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Abstract: New developments for simulating microcracking in cementitious composite materials – 
such as concrete – are presented. A micromechanical constitutive model for concrete is proposed 
which employs the classic Eshelby inclusion solution and a Mori-Tanaka homogenization scheme 
to simulate a two-phase composite comprising a matrix phase representing the mortar and spherical 
inclusions representing the coarse aggregate particles. Furthermore the material contains randomly 
distributed penny-shaped microcracks. The onset of cracking is addressed in a microcrack initiation 
criterion, governed by an exterior-point Eshelby solution, in which microcracks are assumed to 
initiate in the interfacial transition zone between aggregate particles and cement matrix [1]. The 
adopted solution captures tensile stress concentrations in the proximity of inclusion – matrix 
interfaces in directions lateral to a compressive loading path. An advantage of the two-phase 
formulation is that it is able to predict the build-up of tensile stresses within the matrix phase under 
uniaxial compression stresses thus allowing the model to naturally simulate compressive splitting 
cracks. The implementation of the microcrack initiation criterion into the constitutive model enables 
the use of realistic material properties in order to obtain a correct cross-cracking response.  

The model combines these solutions with a rough crack contact component which enables it to 
capture the dilatant behaviour of concrete subject to compression. A novel aspect of the present 
work deals with the development of a smoothed contact state function in order to remove spurious 
contact chatter behaviour at a constitutive level. It is shown, based on numerical predictions of 
uniaxial and biaxial behaviour that the model captures key characteristics of mechanical behaviour 
of concrete.  

 

1 INTRODUCTION 
Considerable research has been carried out 

since the late 1960’s for developing models 
and techniques to simulate the mechanisms 
leading to failure of quasi-brittle materials 
such as concrete. Although the progress 
achieved during this time is considerable, as 
yet, no one model has been able to fully 
capture all facets of the complex mechanical 

behaviour of concrete.  
Concrete modelling at a constitutive level 

can be classified in two main categories: 
macroscopic models that follow a 
phenomenological approach and models based 
on micromechanical solutions. 
Phenomenological models generally employ 
theories based on plasticity and/or damage 
mechanics in order to simulate the 
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macroscopic behaviour and their formulation 
often makes use of functions obtained by 
fitting experimental data (e.g. uniaxial tension 
and compression curves, strength envelopes). 
By contrast, micromechanical models aim to 
relate the microstructure of concrete, and the 
physical mechanisms that govern its evolution, 
to the macroscopic behaviour observed in 
experiments.  

The work presented here follows on from 
the micromechanical constitutive models 
proposed by Jefferson and Bennett [2,3] -
based on Budiansky and O’Connell’s [4] 
solution for an elastic solid containing penny-
shaped microcracks and on the Eshelby 
matrix-inclusion solution- and by Mihai and 
Jefferson [1] which additionally employed the 
exterior point Eshelby solution in a microcrack 
initiation criterion. The model also features a 
rough crack contact component that accounts 
for the recovery of stiffness when microcrack 
surfaces regain contact. The novel aspect in 
the present work deals with the formulation of 
a smoothed contact state function to replace 
the discrete formulation employed in [1-3] in 
order to remove spurious chatter behaviour.  

2  MICROMECHANICAL 
CONSTITUTIVE MODEL 

A full account of the constitutive model is 
presented in [1] however the main assumptions 
and key equations of the model are provided 
below. The general concepts of the model are 
presented in Figure 1. Concrete is modelled as 
a two-phase composite that comprises a matrix 
(m) - representing the mortar- and spherical 
inclusions (Ω) - simulating the coarse 
aggregate particles. Additionally, penny-
shaped cracks with various orientations and 
rough surfaces are distributed within the 
matrix phase. The elastic constitutive 
relationship for the two-phase composite was 
obtained by making use of the classic Eshelby 
inclusion solution and the Mori-Tanaka 
averaging method for a non-dilute distribution 
of inclusions: 

mΩ a: ( )= −σ D ε ε   (1) 

where σ  and ε  are the average far-field stress 

and strain respectively. DmΩ is the elasticity 
tensor of the composite, 

( ) ( ) 14s
mΩ m m mf f f f

−

Ω Ω Ω Ω Ω= + ⋅ ⋅ +D D D T I T  in 
which Dβ represents the elasticity tensor and fβ 
the volume fraction of β-phase (β = m or Ω) 
with fm + fΩ = 1. 4sI  is the fourth order identity 
tensor and 

( ) ( )14s
Ω Ω Ω m Ω m m Ω

−
 = + ⋅ − ⋅ + ⋅ − T I S D D S D D D

. SΩ is the Eshelby tensor for spherical 
inclusions [4]. 

 
Figure 1: Model concepts. 

