ′
c

)2

(8)

with f ′
t , the tensile strength andf ′

c the compres-
sive strength. The damage evolution function is
given by:

d = 1−

√
r0
τ̄
exp (−C (τ̄ − r0)) (9)

The initial threshold is defined in terms of the
tensile strength and the elastic modulus:

r0 =
f ′
t

E0

(10)

with E0, the elastic modulus andC is given by
the relation:

C =
2

r0

(
2GfE0

lrvef
2
t

− 1

) ≥ 0 (11)

where Gf is the fracture energy and corre-
sponds to the area under the stress-strain curve,
lrve the representative volume element charac-
teristic length. The damage evolution is based
on the principal strains exceeding the damage
thresholdr0 :

• if ε1 > r0 thend1 = d

• if ε2 > r0 thend2 = d
(12)

Now the anisotropic damage tensor can be de-
fined by:

M =





1
1−d1

0 0

0
1

1−d2
0

0 0 β



 (13)

with β =

√

1
2

(
1

(1−d1)
2 +

1
(1−d2)

2

)

. Damage in

either of the principal directions leads to a re-
duction of shear resistance by the coefficientβ
similar to that found in smeared crack models.

The damage tensor is valid in the local reference
frame (aligned with the principal strains direc-
tions). Hence, in the global reference frame,
this tensor must be rotated by the transforma-
tion matrix given by:

T =





l21 m2
1 l1m1

l22 m2
2 l2m2

2l1l2 2m1m2 l1m2 + l2m1



 (14)

with the direction cosineε1 = {l1, m1}, ε2 =
{l2, m2}. The transformation from the local to
the global reference frame of the damaged con-
stitutive tensor is given by:

C
(g)
d = T

T
C

(l)
d Tl (15)

Finally, it is considered that the damage is dis-
tributed on a representative volume elementlrve.
Therefore this measure is given by the relation:

lrve =
2

√

Ve =
2

√
√
√
√

nint∑

i=1

wi det i (16)

with Ve the element volume,nint the number of
integration points,w the weight anddet the de-
terminant associated with the Gauss point. Sim-
ilarly, the equivalent strain̄τ is averaged over
the volume and is given by:

τ̄av =

nint∑

i=1

τ̄iwi det i

nint∑

i=1

wi det i

(17)

3 XFEM representation of the discontinu-
ity

In contrast with the continuum damage
model where the damage is distributed over a
representative element volume, the XFEM al-
lows to represent a discontinuous displacement
field across a localized crack. Thus, when the
coalescence of micro-cracks occurs a true open
discrete crack can be well represented with the
XFEM. The basis of this method is related to
the concept of partition of unity [6] to enrich
the finite element method. A partition of unity
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in a domainΩ is a set of functionsϕI(x) such
that:

∑

∀I

ϕI(x) = 1, ∀x ∈ Ω (18)

The property of a partition of unity is that any
functionψ(x) can be reproduced by a product
of the partition of unity function withψ(x).
So the standard finite element approximation
can be enhanced by introducing additional un-
knownaI to the problem:

uh(x) =
∑

∀I

NI(x)uI

︸ ︷︷ ︸

uEF

+
∑

∀I

ϕI(x)ψ(x)aI

︸ ︷︷ ︸

uenr

(19)
with Ni the standard shape functions of the fi-
nite element method anduI the standard de-
grees of freedom of the problem. The first part
of the right hand side of equation (19) repre-
sents the approximation of the standard finite
element method, while the second part is the
enrichment. The nodal valuesaI are the ad-
ditional degrees of freedom that adjust the en-
richment so that they approximate the func-
tion ψ(x). In the partition of unity finite ele-
ment method (PUFEM) [6] the enhancement is
global while in contrast the XFEM [1] uses a lo-
cal partition of unity, that is enrichment is added
only if required.

