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Preamble

Motivation
This is about a long journey, started in 1988, searching for the broad
interaction between Size Effect, theory, experimental evidence, Fractal
Theory, experiment, and what does it all mean.

Still searching.
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Galilei Galileo I

Galilei, G. (1638). Dialogues Concerning Two New Sciences.
Dover Publications (1954), New York, NY.
Originally published by Elzevir, The Neterlands, 1638

In the Dialogues concerning two new sciences, Proposition
IX (on the second day), Salviati states:

...I once drew the shape of a bone, lengthened
three times, and then thickened in such
proportion . . . it would be necessary to either
find much harder and more resistant material to
form his bones

Galileo lacked the algebraic notation to do dimensional analysis.

Cast in the current context:the weight a bone carries is proportional to the animal
volume (L3) whereas the strength of this same bone is proportional to its cross
section area L2.

For a superficial observer (or a modern day Simplicio), Galileo would be the
father of scaling (or dimensional) theory, and not of size effect theory.
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Galilei Galileo II

Paraphrase Galileo we would simply say that weight increases with L3 and load
carrying capacity (constant strength, variable cross-section) increases with L2.

This is exactly what the Size Effect law is all about: energy is released from a
volume ∝ L3 and absorbed by a surface crack ∝ L2. As is well known by now,
there are many experimental evidences supporting both Galileo and Bažant,
[RILEM TC QFS, 2004].

To that far-reaching statement, the incredulous Simplicio states:

But the immense bulks that we encounter among fishes give me
grave reason to doubt whether this is so. From what I hear, a whale is
as large as ten elephants; yet whales hold together.

This questioning by Simplicio is not different than the incredulity of many
skeptical modern time engineers, regarding the Size Effect law. But again,
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Galilei Galileo III

Salviati wisely replies:

Your doubt, Simplicio, enables me to deduce something that I did not
mention before, a condition capable of making giants and other vast
animals hold together and move around as well as smaller ones. That
would follow if, but not only if, strength was added to the bones and
other parts whose function is to sustain their own weight and that
which rests on them.

Now, Galileo is implying that nominal strength (and not anymore mere load
carrying capacity) can increase at times and that strength does not necessarily
diminishes with size.

In modern days terminology, strength does not necessarily drop to zero.
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Bazant’s original Derivation

Bažant, Z. (1984). Size effect in blunt fracture: Concrete, rock, metal.
J. of Engineering Mechanics, ASCE, 110(4):518–535

Considering the energy exchanged during an infinitesimal crack
extension in a plate of width D,

b2k (a0 + cf )∆aσ2
n/2E︸ ︷︷ ︸

Released

= bGF∆a︸ ︷︷ ︸
Absorbed

σn =
Bf ′t√
1 + D

D0

Bf ′t =

√
GF E
kcf

D
D0

=
a0

cf
= β

σ
N

cf a∆
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Bazant noted that the analytical or numerical derivation of B and β is too difficult, and they
are best obtained through statistical regression analysis of test data.

Semi-analytical derivation which does not explicitly reference a plasticity and/or a linear
elastic fracture mechanics solution. Yet, those two solutions are ultimately asymptotes to
the derived size effect law.
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Irwin Infinite Plate I

Saouma, V., Natekar, D., and Hansen, E. (2003). Cohesive stresses and size effects in elasto-plastic and quasi-brittle materials.
International Journal of Fracture, 119:287–298

Infinite plate with a crack of length 2a, at the tip of which we have a
uniform cohesive compressive stress (Dugdale type) equal to the
tensile strength f ′t

Stress intensity factors (Cherepanov) due to the far field and cohesive
stresses:

Ka = σ
√
πa

Kb = f ′t
√
πa
(

1−
2
π

arcsin
a− cf

a

)

Equating those two stress intensity factors

σn = f ′t

[
1−

2
π

arcsin
(

1−
cf

a

)]

f’t f’t

a0 a0

c
f

c
f

σ

σ

a a

for a ' cf , σn ↗ f ′t . For cf ' 0, σn ↘ 0 as in the SEL but mathematically different.
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Irwin Infinite Plate II

Taking a series expansion of the ArcSin function, and cf /a→ s:

σn = σn = f ′t

[
1−

2
π

arcsin(1− s)
]

