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Overview of Quasibrittle Structures 
Brittle heterogenous (quasibrittle) materials  
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Figure 1. Bimodal Weibull distribution of tensile failure strengths in SOIMUMPs run 14 (25 µm thick single-crystal Si MEMS), based on
data from [13]. In all tests, the top surface of the tensile bar was aligned with the (0 0 1) crystallographic axis, the tensile axis was aligned
along the ⟨1 1 0⟩ direction. Both defect types cause failure to occur on the {1 1 1} family of planes. Failure strengths were calculated normal
to the tensile axis (i.e. tensile force at fracture divided by the cross-sectional area); the resolved normal stress on the cleavage plane was
lower by a factor of 0.816.

bar had a strength <0.05 GPa, below the resolution of the
tensile test machine. Such a result suggests that there is not
much hope for a sound statistical guarantee of some minimum
strength in microfabricated Si. However, the implementation
of a proof testing regimen can provide just such a guarantee
for brittle MEMS.

3. The advantages of proof testing in high-reliability
applications

Proof testing [2, 3] has been used to qualify structural
components in many high-reliability applications from turbine
disks to hand guns to medieval body armor. The premise is
straightforward; prior to fielding a component, the component
is tested under service-like conditions at or above the design
stress. If the component survives, then it will be expected
to survive in service, barring any thermal, environmental or
mechanical degradation produced by corrosion or fatigue.
It is a thresholding or truncationtechnique that permits the
elimination of defected components whose failure strengths
belong to the lower tail of the Weibull distribution [20].

Brittle MEMS materials are nearly an ideal candidate for
proof testing. At room temperature, they do not experience
significant plastic deformation. Therefore, unlike structural
alloys, Si or other brittle MEMS materials will be unharmed
by proof testing (with appropriate consideration for potential
fatigue or stress corrosion damage, as discussed in the
following paragraph). With a proof testing regimen in place,
the impressively high average or characteristic strength of
Si becomes an asset. To illustrate, one can return to the
example of the poly1 layer in SUMMiT polysilicon. With
the characteristic strength of 1.35 GPa and a Weibull modulus
of 9.71, a proof testing regimen at 1.0 GPa would permit

Figure 2. Discovery of an anomalous defect morphology found in
the SUMMiT V polysilicon MEMS poly3 layer. This unusual defect
was found in only one region of a single die. This particular
specimen exhibited a fracture strength <0.05 GPa, whereas the
characteristic strength from a large collection of tensile tests was
2.35 GPa.

95% of the devices to pass while eliminating the remaining
5% that belong to the lower tail of the distribution. Each
of these devices that passed would have an allowable service
stress of 1.0 GPa. The mass-production aspect of MEMS
provides yet further benefit; most MEMS processes replicate

3

concrete            composites ceramics rock 

Size-dependent failure behavior: 

small size limit: quasi-plastic 
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Two Types Scaling Laws of Quasibrittle Fracture 
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Engineering Structures with Weak Stress Singularities 

1. Weak stress singularities caused by geometry 

2. Weak stress singularities caused by material mismatch 
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Scaling of Quasibrittle Fracture with Weak Stress Singularities 

1. Introduction 
In many engineering applications, structures composed of quasibrittle materials such as concrete, 
fiber-reinforced concrete, fiber composites, toughened ceramics, rock, rigid foam, etc., often have 
a complicated geometry, or a combination of dissimilar materials. This may cause a certain 
degree of stress concentration leading to failure (Fig. 1).  The corresponding singular stress field
usually follows a power-law type, and the stress singularities � could be either two distinct real 
numbers or a pair of complex conjugates.  In fact, the order of � is generally not equal to the 
crack-like “�1/2” singularity.  Considerable work has been devoted to the analysis of such 
structures, including structures with reentrant corners (England 1971; Ritchie et al. 1973; 
Carpinteri 1987; Seweryn 1994; Dunn et al. 1996, 1997; Gomez and Elices 2003) and bi-material 
hybrid structures (Rice and Shih 1965; Rice 1988; Hutchinson and Suo 1992; Munz and Yang 
1993; Reedy 1993; Akisanya and Fleck 1997; Qian and Akisanya 1998; Liu and Fleck 1999; 
Reedy 2000; Labossierre et al. 2002; Zhang and Suo 2007). 

Some efforts have also been directed to understand the scaling of strength of these structures.  
Leicester (1969, 1973) proposed a power-law size effect on the nominal strength for homogenous 
structures under single-mode loading at the large-size limit, where the power-law exponent is 
equal to the order of the stress singularity (Fig. 1a). Bažant and Yu (2006) investigated the size 
effect on the strength of homogeneous quasibrittle structures with a reentrant corner under mode-I 
loading.  Le et al. (2010) adopted an equivalent linear fracture mechanics model and asymptotic 
matching to study the scaling of strength of a metal-composite hybrid joint (Fig. 1b), where the 
fracture is governed by a pair complex stress singularities or a single real stress singularity.  All 
these studies are based on the deterministic analysis of the fracture at the stress concentration 
region, which is limited to the case where the stress singularity is sufficiently strong. In fact, these 
previously proposed scaling equations all predict that the size effect must diminish as the order of 
the stress singularity becomes weaker.  However, it is well known that structures without stress 
singularity (e.g. beam without a notch) are also subjected to a strong size effect, which can be 
purely explained by the randomness of the material strength (Bažant 2005; Le et al. 2010).  
Therefore, there is still a lack of knowledge on the general scaling equation for the case of weak 
stress singularities, which represents a transition between the two different types of size effects.  

Figure 1. Homogenous and bi-material quasibrittle structures.  

Numerical and experimental analyses of the stress singularity-dependent size effect are 
challenging tasks, which have not received much attention. For example, various deterministic 
continuum and discrete numerical models, such as nonlocal integral and gradient models 
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will be reported !at r /s=0.01 and r /s=0.10". This provides a
means of comparing stress fields even when the singularity pa-
rameters differ !or even when the fields are nonsingular".

In addition to the finite element-based analysis, the Stroh for-
malism for anisotropic elasticity #8$ was used to derive the char-
acteristic equation governing the strength of the singularity for
those grain boundary/stress-free edge geometries analyzed by the
finite element analysis. These results were used to verify the ac-
curacy of the finite element calculations. The Stroh-based aniso-
tropic elasticity asymptotic analysis also confirms that when a
singularity exists at the intersection of a grain boundary with a
stress-free edge, the singularity is a single power-law term for the
material and geometric parameters considered in this study. The
use of the Stroh formalism to determine the nature of the
asymptotic stress field at material and geometric discontinuities in
anisotropic elastic materials is now well established and will not
be discussed here.