To represent a strong discontinuity such as
a crack, the Heaviside function can be used for
ψ(x):

H(z) =

{
1, z > 0
0, else

(20)

The displacement approximation is given by:

uh(x) =
∑

∀I

NI(x)uI +
∑

J∈SH

NJ(x)

[H(f(x))−H(f(xJ))] aJ

(21)

where SH represents the set of nodes that
are enriched because the discontinuity passes
through the element they are attached to andxJ
is the position of nodeJ

For elements cut by the crack, the jump in
the displacement field across the crackΓd is

thus given by the equation:
[
|uh(x)|

]

Γd

=
∑

J∈SH

NJ(x)aj , x ∈ Γd (22)

In equation (21) the enrichment function is
shifted so that the product of the shape func-
tionNI and the enrichment function cancels out
at each node, as proposed in the reference [7]
Therefore, only those elements that are crossed
by the discontinuity should be treated differ-
ently.

Another enrichment can be used for the
crack tip but as these functions are based on
LEFM, they will be omitted in this paper. In-
stead, the crack tip will always be located on
the edge of an element and the stress field be-
yond the tip will be computed with the contin-
uum damage model (micro-cracks in the FPZ).

4 Crack tracking technique
The prediction of the crack direction for

crack propagation is an important key to have a
successful model. To avoid the lack of crack lo-
calisation, the solution algorithm must promote
it to develop along a minimal number of finite
element rows. Thus the crack tracking tech-
nique must indicate the finite elements that can
potentially be crossed by a crack. The position
of the crack within the element can be evaluated
with level-sets [8]. This ensures the continuity
of the crack between the elements and once the
level of damage has reached a certain thresh-
old, these level-sets can directly be used for the
XFEM formulation.

4.1 Location of a new potential crack root
We first make the assumption that cracks ini-

tiate along boundaries. Thus a potential crack
root can be identified on the boundary mesh by
a tensile energy criterion similar to that of ref-
erence [9]:

1

2
σ1ǫ1 ≥ γU0 (23)

whereγ is a threshold factor to identify poten-
tial elements. Ifγ is close to one, then more
Newton iterations will be required for conver-
gence in a load step because the crack will ad-
vance element by element. In the other hand, if
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γ is set too low, many elements will be identi-
fied and there is a chance that the crack diffu-
sion will be high. Numerical experiments has
shown thatγ = 0.85 works well. When multi-
ple elements on the boundary exceed the crite-
rion, the one that has the greatest tensile energy
is selected as the crack root for that iteration.
Once a root element is selected, the coordinates
of the crack origino(x, y) must be computed.
We make the assumption that the origin is lo-
cated at the center of the element edge located
on the boundary. If more than one edge is in
contact with the boundaries, the centroid of the
element is selected as the origin. Knowing the
origin point and the crack normal~n, the level-
setφ can be defined. In this paper the princi-
pal equivalent stress (similar to the equivalent
strain given by the relation (17) direction cosine
is taken as the crack normal direction. Thus a
plane passing through pointo(x, y) and with a
normal~n is defined by the equation:

d = −~n · o(x, y) (24)

The level-set, defined by the signed distance
(point-plane distance) can be evaluated for all
the potential root element nodes. For example,
at nodei with coordinatesp(x, y) the signed
distance is given by the relation:

φi =
~n · p(x, y) + d

||~n||
(25)

4.2 Potential crack propagation
Now that the root element is found, its level

set at every nodes computed, the identification
of the potential crack path can be defined. The
neighbour element whose edge respect the con-
dition min(φi) × max(φj) < 0 is selected (its
minimal level-set times its maximal one is less
than zero). If this neighbour element energy
threshold (23) is exceeded, than the element
nodes level-sets not already computed can be
evaluated similarly to that previously defined.
Particular attention must be taken to scale the
level-sets at these nodes. The signed distance is
evaluated by the point-plane distance. Hence,
the element nodes do not necessarily lie at the

same signed distance of two different planes.
Consequently, the ratio of the level-set at a node
already defined with the level-set it would have
if it would be computed with the new plane is
the scaling factor to apply on the newly defined
level-set for this element. The potential crack
propagation can be cycled until all the element
in the neighbourhood of the crack tip do not re-
spect the threshold defined in equation (23).