'
2
√

2f ′t
π

s1/2 +
f ′t

3
√

2π
s3/2 +

3f ′t
40
√

2π
s5/2 + O[s]7/2

Neglecting the terms of power greater
than 1 (since s is at most equal to 1), and
substituting s = 1/(1 + r ) where r = a0/cf ,
we obtain

σn =
2
√

2
π︸ ︷︷ ︸
B

f ′t

√√√√√ 1
1 + r︸︷︷︸

β

Bazant SEL recovered with the additional
benefit that B is quantified
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Extensions

Edge Crack: σn = 0.805︸ ︷︷ ︸
B

f ′t

√√√√ 1
1+ r︸︷︷︸

β

Linear cohesive Edge Crack

σn =
0.5351f ′t√

1 + r

(
1 +

0.126182
1 + r

)
+ O[s]2

Three point Bend, Linear Cohesive

σn =
1.06738f ′t√

1 + r
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0.124401
1 + r

)
+ O[s]2
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Comparison with Experimental Data

Bf ′t reported in the literature, [Bažant and Planas, 1998] assume f ′t = 0.1f ′c , determine B

Series f ′c Bf ′t B D0 Reference
MPa MPa mm

A5 46.8 2.9 0.62 212. [Walsh, 1972]
A2 35.4 2.8 0.79 157. [Walsh, 1972]
A4 15.6 1.7 1.09 126. [Walsh, 1972]
B1 34.1 6.0 1.76 60. [Bažant and Pfeiffer, 1987]
A6 32.7 4.1 1.25 55. [Walsh, 1972]
A1 23.1 4.5 1.95 36. [Walsh, 1972]
A3 14.3 3.2 2.24 34. [Walsh, 1972]

Average µB = 1.39, σ= 0.61.

Previously derived value was 1.07.

Note that experimentally determined B value is clearly inversely proportional to the
nominal specimen size D0.
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Important Observation

The presence of a process zone (cohesive stresses) was a sine qua non condition to have
a size effect exhibited.

By extension, any material exhibiting plastic zone (i.e. metals) should also exhibit a size
effect.

This was subsequently confirmed by [Cervera and Chiumenti, 2009]
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Fractals

Mandelbrot, B. (1983). The Fractal Geometry of Nature.

W.H. Freeman, San Francisco

In the context of size effect, fractals may play an important role.

Initiator of Euclidian dimension E and linear size L which can be divided into n equal
smaller replicates of linear size rL. n(rL)E = LE .

Fractal dimension D is then defined by D = log N
log 1

r

Triadic von-Koch Curve (Example of a a Self Similar Invasive Fractal)

    

N = 4, r = 3, and thus the fractal dimension is D = ln4/ln1/3 = 1.2619.

Sierpinsky carpet, (Example of a Self Similar Lacunar Factal)

Here, N = 8, r = 3, E = 2 and thus the fractal dimension is D = ln8/ln1/3 = 1.8927.

In both examples we do have fractal objects as the Hausdorf-Besicovitch dimension D
strictly exceeds the topological dimension DT = 1.

V. Saouma Size effect : from Irwin to Bazant and Mandelbrot 12/25



Fractality of Cracked Concrete Surfaces

Saouma, V., Barton, C., and Gamal-El-Din, N. (1990). Fractal Characterization of Cracked Concrete Surfaces.
Engineering Fracture Mechanics Journal, 35(1):47–53

VICTOR E. SAOUMA et al. 49 

Fig. 2. The profilometer. 

VICTOR E. SAOUMA et al. 49 

Fig. 2. The profilometer. 

52 VICTOR E. SAOUMA ef al. 

X II crack direction 

Y 1 crack direction 

Fig. 3. Normalized locations and directions of profiles scanned on the fracture surface. 

The results of fractal analysis are tabulated in Table 2 and the discussion of the results can 
be summarized as follows: 

l No significant difference was observed in fractal dimension (D) of the different concrete 
types. This is attributed to both similar fractured surfaces (caused by identical aggregate origin), 
and to the low (+O.OS> resolution achieved by the personal computer on which the fractal analysis 
was performed, 

l Fractal dimension of profiles normal to the direction of cracking appear to be slightly smaller 
than for the profiles taken in the direction of cracking. 

l Longer profiles (24 in.) showed a decrease in (D), which either represents the actual fractal 
dimension since the profiles cover most of the crack surface, or again, it is the limitations of the 
hardware/software precision that used a min box size (MBS) of 0.125 rather than 0.045 used with 
the analysis of 8 in. profiles. 

l Using very short profiles, (I .O in.) with 240 readings per inch and much smaller MBS 
(O.OOSS), showed an increase in D to 1.17. 
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Fig. 4.Fractal plot for typical fracture profile. 
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Fig. 5. Fractal plot for typical fracture profile. 