3 Results

3.1 Baseline Configuration. Results will first be presented
for a baseline configuration. Sections 3.2 and 3.3 will present
results for variations in crystal properties and crystal orientations.
The baseline configuration has regular, hexahedral grains !!1
=120 deg and !2=60 deg", a grain side length 2s=10 "m, and
crystal orientations of #a=#c=−#d=60 deg and #b=0 deg !see
Fig. 1". The baseline crystal material is copper !Cu" with cubic
elastic constants of C11=168 GPa, C12=122 GPa, and C66
=76 GPa. The calculated effective isotropic properties for Cu are
E=115 GPa and $=0.354.

Figure 2 plots the variation of the stress component %11 with
distance from pt1 !pt2" along the stress-free edge !along the ray
&=0 deg for pt1 and along the ray &=180 deg for pt2". Note that
%11 is the only nonzero, in-plane stress component along the
stress-free edge. The stress state is singular at pt1 while that at pt2
is nonsingular. This is consistent with published asymptotic stress
analysis results for interior triple-grain junctions that show that
there is only a certain range of crystal orientations for a given
grain boundary angle that produce singular behavior #5$. The sin-

gularity at pt1 is much weaker than that found at a crack tip
!'0.17 versus '0.5", but it dominates a very large region. The
finite element analysis !FEA" results are within 2% of the power-
law fit for r /s(0.5. Furthermore, stress is elevated over a signifi-
cant region !%11 /%!)1 for r /s(0.2".

3.2 Effect of Crystal Properties. Results for the baseline
crystal material, copper, are compared with those for nickel !Ni"
and silicon !Si" with all other parameters defining the baseline
configuration unchanged. The elastic constants used in the nickel
!Ni" calculation are C11=248 GPa, C12=155 GPa, and C66
=124 GPa, along with computed effective isotropic properties of
E=201 GPa and $=0.310 for the surrounding bulk. Likewise the
elastic constants used in the silicon !Si" calculation are C11
=166 GPa, C12=64 GPa, and C66=80 GPa, along with com-
puted effective isotropic properties of E=156 GPa and $=0.222
for the surrounding bulk. The level of crystal anisotropy is often
characterized by the parameters R and Q, where R= !C12
+2C66" /C11 and Q=C66 /C12 !R=1 for an isotropic material".
Table 1 compares the calculated results for the stress singularity at
pt1. Note that for a specified nominal applied stress %! and grain
side length 2s, the magnitude of the stress intensity factor Ka
scales directly with the value of A !Eq. !2"". As anticipated, the
singular stress field does depend on crystal elastic properties. The
strength of the singularity and the stress magnitude at r /s=0.01
and 0.10 are greatest when the crystals are copper. In all cases, the
region dominated by the singularity, characterized by rd, is rather
large !)0.5s" and there is a significant elevation in the stress level
out to a distance of r /s=0.10.

3.3 Effect of Crystal Orientation. First, consider a variation
in the baseline configuration where the set of crystal orientations
considered has #a=#c=−#d, #b=0 !Fig. 1". The calculated
strength of the stress singularity at pt1 for #a=0, 15, 30, 45, 60,
and 75 deg is plotted in Fig. 3 !#a=60 deg is the baseline con-
figuration". A stress singularity !*(0" is generated only when
30 deg(#a(90 deg. Not all grain boundary/stress-free edge in-
tersections generate a stress singularity. Also plotted in Fig. 3 is a
curve where the *-values were calculated using the Stroh formal-

Fig. 1 Geometry of problem analyzed; loaded by uniformly
displacing right edge relative to fixed left edge in a direction
parallel to the stress-free edge to generate a nominally uniform
!11=!!

Fig. 2 Radial stress dependence at pt1 „"=0 deg… and pt2 „"
=180 deg… for baseline geometry and material

Table 1 Effect of crystal properties on pt1 singular stress state

R Q A !Eq. !2"" * rd /s %rr!&=0 deg" /%! at r /s=0.01 %rr!&=0 deg" /%! at r /s=0.10

Si 1.35 1.25 0.84 '0.058 0.72 1.21 1.06
Ni 1.63 0.80 0.64 '0.133 0.52 1.53 1.12
Cu 1.63 0.62 0.56 '0.169 0.52 1.68 1.13
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Theoretical Framework 



Statistical Size Effect — Structures without 
 Stress Singularities  

" �Structures of positive geometry: the structure fails at the 
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materials. By considering a weak bi-material interface, it is reasonable to consider that the
failure probability of the structure is purely governed by the failure statistics of the interface
elements.

Based on the joint probability theorem and the assumption that the strength of each RVE
is statistically independent, the failure probability of the structure can be written as:

Pf (⇤N) = 1�
N⇧

p=1

[1� P1(⇤N⌃s(xp)⌥)] (11)

where P1 is the failure probability of the RVE along the bi-material interface, N is the number
of RVEs along the bi-material interface, ⌃x⌥ = max(x, 0), and ⇤N⌃s(xp)⌥ = ⇤(xp) = maximum
elastic principal stress at the center of pth RVE. Since we can conveniently choose ⇤N as the
maximum elastic stress at the peak load, then max s(xp) = 1.

Based on the atomistic fracture mechanics and statistical multi-scale transition, it has been
shown that the probability distribution of strength of one RVE P1 can be approximately mod-
elled as a Gaussian distribution onto which a Weibull tail is grafted at a probability about
10�4 � 10�3 [9, 7, 21]:

P1(⇤) = 1� exp [�(⇤/s0)
m] (⇤ < ⇤gr) (12)

P1(⇤) = Pgr +
rf�
2⇥�G

⌃ ⇥

⇥gr

e�(⇥0�µG)2/2�2Gd⇤0 (⇤ ⇥ ⇤gr) (13)

where s0 and m (Weibull modulus) are scale and shape parameters of the Weibull tail, µG

and �G are the mean and standard deviation of the Gaussian core if considered extended to
�⇧; rf is a scaling parameter required to normalize the grafted cdf such that P1(⇧) = 1, and
Pgr = grafting probability = 1 � exp[�(⇤gr/s0)m]. Finally, the continuity of the probability
density function at the grafting stress requires that: (dP1/d⇤)|+⇥gr

= (dP1/d⇤)|�⇥gr
. Similar

to the foregoing analysis of the bi-material interfacial fracture, the damage of the interface
RVE consists of micro-cracking in both dissimilar materials and the adhesive. Therefore, the
statistical parameters in Eqs. 12 and 13 describe the e�ective strength of bi-material interface
element, which are influenced by the two dissimilar materials and the adhesive.