4.3 Maximum curvature criterion
Similar to that in reference [10], a maxi-

mum curvature criterion is introduced to cor-
rect spurious changes in propagation direction.
If the current considered element crack normal
~ne makes an angle larger thanαmax with the
normal of the previous element~np considered
along the crack path, then the modified normal
~nm of the current element is defined as:

[
(nm)x
(nm)y

]

=

[
cos(α) − sin(α)
sin(α) cos(α)

] [
(np)x
(np)y

]

(26)
where the rotation angle is defined byα =
sign((~np ⊗ ~ne)z)

αmax

2
. The direction of the ro-

tation is simply given by the sign of thez com-
ponent of the vector given by the cross product
of the previous element normal with that of the
current element normal.

4.4 Predictor corrector
The element can sustain damage as pre-

sented in section 2 if it respects the condition
min(φi)×max(φj) < 0. The initial equivalent
principal stress direction used to computed the
level-sets is susceptible to change in a rotating
crack model. Given this change of direction,
the crack root found in the previous section is
the starting point for the crack propagation un-
til a certain level of damage thresholdd > η
is attained. Hence, when this threshold is ob-
tained, the level-sets are fixed for the element.
As the level-sets need not be updated, the root
element can be defined as the next element in
the crack path where this threshold is not ex-
ceeded. Therefore, the potential crack path is
predicted in section 4.2 and is corrected accord-
ing to the damage sustained by the elements
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crossed by the crack by cycling the propagation
algorithm again at each Newton iteration.

5 Transition from continuum damage me-
chanics to XFEM

In this paper the transition from continuum
damage mechanics to XFEM formulation does
not have any special treatment. Hence, the to-
tal energy dissipation in the process is approxi-
mately correct. If this transition occurs at a time
where the damage is high (d ≃ 1.0), the energy
dissipation for the element is almost completed.
Hence, the error introduced in energy balance
is of small amplitude. This issue will be inves-
tigated in the numerical results presented in the
next section.

6 Validation examples

Three validation examples are presented in
this section. The simple three point beam tested
by Bažant and Pfeiffer [11], the shear beam
with single notch tested by Arrea and Ingraf-
fea [12] and the tension-shear specimen tested
by Nooru-Mohamed [13] are used for the vali-
dation of the proposed model. For all the valida-
tion examples, the parameters are fixed. Thus,
αmax is fixed to 20◦, the level-sets are fixed for
the element when the scalar damage index has
reachedd > η > 0.60 and finally the transition
from continuum damage mechanics to XFEM
formulation occurs when the scalar damage in-
dex reachesd > 0.95.

6.1 Three point beam

The beam in figure 1 tested by Bažant and
Pfeiffer [11] withd =0.3048 m and a thickness
of 0.038 m is considered for the first validation
example. The material properties are given in
table 1.

Table 1: Material properties for the three-point beam
specimen

E
(M

P
a)

f
′ t
(M

P
a)

f
′ c
(M

P
a)

ν G
f

(N
/m

)

27413 2.886 34.0 0.18 40.29

Displacement control has been performed by
applying a displacement increment∆u = 4 ×
10−6 at the two nodes adjacent to the center
line of the beam. In the experiment, the ulti-
mate average load resistance wasPu = 7784N.
Four different Q4 plane stress meshes were used
to study the results independence with regards
with the mesh refinement. The computed ulti-
mate loads are 6516 kN, 6538 kN, 7093 kN and
7625 kN, respectively forhc = d/6, d/12, d/24
andd/36. The ultimate loads computed are in
the range of the experimental one and given that
the finest mesh is six times more refined than
the coarsest one, the results are nearly mesh in-
dependent.

d=
0.