Nearly identical fractal
dimension for concrete
with MSA 0.75 and 1.5
inches

Fractal dimension of
profiles normal to the
direction of cracking
appear to be slightly
smaller than for the
profiles taken in the
direction of cracking.
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Fractality of GF

1.06 1.07 1.08 1.09 1.1 1.11 1.12

Fractal Dimension (D)

0

0.5

1

1.5
F

ra
ct

ur
e 

E
ne

rg
y 

G
F
(lb

/in
)

Fracture Energy vs Fractal Dimension; Concrete

GF=7.87-5.95D

1 1.1 1.2 1.3

Fractal Dimension (D)

0

1

2

3

4

F
ra

ct
ur

e 
E

ne
rg

y 
G

F
(lb

/in
)

Fracture Energy vs Fractal Dimension; Concrete, Alumina, Ceramics

Concrete
Alumina
Glass Ceramic

1.06 1.07 1.08 1.09 1.1 1.11 1.12

Fractal Dimension (D)

0

200

400

600

800

1000

1200

F
ra

ct
ur

e 
T

ou
gh

ne
ss

 K
Ic

(p
si

 in
1/

2
) Fracture Toughness vs Fractal Dimension; Concrete

KIc=6,220-4,760D

1 1.1 1.2 1.3 1.4

Fractal Dimension (D)

0

1

2

3

4

F
ra

ct
ur

e 
T

ou
gh

ne
ss

 K
Ic

(M
P

a 
m

1/
2
) Fracture Toughness vs Fractal Dimension; various Materials

Concrete
Alumina
Ceramics
Flint
Polystyrene
Silicon

V. Saouma Size effect : from Irwin to Bazant and Mandelbrot 14/25



Fractal dimension D versus profile orientations

Saouma, V. and Barton, C. (1994). Fractals, fractures and size effects in concrete.
Journal of Engineering Mechanics of the American Society of Civil Engineers, 120(4):835–854

Specimen Profile Profile Distance from Centerline Average σD%
direction 1 in. 3 in. 5 in. 7 in.

3-ft specimens of 1.5-in. MSA
0◦ 1.096 1.118 1.098 1.113 1.106 1.1

A 90◦ 1.087 1.115 1.101 1.088 1.098 1.1
+45◦ 1.096 1.100 1.104 1.123 1.106 1.1
−45◦ 1.073 1.109 1.090 1.097 1.092 1.1

0◦ 1.096 1.118 1.064 1.112 1.097 2.2
B 90◦ 1.109 1.100 1.088 1.133 1.107 1.7

+45◦ 1.112 1.111 1.073 1.125 1.105 2.0
−45◦ 1.094 1.085 1.096 1.085 1.090 0.5

0◦ 1.130 1.128 1.094 1.115 1.117 1.5
C 90◦ 1.092 1.098 1.126 1.106 1.105 1.3

+45◦ 1.108 1.087 1.122 1.105 1.105 1.3
−45◦ 1.113 1.127 1.101 1.102 1.111 1.1

3-ft specimens of 3.0-in. MSA
0◦ 1.099 1.107 1.084 1.097 1.097 0.9

A 90◦ 1.123 1.107 1.087 1.129 1.111 1.7
+45◦ 1.084 1.071 1.089 1.114 1.089 1.7
−45◦ 1.148 1.115 1.094 1.123 1.120 2.0

0◦ 1.147 1.096 1.123 1.069 1.109 3.0
B 90◦ 1.116 1.127 1.100 1.165 1.127 2.5

+45◦ 1.104 1.111 1.083 1.110 1.102 1.2
−45◦ 1.094 1.087 1.107 1.115 1.101 1.1

0◦ 1.118 1.098 1.113 1.106 1.109 0.8
C 90◦ 1.115 1.101 1.088 1.098 1.100 1.0

+45◦ 1.100 1.104 1.123 1.106 1.108 0.9
−45◦ 1.109 1.090 1.097 1.092 1.097 0.8
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Comparison between D, KIc , and GF I