The corresponding mean structural strength can be calculated as:

⇤̄N =
⌃ 1

0
[1� Pf (⇤

0
N)]d⇤

0
N (14)

By substituting Eq. 11 into Eq. 14, we could obtain the size e�ect on the mean structure
strength. Though it is impossible to have an analytical solution for ⇤N , an approximate equation
has been proposed [8, 9, 21]:

⇤̄N =

⇤�
C1

D

⇥r/m

+
C2

D

⌅1/r
(15)

where the constants C1, C2, and r can be determined by three asymptotic conditions: [⇤̄N ]D!l0 ,
[d⇤̄N/dD]D!l0 , and [⇤̄ND1/m]D!1. At the large-size limit, Eq. 15 corresponds to classi-
cal Weibull size e�ect, i.e. ⇤N ⌅ D�1/m, because the strength distribution follows the two-
parameter Weibull distribution for D ⇤ ⇧. Furthermore, note that such a Weibull size e�ect
indicates one dimensional scaling even though we consider two-dimension geometrical scaling of
the entire structure. This is because, in this study, we neglect the thickness of the bi-material
interface.
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Mean Size Effect Behavior 

Size Effect on Mean Strength σN 
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Statistical SE — Experimental Validation 
Size effect tests on both strength histograms and mean strength 
of asphalt mixture at low temperature (T = −24°C) (Le et al., 2013). 
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Energetic Size Effect — Structures with Strong 
Stress Singularities 
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Scaling of Quasibrittle Fracture with Weak Stress Singularities 

1. Introduction 
In many engineering applications, structures composed of quasibrittle materials such as concrete, 
fiber-reinforced concrete, fiber composites, toughened ceramics, rock, rigid foam, etc., often have 
a complicated geometry, or a combination of dissimilar materials. This may cause a certain 
degree of stress concentration leading to failure (Fig. 1).  The corresponding singular stress field
usually follows a power-law type, and the stress singularities � could be either two distinct real 
numbers or a pair of complex conjugates.  In fact, the order of � is generally not equal to the 
crack-like “�1/2” singularity.  Considerable work has been devoted to the analysis of such 
structures, including structures with reentrant corners (England 1971; Ritchie et al. 1973; 
Carpinteri 1987; Seweryn 1994; Dunn et al. 1996, 1997; Gomez and Elices 2003) and bi-material 
hybrid structures (Rice and Shih 1965; Rice 1988; Hutchinson and Suo 1992; Munz and Yang 
1993; Reedy 1993; Akisanya and Fleck 1997; Qian and Akisanya 1998; Liu and Fleck 1999; 
Reedy 2000; Labossierre et al. 2002; Zhang and Suo 2007). 

Some efforts have also been directed to understand the scaling of strength of these structures.  
Leicester (1969, 1973) proposed a power-law size effect on the nominal strength for homogenous 
structures under single-mode loading at the large-size limit, where the power-law exponent is 
equal to the order of the stress singularity (Fig. 1a). Bažant and Yu (2006) investigated the size 
effect on the strength of homogeneous quasibrittle structures with a reentrant corner under mode-I 
loading.  Le et al. (2010) adopted an equivalent linear fracture mechanics model and asymptotic 
matching to study the scaling of strength of a metal-composite hybrid joint (Fig. 1b), where the 
fracture is governed by a pair complex stress singularities or a single real stress singularity.  All 
these studies are based on the deterministic analysis of the fracture at the stress concentration 
region, which is limited to the case where the stress singularity is sufficiently strong. In fact, these 
previously proposed scaling equations all predict that the size effect must diminish as the order of 
the stress singularity becomes weaker.  However, it is well known that structures without stress 
singularity (e.g. beam without a notch) are also subjected to a strong size effect, which can be 
purely explained by the randomness of the material strength (Bažant 2005; Le et al. 2010).  
Therefore, there is still a lack of knowledge on the general scaling equation for the case of weak 
stress singularities, which represents a transition between the two different types of size effects.  

Figure 1. Homogenous and bi-material quasibrittle structures.  

Numerical and experimental analyses of the stress singularity-dependent size effect are 
challenging tasks, which have not received much attention. For example, various deterministic 
continuum and discrete numerical models, such as nonlocal integral and gradient models 

1) Large-size limit: 
�ij = Hr�fij(✓)

H = �D��h

Near-tip stress field:  

At the large-size limit, the FPZ can be 
replaced by an LEFM crack (Equiv. 
LEFM) (Liu and Fleck, IJF, 1997):

K = aHl�+1/2
c

Stress intensity factor: 



At the peak load, the FPZ is fully developed, i.e. the equiv. 
crack starts to propagate. This leads to a power-law scaling 
relation:

�N / D�

2) Small-size limit: 
The entire ligament behaves as a crack filled by a plastic glue  
– No size effect 

Asymptotic Matching: 

Based on the Williams solution, the stress field near the notch tip under mode-I loading can119

be expressed as120

�ij = Hr�fij(✓, �) (1)

where r = radial distance from the notch tip, fij(✓, �) = dimensionless function describing121

the angular dependence of the stress, � = order of stress singularity, and H = stress intensity122

factor. Dimensional analysis allows the stress intensity factor H to be written as123

H = �D��h(�) (2)

where � = nominal stress = cP/bD, P = applied load, c = constant, b = width of the structure124

in the transverse direction, and h(�) = dimensionless stress intensity factor, which depends on125

the geometry of the structure. Considering the second failure criterion, we can calculate the126

nominal strength as127

�N = f 0
t (�)(D/cf )

� (3)

where  (�) = h�1(�)f�1

✓✓ (0, �) and f 0
t = tensile strength. Eq. 3 represents the large-size128

asymptote of the energetic size e↵ect law. The small-size asymptote is relatively easy to obtain,129

because for small-size structures the FPZ occupies the entire crack ligament and consequently130

the ligament must behave like a crack filled with plastic glue. In this plastic limit, the size e↵ect131

must vanish. An approximate equation that bridges these two asymptotes has been proposed132

[15, 30]:133

�N = �s
h

1 + (D/D
0�)