30
48

m

2.5 d

d/6

d/12thickness = 0.0381 m

u
hc

Figure 1: Notched three-point beam specimen dimen-
sions (meshhc = d/24)

The force-displacement curve for the case
wherehc = d/36 is given in figure 2. Contin-
uum damage model results are compared with
the XFEM+damage model. The responses are
almost identical until the transition occurs in
the first element (at 0.12 mm). The slope of
the softening is greater with the model that uses
XFEM. This is a direct consequence of the tran-
sition that does not take account of energy trans-
fer. In this case, the results are marginally af-
fected.
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Applied displacement (mm)

F
o

rc
e 

(k
N

)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0

1

2

3

4

5

6

7

8
XFEM+Damage Model
Damage Model

Figure 2: Force-displacement response of the beam

6.2 Shear beam with single notch
A single-notched shear beam illustrated on

figure 3 tested by Arrea and Ingraffea [12]
which failed in curved mode I fracture is
used as a second validation example. Most
smeared crack solutions are unable to predict
full separation and softening down to zero [14].
Hence, the transition from damage mechanics
to XFEM should be able to alleviate this prob-
lem. The crack mouth sliding displacement
(CMSD) is used as a feed-back signal to con-
trol the load applied and capture the snap-back
response of the beam. The material properties
are given in table 2.

Table 2: Material properties for the shear beam specimen

E
(M

P
a)

f
′ t
(M

P
a)

f
′ c
(M

P
a)

ν G
f

(N
/m

)

24800 2.80 45.5 0.18 100

0.13F F

397 39761 61

2
2

4
8

2

thickness = 156 mm

15

A

Figure 3: Shear beam with single notch specimen dimen-
sions

The beam model meshed with Q4 plane
stress elements is used to compute the force-
CMSD response of the shear beam with three
constitutive model. The first model uses contin-
uum damage mechanics with no special crack
tracking technique. The second model uses
the crack technique presented previously with a
continuum damage mechanics model. The last
model, is similar to the second one but makes
transition from damage mechanics to XFEM
when the threshold level of damage is reached.
The force-deflection of point A response curves
are presented in figure 4 for the three models
and compared with the discrete crack model re-
sults given in reference [14]. The model with
no special treatment of the crack path is unable
to predict the beam snap-back. The ultimate
load predicted with this model (80 kN) is low
compared to the experimental results (average
of 130 kN). The two models that makes use of
the special treatment of the crack path predict
the same ultimate load (118 kN) but the con-
tinuum damage model is unable to predict the
snap-back and load-displacement response to
zero fails. The third model gives results that are
in agreement with those presented by Rots [14].
Thus, the softening down to zero in this case is
only possible with the XFEM formulation.

Displacement of point A (mm)

F
o

rc
e 

(k
N

)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
0

20

40

60

80

100

120

140

160
Rots (discrete crack)
Damage model with tracking
Damage model without tracking
XFEM+Damage Model

Figure 4: Force-deflection of point A of the shear beam

The crack path computed without the crack
tracking technique is given in figure 5. The
path is compared with the profile observed in
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the laboratory and used by Rots for the dis-
crete crack analysis performed by introducing
interface elements on thea priori known crack
path. The profile computed is not in agree-
ment with the experimental one. It starts to
propagate vertically and turns slowly in the di-
rection of the applied load. This explains the
discrepancy of the ultimate load predicted with
this model. Figure 6 gives the profile com-
puted with the special crack tracking technique
and the XFEM+damage model. The crack path
is almost identical with the experimental one.
Hence, a special crack tracking technique is re-
quired to compute an accurate crack profile for
this validation case.