 
Microcracking was addressed by evaluating 

the added strain εa from a series of penny-
shaped microcracks distributed according to a 
crack density function )θ ψf( , . Employing 
Budiansky and O’Connell’s solution [4], the 
added strain can be written as follows: 

T
a

π2π 
2

1 : :  (θ,ψ) sin(ψ)dψdθ :
2π a

 
 

=  
 
 

∫ ∫ε N C N σf  (2) 

in which aC  is the local compliance tensor in 
the local coordinate system of a microcrack 
(r,s,t) and N the stress transformation tensor. 
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The crack density parameter may be related to 
a directional damage parameter ω (0≤ω≤1) 
such that: 

L
ω(θ,ψ)(θ,ψ) (θ,ψ)

1 ω(θ,ψ)a α= =
−

C C Cf     (3) 

where L
m m

m

1 0 0
1 4= 0 0

E 2-υ
40 0

2-υ

 
 
 
 
 
 
 
 
 

C is the local 

elastic compliance tensor, with υm and Em 
being the Poisson’s ratio and the Young’s 
modulus of the matrix phase respectively. 
Introducing Eq. (2) and Eq. (3) into Eq. (1) 
and rearranging gives: 

1

4s TmΩ

π2π
2

: (θ,ψ) : sin(ψ)dψdθ
2π α

−
 
 

= + ⋅ ⋅ 
 
 

∫ ∫
Dσ I N C N

     mΩ :⋅D ε                                               (4) 

Microcracks were assumed to initiate, based 
on experimental evidence, in the interfacial 
transition zone between aggregate particles 
and cement matrix. In order to model this 
mechanism a microcrack initiation criterion 
was formulated which makes use of an 
exterior point Eshelby solution that provides 
the expression of the total stress field outside 
an ellipsoidal inclusion embedded in an 
infinite elastic matrix [5]. The Mori-Tanaka 
averaging method was applied in order to 
account for the interaction between inclusions 
and the total stress field in the matrix outside 
an inclusion (for the composite) was obtained 
as: 

1
4 4

mΩ m E Ω m( ) ( ) f f :s s
−

Ω Ω   = ⋅ + ⋅ ⋅ +   σ x D I S x B T I

             ( )a: −ε ε      (5)  

in which ( )
11

m m

−−
Ω Ω Ω

 = − + − ⋅ B S D D D . 

SE(x) is the exterior point Eshelby tensor for 
spherical inclusions [6] and x is the position 
vector relative to the centre of inclusion. When 

the composite is subjected to uniaxial 
compressive stresses, the expression of the 
stress field in the matrix phase outside the 
inclusion in Eq. (5) captures sharp gradients 
and lateral tensile stress concentrations in a 
region adjacent to a matrix-inclusion interface. 
This enables the model to naturally simulate 
compressive splitting cracks. In each direction 
cracking is assumed to initiate when the local 
principal stress at the peak position in Eq. (4) 
reaches the tensile strength of the interface fti. 
The implementation of the microcrack 
initiation criterion into the constitutive model 
enables the use of realistic material properties 
in order to obtain a correct cross-cracking 
response, as shown in [1]. 

 
Figure 2: a) Schematic representation of a conical tooth 

b) Rough contact. 

 
A rough crack closure component was then 

implemented to simulate the recovery of stress 
on microcracks that regain contact. In each 
direction the local stress was written as a 
summation of the average stress on intact 
material and the recovered stress on debonded 
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material that regains contact. 

α L L f L L g L L(1 ω) : H ( )ω (m , ) := − + ⋅s D ε ε D Φ ε ε (6) 

Hf is a reduction function that decreases 
from 1 to 0 as the potential for shear transfer 
reduces with increasing crack opening. This is 

given by 
Lrr tm

1
0

ε -ε
ε

f LH ( )=
c

e β
−

⋅ε  with c1 = 3. 
Parameter β is the normalised asperity height, 
β=ht/u0, 1

L L
−=D C  and Lε is the local strain 

tensor.  
Φ(mg,εL) is a contact matrix that depends 

upon the contact state -open, interlock or 
closed- as illustrated in Figure 2b. 

Table 1: Unsmoothed contact formulation 

Region Contact 
state Contact matrix 

int L( , ) 0gmφ ≥ε  Open 2s=Φ 0  
int L( , ) 0gmφ <ε

and 
cl L( , ) 0gmφ >ε  

Shear 
contact or 
interlock 

g=Φ Φ  

cl L( , ) 0gmφ ≤ε  Closed 2s=Φ I  
 
 
Where: 

T 2
int int int

g 2 2
L L L

1
1 gm

φ φ φ   ∂ ∂ ∂ = +   ∂ ∂+ ∂   
Φ

ε ε ε
 (7) 

and 

2 2
int L Lrr Lrs Lrt

2 2
cl L Lrr Lrs Lrt

( , ) ε ε ε

( , ) ε ε ε

g g

g g

m m

m m

φ

φ

= − +

= + +

ε

ε
 (8a,b) 

mg is the slope of the interlock contact 
surface and, in a physical sense, it represents 
the slope of the asperity (Figure 2a,b), thus 
being a measure of the crack surface 
roughness.  Mihai and Jefferson [1] expanded 
the contact component to account for the 
variability of the crack roughness which gave 
the recovered stress as a summation: 