1/��
i���

(4)

where �s = nominal strength at the small-size limit, �� = model parameter and D
0� = transi-134

tional size. Eq. 4 clearly indicates the e↵ect of stress singularity on the scaling law for the case135

where the stress singularity is su�ciently strong. When � = �1/2 and �� = 1, Eq. 4 represents136

the classical Type-2 size e↵ect [2, 3], which applies to structures with a large pre-existing crack.137

2) Case of zero stress singularity. The limiting case of zero stress singularity corresponds138

to unnotched structures, for which it is uncertain where damage initiates and localizes. The139

structure reaches its peak load once any one of the representative volume elements (RVE) is140

damaged and thus the RVE is defined here as the smallest material volume whose failure trig-141

gers the failure of the entire structure. The size of the RVE is approximately 2- 3 times the size142

of material inhomogeneities. Statistically speaking, the structure can be represented by a chain143

of RVEs. Since the RVE size is about the same as the autocorrelation length of the random144
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Scaling Equation for Structures with Weak Stress 
Singularities — Generalized Weakest Link Model 
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conventional weakest link model can be used, i.e.:197

Pf,VII (�N) = 1�
N2
Y

i=1

{1� P
1

[�Ns(xi)]} (11)

where N
2

= number of RVEs in the region outside the singular stress zone. Therefore, the198

failure probability of the entire structure can easily be written as:199

Pf = 1� (1� Pf,VI ) (1� Pf,VII ) (12)

from which we can calculate the mean structural strength. Similar to the conventional weakest200

link model, a closed form solution is not expected. Here we seek an approximate scaling equation201

through asymptotic matching.202

At the large-size limit, the failure probability of the structure is governed by the tail part of203

the strength cdf of one RVE. Based on the fact that ln(1� x) ⇡ �x for x ! 0, we can rewrite204

the weakest link model for 2-D structures as:205

Pf (�N) = 1� exp

(

�
Z

VI

µm(D)�m
N hs(x)im

sm
0

dV (x)

l2
0

�
Z

VII

�m
N hs(x)im

sm
0

dV (x)

l2
0

)

(13)

where l
0

= RVE size. Since s(x) represents the normalized elastic stress field, we can use the206

linear transformation of the coordinate, i.e. ⇠ = x/D, to rewrite Eq. 13 as:207

Pf (�N) = 1� exp

(

� [µm(D) 
1

+ 
2

]
D2

l2
0

✓

�N

s
0

◆m
)

(14)

where:  
1

=
Z

VI

hs(x)imdV (⇠);  
2

=
Z

VII

hs(x)imdV (⇠) (15)

Based on Eq. 14, the mean strength can easily be calculated:208

�̄N = s
0

[µm(D) 
1

+ 
2

]�1/m�
✓

1 +
1

m

◆
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where �(x) = Gamma function. Eq. 16 indicates that the large size asymptote of the size209

e↵ect curve di↵ers from the classical Weibull size e↵ect due to the fact that we introduced the210

energetic scaling term for the failure statistics of the singular stress zone. It should be pointed211

out that here we use the integral form for the weakest link model. In principle,  
1

is infinite212

due to the singular stress field. However, in the spirit of weakest link model, we should not213

include the singular stress at the V-notch tip [14]. Therefore, when evaluating  
1

, we exclude214

the region where the radial distance from the notch tip is less than a certain distance dc. As will215

be discussed later, the choice of dc is not particularly important for the present formulation.216

8

Weakest link model: 

e↵ect behavior for small-size and intermediate-size structures is mainly caused by the operative170

stress redistribution mechanism, which can be well predicted by the nonlinear deterministic171

calculation. At the same time, this mechanism can also be captured by the finite weakest link172

model, where the statistical multiscale transition model used for the formulation of the cdf of173

RVE strength consists of statistical bundles and chains that represent the damage localization174

and load redistribution mechanisms at di↵erent scales (albeit only the elastic stresses are used)175

[31, 33]. For large-size structures, the zone of stress redistribution is negligible compared to176

structure size and the size e↵ect is mainly caused by randomness of material strength, which177

cannot be captured by the deterministic calculation. Therefore, the size e↵ect curve for the178

case of zero stress singularity can be completely explained by the finite weakest link model.179

Generalized weakest link model for transitional scaling behavior180

For structures with a wide V-notch and therefore a weak stress singularity, there is no guarantee181

that the FPZ would form at the tip of the V-notch. This means that the failure of the structure182

can be statistically represented by the weakest link model. On the other hand, there exists a183

singular stress field at the V-notch tip even though the degree of stress concentration is not184

significant. Furthermore, the fracture of the V-notch itself is associated with an energetic scaling185

law shown as Eq.4, which cannot be represented by the existing finite weakest link model. This186

prompts us to derive a new scaling model by generalizing the classical finite weakest link model187

to include the energetic scaling of fracture of the V-notch.188

In the proposed generalized weakest link model, we isolate the singular stress zone from the189

remaining part of the structure (Fig. 1), where the singular stress zone can be determined by190

comparing Eq. 1 to the numerically simulated elastic stress field. Since the singular stress zone191

is influenced by the presence of the V-notch, whose fracture exhibits an energetic scaling (i.e.192

Eq. 4), we propose to include this energetic scaling for the calculation of the failure probability193

of the singular stress zone:194

Pf,VI (�N) = 1�
N1
Y

i=1

{1� P
1

[µ(D)�Ns(xi)]} (9)

where: µ(D) =
h

1 + (D/D
0�)

1/��
i����

(10)

where the parameters in scaling term µ(D) follow the same definition as those in Eq. 4, and195

N
1

= number of RVEs in the singular stress zone. For the remaining part of the structure, a196

