
 
VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures 

FraMCoS-8 
J.G.M. Van Mier, G. Ruiz, C. Andrade, R.C. Yu and X.X. Zhang (Eds) 

 
 

1 

 

UPGRADING THE PUSH-OFF TEST TO STUDY THE MECHANISMS OF SHEAR 
TRANSFER IN FRC ELEMENTS 

 
JAVIER ECHEGARAY-OVIEDO

*
, JUAN NAVARRO-GREGORI

*, ESTEFANIA 

CUENCA
*
 AND PEDRO SERNA

*
 

* Universitat Politècnica de València (UPV) 
ICITECH – ETS de Ingenieros de Caminos, Canales y Puertos 

Edificio 4G. Camino de Vera s/n, 46071, Valencia, Spain 
e-mail: jaecov@posgrado.upv.es, 

e-mail: juanagre@cst.upv.es; escueas@upvnet.upv.es; pserna@cst.upv.es, www.icitech.upv.es 
 

Key words: Push-off test, Aggregate Interlock, Fiber Reinforced Concrete, Shear Transfer. 

Abstract: In this paper an upgrading of the push-off test in pre-cracked specimens is presented. The 
test is performed under conditions of crack control both in the pre-cracking and in the push-off 
stages. To this end, transversal forces to control the crack opening are introduced. Additionally, this 
confinement system avoids unnecessary movements that may introduce strains in the specimen. It is 
also included the methodology to perform the pre-cracking of the specimens prior to the push-off 
test. Specimens of 40 MPa of concrete compressive strength are used with two types of steel fibers 
type as well as with transverse reinforcement. It can be concluded that it is possible to perform the 
push-off test under crack control as it is shown with the results of crack width obtained with 
different measurement techniques. Different types of behavior after cracking can be detected such 
as hardening or the evolution of post-cracking residual stresses. 
 

 

1 INTRODUCTION 

It is well known that the shear failure of 
reinforcement concrete elements is brittle. The 
addition of steel fibers to the concrete mixture 
improves the tensile behavior and ductility, as 
well as it provides a good crack control [1]. 
Also, steel fibers improve the shear behavior 
of structural elements increasing their shear 
load capacity, and ductility [2]. 

The push-off test (Fig. 1a) has been used to 
study the mechanisms of shear transfer [3-10]. 
Some researchers pre-crack the specimen 
before performing the push-off test [5-10]. 
Pre-cracking can be achieved by first placing 
the specimen horizontally (Fig. 1b), and then a 
line load at the top and at the bottom face of 
the specimen is applied. Finally, the specimen 
is placed vertically, and the push-off test is 
then carried out. 

The shear strength of the specimen depends 
on the contribution of both the concrete and 
the shear reinforcement. Aggregate interlock, 
or crack shear friction, has a significant 
contribution to the concrete shear capacity [8].  

Walraven [7], analyzed the phenomenon of 
aggregate interlock by means of push-off tests, 
and proposed a model validated with his own 
experimental results. This model assumes that 
concrete consists of a rigid perfectly plastic 
paste and rigid spherical aggregates of various 
sizes intruded into this paste. After the 
formation of a crack plane, for normal 
concrete strength, the aggregates tend to be 
pulled out from the cement paste with the 
propagation of cracks. The crack grows 
through the paste an around the aggregate. 
These spherical aggregates effectively provide 
aggregate interlock between the paste and the 
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aggregate. Protruded aggregates sliding 
against the paste generate normal and shear 
stresses due to plastic deformation of the paste. 
The simplified version of Walraven’s model is 
based on expressions [1] and [2], which relate 
the shear (τ) and normal (σ) stresses with the 
slip (Δ) and the crack width (w): 

ߪ ൌ െ
݂ܿ ݑ
20

൅ ሾ1,35ݓെ0,63 ൅ ሺ0,191ݓെ0,552

െ 0,15ሻ݂ܿ ݑ ሿ Δ   
(1) 

߬ ൌ െ
݂ܿ ݑ
30

൅ ሾ1,80ݓെ0,80 ൅ ሺ0,234ݓെ0,707

െ 0,20ሻ݂ܿ ݑ ሿΔ   
(2) 

where fcu is the concrete cube compressive 
strength.  

In the last decades new types of concrete 
have been used, like high strength concrete 
(HSC), self-compacting concrete (SCC), or 
fiber reinforced concrete (FRC) among others. 
In these concrete materials the aggregate 
interlock phenomenon may be different 
compared to conventional concrete. 

In the case of HSC, Walraven [9] 
introduced the C parameter (C < 1), which 
reduces the stresses due to the aggregate 
fracture. Indeed this parameter should be 
considered as a general roughness reduction 
factor. If all particles break there is always 
some shear capacity left thanks to the natural 
unevenness of the crack face. 