Distance from centerline Fractal dimension GF , KIc [psi
√

in]
Specimen 1 in. 3 in. 5 in. 7 in. Average σD% [lb/in] Average σK %

3-ft specimens of rounded 1.5-in. MSA
S32A 1.096 1.094 1.096 1.112 1.100 0.8 1.28 812. 10.0
S32B 1.096 1.118 1.064 1.112 1.098 2.2 1.17 909. 5.5
S32C 1.130 1.128 1.094 1.115 1.117 1.5 1.36 1,004. 11.3

Average 1.107 1.113 1.085 1.113 1.105 1.27 908
3-ft specimens of rounded 3.0-in. MSA

S33A 1.099 1.107 1.084 1.097 1.097 0.9 1.21 901. 6.3
S33B 1.147 1.096 1.123 1.069 1.109 3.0 1.26 862. 6.4
S33C 1.118 1.098 1.113 1.081 1.103 1.5 1.40 1,166. 7.7

Average 1.121 1.100 1.107 1.082 1.103 1.29 976
3-ft specimens of 1.5-in. MSA (subangular basalt aggregate)

SS32A 1.084 1.089 1.096 1.052 1.080 1.8 1.73 1,274. 9.6
SS32B 1.090 1.077 1.096 1.076 1.085 0.9 1.42 1,137. 12.3
Average 1.087 1.083 1.096 1.064 1.083 1.57 1,206.

5-ft specimens of rounded 1.5-in. MSA
S52A 1.085 1.074 1.064 1.069 1.073 0.8 1.17 1,058. 6.9
S52B 1.066 1.070 1.072 1.050 1.065 0.9 1.63 1,164. 6.1
S52C 1.082 1.067 1.082 1.059 1.073 1.1 1.64 1,138. 3.5

Average 1.078 1.070 1.073 1.059 1.070 1.48 1,120.
5-ft specimens of rounded 3.0-in. MSA

S53A 1.091 1.077 1.088 1.073 1.082 0.8 1.35 893. 13.7
S53B 1.037 1.049 1.060 1.048 1.049 0.9 Not applicable

Average 1.064 1.063 1.074 1.061 1.065
5-ft cold joint specimens

CJ52B 1.050 1.045 1.051 1.027 1.043 1.1 0.46 457. 3.3
CJ53A 1.051 1.064 1.056 1.050 1.055 0.6 0.76 643. 3.9
CJ53C 1.073 1.087 1.070 1.062 1.073 1.0 0.56 567. 2.6

Average 1.058 1.065 1.059 1.046 1.057 0.59 494
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Comparison between D, KIc , and GF II

There is no apparent correlation between the fractal dimension and the profile orientation.

D, GF , and KIc tested higher for concrete than for the cold-jointed specimen.

Specimens prepared with subangular basalt aggregate had generally higher GF and KIc
and lower D.

Linear regression

GF = 7.87− 5.95D lb/in; χ2 = 0.258

KIc = 6, 220− 4, 766D psi
√

in; χ2 = 0.267

Note low goodness of fit. in using the above equations.

A lower fractal dimension is synonymous with a higher fracture toughness because there is
mostly aggregate rather than bond failure.
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Fractals and Size Effects I

SEL and and a fractal analysis bear many
similarities: a) Log-Log plot; b) Size/Scale
dependency: Lack of a unique value for length/area
or strength, dependency on either ruler or specimen
size; c) Singularity of results for very small ruler or
very large specimen sizes.

It can be easily shown that L(S) = aS1−D whereS is
the ruler length and L(S) the total length L(S).

For L = 3 ft, S =0.1 in, D = 1.103 a = L
S1−D =28.40. 10-6 10-5 10-4 10-3 10-2 10-1 100

Ruler Length (S)

101
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ot
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Impact of Yardstick on Total Length

a=28.4; D=1.103
a=22.7; D=1.2
a=14.33; D= 1.4
a=9.04; D=1.6
L=36

Correct profile length L∗ = ( S∗
S0

)(1−D)L0 where L0 is the length measured with S0.