7

conventional weakest link model can be used, i.e.:197

Pf,VII (�N) = 1�
N2
Y

i=1

{1� P
1

[�Ns(xi)]} (11)

where N
2

= number of RVEs in the region outside the singular stress zone. Therefore, the198

failure probability of the entire structure can easily be written as:199

Pf = 1� (1� Pf,VI ) (1� Pf,VII ) (12)

from which we can calculate the mean structural strength. Similar to the conventional weakest200

link model, a closed form solution is not expected. Here we seek an approximate scaling equation201

through asymptotic matching.202

At the large-size limit, the failure probability of the structure is governed by the tail part of203

the strength cdf of one RVE. Based on the fact that ln(1� x) ⇡ �x for x ! 0, we can rewrite204

the weakest link model for 2-D structures as:205

Pf (�N) = 1� exp
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(13)

where l
0

= RVE size. Since s(x) represents the normalized elastic stress field, we can use the206

linear transformation of the coordinate, i.e. ⇠ = x/D, to rewrite Eq. 13 as:207

Pf (�N) = 1� exp

(
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where:  
1

=
Z
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=
Z
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Based on Eq. 14, the mean strength can easily be calculated:208
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where �(x) = Gamma function. Eq. 16 indicates that the large size asymptote of the size209

e↵ect curve di↵ers from the classical Weibull size e↵ect due to the fact that we introduced the210

energetic scaling term for the failure statistics of the singular stress zone. It should be pointed211

out that here we use the integral form for the weakest link model. In principle,  
1

is infinite212

due to the singular stress field. However, in the spirit of weakest link model, we should not213

include the singular stress at the V-notch tip [14]. Therefore, when evaluating  
1

, we exclude214

the region where the radial distance from the notch tip is less than a certain distance dc. As will215

be discussed later, the choice of dc is not particularly important for the present formulation.216
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Generalized Weakest Link Model 

RVE strength distribution: 

materials. By considering a weak bi-material interface, it is reasonable to consider that the
failure probability of the structure is purely governed by the failure statistics of the interface
elements.

Based on the joint probability theorem and the assumption that the strength of each RVE
is statistically independent, the failure probability of the structure can be written as:

Pf (⇤N) = 1�
N⇧

p=1

[1� P1(⇤N⌃s(xp)⌥)] (11)

where P1 is the failure probability of the RVE along the bi-material interface, N is the number
of RVEs along the bi-material interface, ⌃x⌥ = max(x, 0), and ⇤N⌃s(xp)⌥ = ⇤(xp) = maximum
elastic principal stress at the center of pth RVE. Since we can conveniently choose ⇤N as the
maximum elastic stress at the peak load, then max s(xp) = 1.

Based on the atomistic fracture mechanics and statistical multi-scale transition, it has been
shown that the probability distribution of strength of one RVE P1 can be approximately mod-
elled as a Gaussian distribution onto which a Weibull tail is grafted at a probability about
10�4 � 10�3 [9, 7, 21]:

P1(⇤) = 1� exp [�(⇤/s0)
m] (⇤ < ⇤gr) (12)

P1(⇤) = Pgr +
rf�
2⇥�G

⌃ ⇥

⇥gr

e�(⇥0�µG)2/2�2Gd⇤0 (⇤ ⇥ ⇤gr) (13)

where s0 and m (Weibull modulus) are scale and shape parameters of the Weibull tail, µG

and �G are the mean and standard deviation of the Gaussian core if considered extended to
�⇧; rf is a scaling parameter required to normalize the grafted cdf such that P1(⇧) = 1, and
Pgr = grafting probability = 1 � exp[�(⇤gr/s0)m]. Finally, the continuity of the probability
density function at the grafting stress requires that: (dP1/d⇤)|+⇥gr

= (dP1/d⇤)|�⇥gr
. Similar

to the foregoing analysis of the bi-material interfacial fracture, the damage of the interface
RVE consists of micro-cracking in both dissimilar materials and the adhesive. Therefore, the
statistical parameters in Eqs. 12 and 13 describe the e�ective strength of bi-material interface
element, which are influenced by the two dissimilar materials and the adhesive.

The corresponding mean structural strength can be calculated as:

⇤̄N =
⌃ 1

0
[1� Pf (⇤

0
N)]d⇤

0
N (14)

By substituting Eq. 11 into Eq. 14, we could obtain the size e�ect on the mean structure
strength. Though it is impossible to have an analytical solution for ⇤N , an approximate equation
has been proposed [8, 9, 21]:

⇤̄N =

⇤�
C1

D

⇥r/m

+
C2

D

⌅1/r
(15)

where the constants C1, C2, and r can be determined by three asymptotic conditions: [⇤̄N ]D!l0 ,
[d⇤̄N/dD]D!l0 , and [⇤̄ND1/m]D!1. At the large-size limit, Eq. 15 corresponds to classi-
cal Weibull size e�ect, i.e. ⇤N ⌅ D�1/m, because the strength distribution follows the two-
parameter Weibull distribution for D ⇤ ⇧. Furthermore, note that such a Weibull size e�ect
indicates one dimensional scaling even though we consider two-dimension geometrical scaling of
the entire structure. This is because, in this study, we neglect the thickness of the bi-material
interface.
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Mean structural strength:  
�̄N =

Z 1

0
�N (Pf )dPf =

Z 1

0
(1� Pf )d�N

Closed-form expression of            is impossible – 
Approximate equation via asymptotic matching  

�̄N (D)



For structures with weak stress singularities: 

Generalized Weakest Link Model 

Large size limit:  
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through asymptotic matching.202
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the strength cdf of one RVE. Based on the fact that ln(1� x) ⇡ �x for x ! 0, we can rewrite204
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where �(x) = Gamma function. Eq. 16 indicates that the large size asymptote of the size209

e↵ect curve di↵ers from the classical Weibull size e↵ect due to the fact that we introduced the210

energetic scaling term for the failure statistics of the singular stress zone. It should be pointed211

out that here we use the integral form for the weakest link model. In principle,  
1

is infinite212

due to the singular stress field. However, in the spirit of weakest link model, we should not213

include the singular stress at the V-notch tip [14]. Therefore, when evaluating  
1

, we exclude214

the region where the radial distance from the notch tip is less than a certain distance dc. As will215

be discussed later, the choice of dc is not particularly important for the present formulation.216
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e↵ect curve di↵ers from the classical Weibull size e↵ect due to the fact that we introduced the210

energetic scaling term for the failure statistics of the singular stress zone. It should be pointed211

out that here we use the integral form for the weakest link model. In principle,  
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is infinite212

due to the singular stress field. However, in the spirit of weakest link model, we should not213

include the singular stress at the V-notch tip [14]. Therefore, when evaluating  
1
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the region where the radial distance from the notch tip is less than a certain distance dc. As will215

be discussed later, the choice of dc is not particularly important for the present formulation.216
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Small size limit:  
For structures without stress singularities: 