RotsNo tracking

Figure 5: Crack path predicted without special crack
tracking technique (Damage)

RotsXFEM+Damage

Figure 6: Crack path predicted with special crack track-
ing technique (XFEM+damage)

6.3 Crack propagation in a tension-shear
specimen

A tension-shear specimen made of concrete
tested experimentally by Nooru-Mohamed [13]
is taken as the last validation example to demon-
strate the applicability of the model. The ge-
ometry, the loading and boundary conditions of
the panel are presented in figure 7. The ma-
terial parameters, similar to those used in ref-
erence [15], are given in table 3. Loading is
applied via prescribed displacements along the
left edge and the top edge of the panel. The
prescribedux displacement on the left edge is

applied in a manner to have the shear forceP,s
constant at all time and the displacement on the
top edge is varied continuously. The model is
meshed with Q4 plane stress elements.

Table 3: Material properties for the tension-shear speci-
men

E
(M

P
a)

f
′ t
(M

P
a)

f
′ c
(M

P
a)

ν G
f

(N
/m

)

30000 3.00 30.0 0.20 110

u,
y

u,
x

20
0

5

200

25

P,
n

P,
s

thickness = 50 mm

Figure 7: Tension-shear specimen dimensions

Load displacement responses for loading
paths 4a to 4c are presented in figures 8 to 10
and are compared with the experimental results
and those of reference [16]. The ultimate load
for loading path 4a is slightly over estimated,
while that of loading path 4b is in agreement
with the experimental one. For loading path 4c,
the experimental specimen failed in pure shear
mode. Hence, the experimental ultimate resis-
tance in tension is 0. A small tension force
in combination with the shear force is required
in the numerical model to initiate the crack.
Hence, a traction of 2 kN is applied. For the
softening part of the curves from all loading
paths, it is obvious that more energy is dissi-
pated in the transition process from damage me-
chanics to XFEM when the cracks progress and
the force-displacement curves fall below the ex-
perimental one.
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Applied displacement (mm)

F
o

rc
e 

(k
N

)

0.00 0.02 0.04 0.06 0.08 0.10
-5

0

5

10

15

20
Present
Meschke [16]
Experimental

Figure 8: Load-displacement for loading path 4a
(P,s=5kN)

Applied displacement (mm)

F
o
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(k
N

)

0.00 0.02 0.04 0.06 0.08 0.10
-5

0

5

10

15

20
Present
Meschke [16]
Experimental

Figure 9: Load-displacement for loading path 4b
(P,s=10kN)

Applied displacement (mm)

F
o

rc
e 

(k
N

)

0.00 0.02 0.04 0.06 0.08 0.10
-5

0

5

10

15

20
Present
Meschke [16]
Experimental

Figure 10: Load-displacement for loading path 4c
(P,s=27.5kN)

Meschke 
Present

Figure 11: Computed crack path for loading path 4a
(P,s=5kN)

Meschke 
Present

Figure 12: Computed crack path for loading path 4b
(P,s=10kN)

Meschke 
Present

Figure 13: Computed crack path for loading path 4c
(P,s=27.5kN)
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Figures 11 to 13 contains the crack trajecto-
ries from all three tests obtained from the anal-
yses. The experimentally observed crack paths
are included in shaded color. The computed tra-
jectories are in agreement with the experimental
ones for all loading paths.

7 Conclusion
The proposed model has shown the follow-

ing features:

• The localized cracks predicted by the pro-
posed tracking technique are consistent
with the ones experienced in structures.
The cracks develop along a single row of
finite elements and minimum diffusion of
damage is observed;

• The transition to XFEM when the dam-
age is important alleviate the locking phe-
nomenon often observed in smeared type
models;

• The model has the ability to predict
the crack path with a damage mechan-
ics model and because the rotating crack
model is used, the crack direction can be
corrected;

• The validation examples have shown
the efficiency and the robustness of the
model.

However, more work must be done for the tran-
sition from continuum damage mechanics to
XFEM formulation to conserve the total en-
ergy dissipation in the fracture process. It was
shown that energy dissipation can have influ-
ence on the softening behaviour of the consti-
tutive model.
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