Dynamic Fracture of Materials: Experimental and Numerical Studies

J. Ožbolt

H.W. Reinhardt, A. Sharma, E. Sola, B. Irhan and D. Ruta

Institute of Construction Materials, University of Stuttgart, Germany

Supported by National Science Foundation of Germany (DFG, AOBJ: 612266)

Contens

- Introduction
- Theoretical framework
- Examples (analysis & experiments):
 - Brittle & quasibrittle materials (e.g. glass & concrete)
 - Ductile materials (e.g. steel)
- Split Hopkinson Bar (SHB)
- High velocity projectile impact
- Summary and Conclusions

Introduction

Introduction

Macro & meso scale modeling level

(1) Effects covered by constitutive law

- Rate dependent growth of microcracks
- Viscosity due to the water content, e.g. concrete
- Thermo-mechanical coupling (impact)

(2) Inertia effects – covered by dynamic analysis

- Structural inertia
- Hardening & softening of materials
- Crack propagation: velocity & branching

•

Experimental investigations (e.g. tension)

• Direct tensile tests:

dɛ/dt < 0.1/s

- Indirect tensile tests
 - Split Hopkinson Bar (SHB):

 $0.1/s < d\epsilon/dt < 10/s$

- Modified Split Hopkinson Bar (MSHB), spalling tests: $10/s < d\epsilon/dt < 200/s$
- Compact tension specimen (CTS)

 $d\epsilon/dt < 50/s$

Numerical analysis

General framework for modeling of rate dependent response

- Continuum mechanics
- Irreversible thermodynamics
- Constitutive law temperature dependent microplane model
- Non-linear fracture mechanics
 - smeared crack approach
 - crack band method
- Basic principles of contact mechanics & Thermo-mechanical coupling
- Standard finite elements & fragmentation

Microplane model

- Relaxed kinematic constraint (Ožbolt at al. 2001, 2014)
- Rate dependency: Rate process theory (Bažant et al. 2000, Ožbolt et al. 2006)
- Large strain generalization: Green-Lagrange strain & Co-rotated Cauchy stress tensor (Bažant et al. 2000)
- Thermo-mechanical coupling (Ožbolt at al. 2005, Irhan 2014)

Kinematic constraint : from $\varepsilon_{ij} \to \varepsilon_V, \varepsilon_D, \varepsilon_{Tr}$ $\mathcal{Y} \quad \sigma_V^0 = F_V(\varepsilon_V) \quad ; \quad \sigma_D^0 = F_D(\varepsilon_D) \quad ; \quad \sigma_{Tr}^0 = F_{Tr}(\varepsilon_{Tr}, \varepsilon_V)$

Weak form of equlibrium :

$$\sigma_{ij}^{0} = \sigma_{V}^{0} \delta_{ij} + \frac{3}{2\pi} \int_{S} \sigma_{D}^{0} (n_{i}n_{j} - \frac{\delta_{ij}}{3}) dS + \frac{3}{2\pi} \int_{S} \frac{\sigma_{Tr}^{0}}{2} (n_{i}\delta_{rj} + n_{j}\delta_{ri}) dS$$

Materials: brittle, quasi-brittle & ductile

Effect of inertia due to softening (or hardening) (direct tension)

True vs. apparent tensile strength

Institut für Werkstoffe im Bauwesen

10

True vs. apparent tensile strength

Concrete

Universität Stuttgart Institut für Werkstoffe im Bauwesen а

а

T

CT concrete specimen

Pre-test analysis

Numerically predicted, loading rate 2.5 m/sec (Ožbolt et al. , 2011) Experimental result, loading rate 3.3 m/sec (Ožbolt et al. , 2013)

Experiment (4.30 m/s)

Loading rate: 0.035 m/s

Loading rate: 4.30 m/s

- DIF for strength follows rate dependent constitutive law
- DIF for reaction:
 - Up to strain rate \approx 50/s, linear rise in DIF (controlled by constitutive law)

• For strain rate > 50/s, sudden and progressive increase in DIF (controlled by inertia) Universität Stuttgart Institut für Werkstoffe im Bauwesen

CT specimen - brittle material

Crack velocity

Quasi-brittle (concrete)

Loading rate: 4.30 m/s

Brittle (glass)

Loading rate: 3.30 m/s

CT specimen - steel

Uniaxial tension

Constitutive law: microplane model for steel

Properties of steel

Young`s modulus	210 GPa
Poisson`s ratio	0.33
Yield stress	350 MPa
Strength	600 MPa
Ultimate strain	0.25

Crack velocity & crack branching

Loading rate: 50 m/s

Loading rate: 100 m/s

Crack branching: experiment (left, Bousquent et al., 2011) and numerical prediction (right, loading rate 100 m/s)

Strength (von Mises stress) along the plastification zone

Size of the plastification zone

90 m/s

grey: stress < 350 MPa = yield stress

DIF on load & toughness

Numerically predicted resistance

Apparent fracture toughness as a function of crack velocity at -40°C (Kanazawa et al., 1981)

SHB: experiment vs. numerical analysis

Universität Stuttgart Institut für Werkstoffe im Bauwesen (Irhan et al., 2015)

SHB: experiment vs. numerical analysis

Universität Stuttgart Institut für Werkstoffe im Bauwesen

IWB

SHB: experiment vs. numerical analysis

Projectile impact with plain concrete slab (Cargile, 1999)

Institut für Werkstoffe im Bauwesen

Parametric study

Parametric Study: contribution of bulk viscosity

Parametric Study: influence of deletion criteria

Optimum deletion value (max. principal strain) = 1.0

Summary & Conclusions

- The employed 3D FE code based on the microplane model together with simple finite elements is able to realistically reproduce fracture behavior of different materials at high loading rates.
- Inertia effects are responsible for: (i) rate dependent resistance and toughness, (ii) failure mode and (iii) crack branching.
- There are different kind of inertia effects on different scales: inertia due to microcracking, hardening & softening, speed of crack propagation & branching, structural inertia, ...
- Consequently, inertia effects should not be a part of the rate sensitive constitutive law, they should come out from dynamic analysis automatically.
- Although steel does not exhibit strain rate sensitivity, due to high non-linear behavior (hardening) its dynamic fracture is strongly influenced by loading rate.