At the small-size limit, the entire structure consists of a very small number of RVEs. There-217

fore, it is expected that the RVEs in the singular stress zone governs the failure of the entire218

structure. For structures without stress singularities, it has been shown that the small-size219

asymptote of the size e↵ect can be expressed as �̄N / (D/Db)�1/r, where Db and r can be220

determined from the mean and standard deviation of the Gaussian part of the cdf of RVE221

strength [9, 4, 34]. In the present model, the stress that governs the failure of the singular222

stress zone is scaled by the energetic scaling term. Therefore, the corresponding size e↵ect at223

the small-size limit can be expressed as �̄N / µ�1(D)(D/Db)�1/r.224

Since the present model is developed within the framework of the weakest link model, the225

entire size e↵ect curve can be approximated by a function similar to Eq. 8. In the meanwhile, it226

is also clear that, as the stress singularity is su�ciently strong, all the scaling terms associated227

with the weakest link model should vanish. This transition is expected to occur in a very narrow228

range of stress singularities, which is here approximated by a Gaussian function. Therefore,229

we propose the following scaling equation, which bridges the limiting cases of strong and zero230

stress singularities:231

�̄N = �
0

8

<

:

C
1

[µm(D) 
1

+ 
2

]�r/m

 

D + ls
l
0

!�2/m

exp[�(�/�
1

)2] +
µ�r(D)Db

exp[�(�/�
2

)2]D + lp

9

=

;

1/r

(17)

where �
0

= reference stress, C
1

, r,�
1

,�
2

, ls, lp, Db = constants. Note that, slightly di↵erent232

from the form of Eq. 8, we purposely introduce constants ls and lp to regularize the functional233

behavior as D ! 0. Based on the large-size and small-size limits, we must have:234

�
0

C
1/r
1

= s
1/r
0

�(1 + 1/m) (18)

�s = �
0

n

Db/lp + C
1

( 
1

+ 
2

)1/m(ls/l0)
�2/m exp[�(�/�

1

)2]
o

1/r
(19)

The small-size strength limit �s (D ! 0) can usually be obtained by simple plastic analysis,235

where the ligament is considered to be filled up with a plastic glue.236

It is clear that Eq. 17 converges to Eqs. 4 and 8 as the two limiting cases. For the transition237

between these two limits, the size e↵ect consists of both energetic and statistical components.238

At the small-size limit, the size e↵ect is mainly governed by the statistical scaling component239

since the energetic scaling term predicts a weak size e↵ect. At the large-size limit, the scaling240

is governed by the Weibull statistics modified by an energetic scaling term, which leads to241
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Generalized Weakest Link Model 
Asymptotic matching:  
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Based on Eq. 14, the mean strength can easily be calculated:220
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where �(x) = Gamma function. Eq. 16 indicates that the large size asymptote of the size221

e↵ect curve di↵ers from the classical Weibull size e↵ect due to the fact that we introduced the222

energetic scaling term for the failure statistics of the singular stress zone. It should be pointed223

out that here we use the integral form for the weakest link model. In principle,  
1

is infinite224

due to the singular stress field. However, in the spirit of weakest link model, we should not225

include the singular stress at the V-notch tip (Bažant and Xi 1991). Therefore, when evaluating226

 
1

, we exclude the region where the radial distance from the notch tip is less than a certain227

distance dc. As will be discussed later, the choice of dc is not particularly important for the228

present formulation.229

At the small-size limit, the entire structure consists of a very small number of RVEs. There-230

fore, it is expected that the RVEs in the singular stress zone governs the failure of the entire231

structure. For structures without stress singularities, it has been shown that the small-size232

asymptote of the size e↵ect can be expressed as �̄N / (D/Db)�1/r, where Db and r can be de-233

termined from the mean and standard deviation of the Gaussian part of the cdf of RVE strength234

(Cannoe Falchetto et al. 2013). In the present model, the stress that governs the failure of the235

singular stress zone is scaled by the energetic scaling term. Therefore, the corresponding size236

e↵ect at the small-size limit can be expressed as �̄N / µ�1(D)(D/Db)�1/r.237

Since the present model is developed within the framework of the weakest link model, the238

entire size e↵ect curve can be approximated by a function similar to Eq. 8. Meanwhile, it is also239

clear that, as the stress singularity is su�ciently strong, all the scaling terms associated with240

the weakest link model should vanish. This transition is expected to occur in a very narrow241

range of stress singularities, which is here approximated by a Gaussian function. Therefore,242

we propose the following scaling equation, which bridges the limiting cases of strong and zero243

stress singularities:244
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Case 1 — Concrete Beams with a V-Notch 
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a compound energetic-Weibull statistical scaling. The detailed calibration of Eq. 17 will be242

presented in the next section.243

Though the focus of this study is on mode-I fracture, the present framework can be readily244

extended to general mixed-mode fracture [30], which is applicable to bimaterial structures.245

When dealing with mixed-mode fracture, the energetic term would contain two distinct stress246

singularities and the large-size asymptote of the energetic size e↵ect has to be derived from an247

energetic argument [30].248

Numerical simulation249

Model description250

To verify the proposed analytical model, we investigate the size e↵ect on strength of concrete251

beams with a V- notch under three-point bending (Fig. 2a). The beam has a 6:1 span-to-depth252

ratio and the notch depth is 20% of the beam depth. In the simulation, we consider di↵erent253

notch angles, i.e. � = 0�, 90�, 120�, 135�, 170�, and a series of geometrically similar specimens254

with a size range 1:2:4:8:16:32:64:128 (the depths of the smallest and largest specimens are 37.5255

mm and 4.8 m, respectively). Based on the Williams solution, these notch angles correspond to256

the following orders of mode-I stress singularity: � = �0.5,�0.4555,�0.3843,�0.3264,�0.0916.257

In addition to this set of specimens, we also include the size e↵ect simulation of flat beams with258

a maximum size ratio 1: 64 (Fig. 2b), which corresponds to the case of zero stress singularity.259

It is well known that concrete exhibits a complex constitutive behavior. Extensive e↵orts260

have been devoted to numerical modeling of fracture of concrete, e.g. [40, 35, 37, 28, 5].261

Since we are interested in static mode-I fracture, we adopt the default plastic-damage model262

in ABAQUS because it is su�cient for the purpose of the present study; a detailed description263

of this constitutive model can be recovered from [1]. The material properties are chosen as264

follows: Young’s modulus E = 30 GPa, Poisson ratio ⌫ = 0.2, tensile strength f 0
t = 3 MPa,265

compressive strength f 0
c = 30 MPa, and Mode-I fracture toughness Gf = 100 Nm�1. Though266

we specify the compressive strength, the compressive region of the beam is expected to remain267

elastic. Therefore, the nonlinear part of the compressive behavior is not of particular interest268

for the present study. All the specimens undergo displacement-controlled loading.269