Hypothesize that lim
d→∞

PSEL︸ ︷︷ ︸
Multiple specimen sizes

= lim
S→0
PF︸ ︷︷ ︸

multiple yardsticks

This leads to G∗F =
(

S0
S∗

)2(1−D)
GF
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Fractals and Size Effects II

Comparison between “corrected” G∗F and Gc values based on [Swartz and Kan, 1992]
Specimen Aggregate type Water/cement Ec KIc GF Gc G∗F

psi× 106 psi
√

in lb/in. lb/in. lb/in.
NC-.64 Crushed Limestone 0.64 4.5 922 0.565 0.190 0.187
HC-.64 Crushed Quartzite 0.64 5.08 1,206 0.824 0.286 0.273
NP-.64 Crushed & Polished Limestone 0.64 4.74 980 0.570 0.203 0.189
NP-.30 Crushed & Polished Limestone 0.30 5.46 1,266 0.727 0.293 0.241
HC-.30 Crushed Quartzite 0.30 5.54 1,523 0.952 0.419 0.315
NC-.30 Crushed Limestone 0.30 6.03 1,308 0.679 0.280 0.225
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Fractal Size Intensity Factors

Wnuk, M. and Yavari, A. (2003). On estimating stress intensity factors and modulus of cohesion for fractal cracks.

Engineering Fracture Mechanics, 70:1659–1674

K for a fractal crack of length 2a and characterized by a fractal singularity α in an infinite
plate subjected to a uniform far field stress σ

K F
σ =

σ

παaα−1

1∫
0

(1 + s)2α + (1− s)2α

(1− s2)α
ds

︸ ︷︷ ︸
χ(α)

; s = x/a

K F
coh =

2f ′t
π

(πa)1−α(1−m)1−α
∫ 1

0

G(λ, ω, n)
{(1− λ) [1 + (1−m)λ + m]}α

dλ︸ ︷︷ ︸
Γ (ω,n,α,m)

For small scale yielding, m→ 1, K F
coh → K F

σ

For the Euclidian crack, α = 1/2, χ(1/2) = π.

Kσ = σ
√
πa

Kcoh =

[√
2ft
π

√
πa

]√
1−m · Γ (ω, n,

1
2

)

x

tftf

0a

a a

a0

σ

c
f

c
f

σ
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Size Effect in Fractal Cracks; Derivation

Saouma, V. and Fava, G. (2006). On fractals and size effects.

International Journal of Fracture, 137:231–249

As before K F
σ + K F

coh = 0⇒ σ
f ′t

= −2
(

1
1+r

)1−α Γ (ω,n,α,m)
χ(α)

We recover Bažant’s original size effect law for α = 1/2, and size effect law is clearly
independent of the cohesive stress distribution Γ (ω, n, α,m).

For small scale yielding m = a0
a → 1⇒ σ

f ′t
= −21−α

(
1

1+r

)1−α Γ (ω,n,α)
χ(α)

Complex form, χ(α) can not be explicitly evaluated, take a series expansion with respect to
s = 0, i.e. for cf � a

σ

ft
= −

2−2α(−1− r )
(

1
1+r

)2α
[

22α√πΓ (1− α)− 2B 2r+1
2(r+1)

(1− α, 1− α)Γ (3/2− α)

]
Γ (3/2− α)

Γ (z) =
∫ ∞

0
tz−1e−t dt

Br (z,w) =
∫ r

0
tz−1(1− t)w−1dt

are the Gamma and Beta functions.
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Size Effect in Fractal Cracks; Interpretation

Saouma, V. and Fava, G. (2006). On fractals and size effects.
International Journal of Fracture, 137:231–249

Slope as r →∞ is equal to α,

The -1/2 asymptotic slope of Bažant’s original size effect law
is recovered, and the strength of the size effect law is
reduced for fractal cracks.

Asymptotic value of σ/f ′t as r → 0,

σ

ft

∣∣∣∣
r−→0

=
√
πΓ (1− α)

2Γ
[

3
2 − α

]
which for α = 1/2 is equal to π

2 .

This limit value is problematic, as one would have expected to
retrieve the value of 1. This discrepancy may be attributed to
the approximation of χ(α) ; nevertheless this discrepancy
requires further investigation.
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Conclusion

Motivation
This is about a long journey, started in 1988, searching for the broad interaction between Size
Effect, theory, experimental evidence, Fractal Theory, experiment, and what does it all mean.

Still searching.

(Preliminary) Conclusions/Observations

Most of my research has sought to ultimately seek practical applications.

The applicability of this presentation is ∼ 0 but has been most
challenging and rewarding.

Would not have been possible without the inspirational challenge of Prof.
Bažant.

Thank you Ždenek!
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