On the other hand, Kim [10], carried out 
experimental tests on push-off specimens 
made with SCC and high strength concrete (fc 
> 70MPa). His results confirmed that concrete 
shear strength is highly related to the amount 
of aggregate fracture at small crack widths 
when crack slip initiates. Moreover, concrete 
mixtures containing river gravel exhibited 
higher aggregate interlock compared to those 
containing crushed limestone aggregate. The 
fact that SCC has a lower volume of coarse 
aggregate than conventional concrete (CC) 
should imply lower shear strength. However, 
there are several authors [11, 12], who have 
shown that the shear strength is similar to CC, 
if both materials have similar granular 
skeleton. 

There is a lack of information in the 
literature about the real mechanisms of shear 

transfer in FRC elements. It remains unclear 
the role that steel fibers play right at the 
cracks. Cuenca et al. [13] studied the shear 
behavior of push-off specimens made with 
different amounts of fibers (0, 40 and 60 
kg/m3) and pre-cracked width, and compared 
the results with conventional concrete. They 
found out that the peak load increases with the 
amount of steel fibers and the reinforcement 
rebars presence, but is much reduced when 
specimens is pre-cracked.  

Boulekbach et al. [14] studied the behavior 
of prismatic specimens of 10x10x35cm of 
several concrete strengths (30, 60 and 80 
MPa), reinforced with hooked-end steel fibers 
with three volume contents of fibers (0%, 
0.5% and 1%) and two different aspects ratio 
(65 and 80). They found out that the first way 
to improve the shear strength consists of 
increasing the concrete compressive strength. 
The second way can be obtained with the 
addition of steel fibers; an increment of 44% is 
obtained for a fiber volume content of 0.5%, 
and 65% for a content of 1%. Finally, the use 
of an aspect ratio ranging from 65 to 80 has 
shown a slight influence on the shear strength 
(5%). 

2 RESEARCH SIFNIFICANCE 

In this study an improvement of the push-
off test in pre-cracked specimens is presented. 
With this method is possible to control the 
crack width in both, the pre-cracking and the 
push-off stages. 

This kind of test allows the study of 
specimens under direct shear controlling the 
maximum crack width. Thus, both shear and 
normal stresses mainly depend on the slip 
displacement (or shear displacement). 

3 METHODOLOGY 

3.1 The push-off test concept 

The push-off test is based on the idea of 
applying an axial force (P) to produce a pure 
shear on a plane of the specimen (shear plane). 
To make this possible, a special specimen is 
used. This is formed by two L blocks, and the 
shear plane is defined by the plane that 
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Figure 11: Example	curve	of	pre‐cracking	process	
without	springs. 

A better behavior was obtained by 
introducing the springs mentioned in section 
3.3. An example of this is shown in Fig 12. 
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Figure 12: Example	curve	with	springs	during	the	

pre‐cracking	process. 

In Fig. 12 it can be seen how the six 
LVDT’s go to negative values. This indicates, 
in one hand, that the specimen does not 
experiment any rotation around the knife. On 
the other hand, the stiffness of the springs is 
according to our necessities, because the 
differences between the six LVDT’s 
measurements show a low scatter of results. 

5.2 Push-off 

The shear behavior was analyzed by means 
of the crack width (crack opening) or the slip 
(shear displacement) versus the shear applied 
during the push-off tests. A general example of 
one of these is presented in Fig. 13. It can be 
seen a different shear behavior between the 
river sand (RS-50-BN), the crush sand (CS-30-

BN), the crush sand with BP fibers (CS-50-
BP) specimens, and the crush sand 
reinforcement (CS-F8). 
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Figure 13: Example	curve	of	the	first	pre‐cracking	

process. 

The curve RS-50-BN (black line) shows a 
residual stress, while CS-30-BN (red line) 
shows a hardening effect. The reason for the 
residual stress was that the distance between 
the two plates was too big (3.5 mm) so the 
specimen (RS-50-BN) was not confined by the 
plates. For this reason in the others specimens 
[(CS-30-BN) and (CS-50-BP)] the distance 
between the two plates was reduced to 1 mm 
and 0.5 mm respectively. 

In the case of the reinforcement specimen 
CS-F8 (green line), the best behavior of all 
specimens was obtained. This can be seen on 
the value of the shear stress, because in this 
specimen it was around 6 MPa. And it was 
kept constant until the end of the test. 

5.3 Micro-photographs 

The results showed here were obtained 
from the specimen CS-50-BP, by following 
the methodology described in section 3.5. The 
general procedure was shown in Fig. 14. Here 
it is shown point M4, before and after pre-
cracking and at failure. 

The different values of the whole process 
are summarized in Table 4. Here, the initial 
length is defined as the width of the notch. 
After pre-cracking, means the length of the 
notch when the pre-cracking process is 
finished. And the column name failure is 
referred to the length of the notch at the 
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