In this study, the numerical simulation is performed within a deterministic framework. Pre-270

vious studies have shown that the deterministic simulation with a strain-softening constitutive271
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Deterministic calculations:  
— Size effect for structures with strong stress singularities 
— Size effect in the small and intermediate size ranges for 

structures with weak/zero stress singularities  
— Damage-plasticity model with crack band model 

Le et al., JEM,  2014



Simulation Results — I. Load-Deflection Curves 
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Simulation Results —II. Stress Profile and Size Effect  
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Comparison Between Analytical Model  
and Numerical Simulation 
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whereas at the small-size limit the FPZ occupies a large part of the
structure and the stress in the FPZ exhibits more or less a plastic
profile. This implies that the structure would behave in a quasi-
plastic manner at the small-size limit and in a brittle manner at the
large-size limit, which is consistent with the conclusion drawn from
the postpeak behavior of the load-deflection curves.

For the 2D specimens studied, the authors define the nominal
strength of the beam simply as sN 5Pmax=bD, where b5 1. Fig. 5
presents the simulated size effects on the nominal strength for
different notch angles, and Fig. 6 presents the simulated size effect
curve for specimens without notches. At the small-size limit, the
nominal strengths of all the specimens are almost the same, whereas
the large-size asymptotes of the size effect vary with different notch
angles [Fig. 5(f)]. As the notch angle increases, which implies that
the stress singularity becomes weaker, there is a clear change in the
curvature of the size effect curve.

The simulated size effect curves are now compared with the
proposed approximate size effect equation. As mentioned earlier,
Eq. (17) contains the energetic and statistical scaling terms. For the
energetic scaling term mðDÞ, previous study (Ba!zant and Yu 2006)
has shown that parameter D0g varies with the notch angle as D0g
5D0cðgÞ=cð0Þ, where D0 5D0g at g5 0. Elastic analysis directly
yields c5 2, 1:836, 1:624, 1:485, and 1:089 for g5 0, 90, 120,
135, and 170!. The parameter bg is introduced for a better fitting of
size effect data. Therefore, in principle, bg may vary with the notch
angle. For the case of zero notch angle, the classical Type-2 size
effect indicates that bg should be equal to 1. However, for other
notch angles, bg may take other positive values. In this study, the
authors leave bg as a calibration constant for every notch angle
except for the zero notch angle.

For the statistical scaling terms, constants C1 and C2 for the
Weibullian part can be easily determined by linear elastic analysis. In
this paper, the authors assume that the RVE size l0 is equal to 37.5
mm, which is about three times the size of the typical maximum
aggregate da (Ba!zant and Pang 2007). Furthermore, when calcu-
lating C1, the authors exclude the notch tip region with a radius dc
5D=400 to avoid an infinite value ofC1. It should be noted that the
authors only need dc for the size effect curves for the case of weak
stress singularity. The choice of dc is not particularly important,
because the authors further introduced two Gaussian functions to
describe this transitional scaling mechanism, and different values of
dc will be compensated by function exp½2ðl=l1Þ2$, which is em-
pirically determined by the optimum fit of the data. Other parameters
associated with the statistical scaling components can be determined
based on the size effect curve of the unnotched beam. The Weibull
modulusm for concrete is known to be 24 (Ba!zant and Novák 2000;
Ba!zant and Pang 2007). Previous studies have shown that Db is
approximately equal to 4da (Ba!zant 2005), which is about 50mm for
this study. As shown in Fig. 6, r, lp, ls, and s0 can be determined by
the optimum fitting of the size effect curve of the flat beam.

The reference stress s0 can then be determined based on the
nominal strength at the small-size limit. As mentioned earlier, the
structural strength at the small-size limit can be calculated by
a plastic analysis, where it can be assumed that the FPZ behaves in
a plastic manner as shown in Fig. 7. The stress profile of the FPZ
(Fig. 4) further verifies such a plastic model. Therefore, regardless of
the notch angle, the nominal strength at the small-size limit can be
calculated as ss 5 16=75 ft95 0:64 MPa. Similarly, it can easily
be shown that ss for the unnotched beams considered in the sim-
ulation is equal to 1 MPa. With Eq. (19), the authors can calculate
s0, which is expected to vary with the notch angles, and Eq. (18)
yields constant C1. The last two parameters l1 and l2 can be de-
termined by fitting the simulated size effect curve for the case of
weak stress singularities.

The aforementioned procedure is now applied to calibrate
Eq. (17) from the simulated size effect curves. By fitting the size
effect curve for the case of an unnotched beam, the authors obtain
lp 5 40 mm, ls 5 150 mm, r5 0:88, and s0 5 0:448 MPa. Based on
the size effect curves for the series of V-notch specimens, D0
5 90 mm, l1 5 0:301, l2 5 0:208, and bg 5 1, 1, 1:5, 2, and 1:1 for
g5 0, 90, 120, 135, and 170!. Figs. 5 and 6 show that the simulated
size effect curves can be well fitted by Eq. (17). It should be pointed
out that the simulated size effect curve does not match well with
Eq. (17) at the large-size limit for beams with a 170! V-notch
and unnotched beams. This is because of the fact that de-
terministic simulation was used, which cannot capture the as-
sociated large-size asymptote of the classical Weibull scaling
relation. Furthermore, it is observed that such a difference occurs
for very large beam size (i.e., D$ 1:2 m), which indicates that
deterministic calculation is sufficient for most normal-size concrete
beams.

It should be emphasized that the proposed size effect equation is
limited to the case of deep notches. If the notch depth becomes
shallow (for instance a=D, 0:05), it is expected that the statistical
scaling components will play a dominant role regardless of the notch
angle, which represents another type of transition between the en-
ergetic and statistical scaling mechanisms. Fig. 8 presents the nu-
merically simulated size effect curve for different a-values (i.e., a
5 0, 0:05, 0:1, and 0:2) for various notch angles, which clearly
demonstrates such a transition. This transition behavior has been
analytically and experimentally studied for structures with
a preexisting crack (Ba!zant and Yu 2009; Zegeye et al. 2012;
Hoover et al. 2013). Nevertheless, a general scaling law that
accounts for both effects of stress singularities and notch depth is
still to be explored.

Fig. 6.Simulated size effect curves for unnotched beamswith optimum
fits by Eq. (17)

Fig. 7. Plastic analysis at small-size limit

© ASCE 04014011-8 J. Eng. Mech.