2
α L k fk k L

k
(1 ω) ω p H :s 

= ⋅ − + ⋅ 
 

∑s D I Φ ε  (9) 

The added compliance including contact 

Ccα, given in Eq. (10), is obtained by removing 
the elastic compliance from Eq. (9). Finally, 

( ) Lω/(1-ω)α =C C  in Eq. (4) is replaced with 
Ccα to give the final average stress – average 
strain relationship. The integration over a 
hemisphere in Eq. (4) is evaluated numerically 
by employing McLaren integration rule with 
29 sample directions. 

2 1 2
cα k fk k L

k
[(1 ω) ω p H ]s s− 

= − + ⋅ − ⋅ 
 

∑C I Φ I C  

        (10) 

3 SMOOTHED CONTACT STATE 
FUNCTION 

It was found that the use of discrete contact 
conditions can, under certain conditions, lead 
to spurious oscillatory response, which has 
been termed ‘chatter’ [7]. The present model 
can exhibit this type of behaviour - even in 
single point stress-strain simulations- when 
different contact conditions are active on 
different microcrack planes (Figure 3).  

 
Figure 3: Examples of rough contact related chatter   
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To minimize the potential for spurious 
contact chatter behaviour at a constitutive 
level, a single smoothed expression, given in 
Eq. (11), which encompasses all three contact 
states, is proposed to replace the discrete 
contact formulation in Table 1:  

2
L g cl L g cl L g( ,m ) ( ,m ) 1 ( ,m )sλ λ = ⋅ + − ⋅ Φ ε ε I ε         

                int L g g L g( ,m ) ( ,m )λ⋅ ⋅ε Φ ε           (11)   

in which L g( ,m )λ∗ ε , 'int' 'cl 'or∗ = , are 
modified tanh type functions that interpolate 
between 0 and 1. In effect, three transition 
bands between each pair of contact regions are 
formed (Figure 2b) based on the smoothed 
contact formulation in Eq. (11). Each 
interpolation function features three 
dimensionless smoothing parameters that 
control the width of the transition bands, the 
slope of the interpolation function and the 
position of the transition band relative to the 
relevant contact surface respectively. The 
development of the interpolation functions λ as 
well as a parametric study based on which 
values were assigned to the three smoothing 
parameters, are fully detailed in a forthcoming 
publication [8].    

4 NUMERICAL SIMULATIONS 
The smoothed contact function in Eq. (11) 

was found to be effective at removing chatter 
and smoothing the response. This is illustrated 
in Figure 4 for a single component contact 
formulation.  

 
Figure 4: Uniaxial compression predictions for 

unsmoothed and smoothed contact 

The performance of the smoothed contact 
function is investigated in detail for uniaxial 
compression and uniaxial tension cases in 
Reference [8]. In the present work, further 
study of the performance of the 
micromechanical constitutive model with 
smoothed contact in combined tension and 
compression multiaxial loading is presented. 
Biaxial simulations were carried out with the 
unsmoothed contact (U) and smoothed contact 
(S) versions of the model using the material 
properties in Table 2 and the contact 
components from a Gamma probability 
density function detailed in [8]. Compressive 
strains were prescribed along the xx direction 
and tensile strains were prescribed along the 
yy direction. The predicted stress – strain 
responses along the two orthogonal loading 
directions are presented in Figures 5 and 6.  

It can be observed that the smoothed 
contact formulation performs well and is 
efficient in smoothing the response in 
combined tension and compression loading 
cases. 

Table 2: Material properties 

Em  
MPa 

EΩ 
MPa 

υm υΩ fti  
MPa 

u0 
mm 

dmax 
mm 

31000 55000 0.19 0.21 1.0 0.1 10 

 

 
Figure 5: Numerical predictions for unsmoothed and 

smoothed contact (compression) 
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Figure 6: Numerical predictions for unsmoothed and 

smoothed contact (tension) 

Numerical results for a uniaxial 
compression strain path obtained with the 
micromechanical model and using realistic 
material data detailed in [1] are presented in 
Figure 7. Good correlation with experimental 
data indicates that the proposed model 
captures key characteristics of the overall 
macroscopic behaviour. 

 
Figure 7: Uniaxial compression response (compression 

+ve) 

5 CONCLUSIONS 
The micromechanical model is able to 

simulate successfully micromechanisms that 
lead to failure while employing realistic and 
meaningful material parameters. A smoothed 
contact state function was proposed and found 
to be effective in removing spurious chatter 
behaviour.   
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