J. Eng. Mech. 

D
ow

nl
oa

de
d 

fro
m

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

W
A

LT
ER

 S
ER

IA
LS

 P
RO

CE
SS

 o
n 

01
/1

7/
14

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.

6D

D

αD
γ

F

0.2D 0.2D

6D

D
0.2D 0.2D

F



Comparison Between Analytical Model  
and Numerical Simulation 

D

σ
N

◦

γ = 0◦

D

σ
N

γ = 90◦

D

σ
N

γ = 120◦

D

σ
N

γ = 135◦

D

σ
N

γ = 170◦

D
γ(◦

σ
N

D

σ
N

◦

γ = 0◦

D

σ
N

γ = 90◦

D

σ
N

γ = 120◦

D

σ
N

γ = 135◦

D

σ
N

γ = 170◦

D
γ(◦

σ
N

D

σ
N

◦

γ = 0◦

D

σ
N

γ = 90◦

D

σ
N

γ = 120◦

D

σ
N

γ = 135◦

D

σ
N

γ = 170◦

D
γ(◦

σ
N

D

σ
N

◦

γ = 0◦

D

σ
N

γ = 90◦

D

σ
N

γ = 120◦

D

σ
N

γ = 135◦

D

σ
N

γ = 170◦

D
γ(◦

σ
N



Case 2 — Bimaterial Hybrid Beams 
P

�̄N = �0

(
C1[µ

m
(D) 1 + 2]

�r/m

✓
D + ls

l0

◆�r/m

exp[�(�/�1)
2
] +

µ�r
(D)Db

exp[�(�/�2)
2
]D + lp

)1/r

µ(D) =
�
1 + [(D/D1)

�2�1 + (D/D2)
�2�2 + (D/D3)

��1��2 ]�
 1/2�

Assuming weak interface, we consider failure always initiates 
from the interface though the failure location is random for 
the case of weak stress singularities. 

A bimaterial corner may exhibit 
1) complex stress singularities;  
2) two real stress singularities;  
3) one real stress singularities  



Stochastic Simulation of Fracture of Bimaterial  
Hybrid Beam but the general trend of the size e↵ect on mean strength will not be a↵ected. Based on the

assumption of fully correlated cohesive properties, the spatial randomness of these properties
denoted by Bi can be described by scaling a single random field with the mean value of these
properties:

Bi(x) = ⇣(x)B̄i (12)

where x = spatial coordinate along the interface, Bi = any of these four random properties,
⇣(x) = random variable having a mean value of 1, and B̄i = the mean value of the random
property Bi. Recent studies [8, 12, 21] have shown that the material tensile strength can be
approximated by a Gaussian distribution onto which a Weibull distribution is grafted at a
probability about 10�4 � 10�3. Direct sampling using this grafted distribution is troublesome.
In this study, we further approximate ⇣ as the sum of two identical Weibull random variables,
i.e. ⇣ = ⇣

1

+ ⇣
2

and the cumulative distribution function of ⇣i(i = 1, 2) can be written as:

F⇣i(z) = 1� exp[�(z/s
0

)m0 ] (13)

Since ⇣i’s have a cdf with a power-law tail, it can be easily shown that the cdf of ⇣ must also
have a power-law tail, and the exponent must be equal to 2m

0

[8, 21]. In the meantime, the
sum of these two random variables should approach the Gaussian distribution. Fig. 4 shows
the calculated cdf of ⇣, F⇣ , as the sum of the two Weibull random variables on both the Weibull
and Gaussian probability distribution papers. It is clear that the lower portion of resulting
cdf of ⇣ follows a straight line on the Weibull plot, and the major portion follows a straight
line on the Gaussian plot except for the high probability region F⇣ � 0.97. It is noted that
the present approximation method actually resembles a recently proposed statistical model for
material strength, where the material element is modeled as a bundle of two long chains [8]. In
this study, the following mean values are used for ft, fs, GIf , GIIf : f̄t = 24 MPa, f̄s = 12 MPa,
ḠIf = 0.73 KN/m, and ḠIIf = 1.15 KN/m, which are similar to the values used in a recent
study [31]. For the cdf of ⇣i, we choose m

0

= 6, and s
0

= 0.583, so that the mean value of ⇣ is
equal to 1. The resulting cdf of ⇣ has a Weibull modulus m of 12 and a CoV of 0.136.

It is worthwhile to briefly comment on the type of cdf for the fracture energies. The present
model implies that the majority part of the cdf of fracture energies follows a Gaussian distri-
bution and the left tail of the cdf can be represented by a power law. To explain this type of
cdf, we may consider the fracture energy as the sum of the energy dissipations of micro-cracks
in the FPZ as the interfacial crack grows by a unit length. Therefore, by the Central Limit
Theorem, we expect that the fracture energy would follow a Gaussian cdf. On the other hand,
a Gaussian cdf will extend to negative values, which is not permissible for fracture energy. To
enforce a positive value of fracture energy, one rational choice is to consider that the tail of the
cdf decays as a power-law. This can be possibly justified if we use the Gri�th fracture criterion
to relate the nominal structural strength of a quasibrittle structure and the fracture energy for
a single mode loading, i.e. Gif / �2

N (i = I, II). Since it has been shown that the cdf of the
nominal structural strength has a power-law tail, we will expect that the fracture energy would
also have a cdf with a power-law tail. Nevertheless, a systematic experimental investigation
will be needed to verify the functional form of the probability distributions of fracture energies.

For stochastic simulations, we need to consider the auto-correlation of random variables.
In this study, we assume that the RVE size l

0

is equal to 10 mm. As mentioned earlier, we
may consider that the auto-correlation length is approximately same as the RVE size. In the
numerical model, the minimum size of the cohesive element is chosen to be 10 mm. Therefore,
the random properties of each cohesive element can then be considered as uncorrelated random
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Comparison Between Analytical Model  
and Numerical Simulation 
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Conclusions
1. For structures with strong stress singularities, the size effect is 

energetic (deterministic). The large-size asymptote is 
governed by the order of the dominant stress singularity.  

2. For structures without stress singularities, the size effect can 
be explained by the weakest link statistical model.  

3. For structures with weak stress singularities, the size effect 
consists of both energetic and statistical components.  

4. Some open problems: influence of stress singularities on 
scaling of reliability indices? general scaling law of fatigue 
lifetime?… 
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